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Abstract: This article is concerned with the derivation of a residual-based a poste-
riori error estimator and mesh-adaptation strategies for the space-time finite element
approximation of parabolic problems with irregular data. Typical applications arise in
mathematical finance where the Black-Scholes equation is used for modeling the pricing
of European options. A conforming finite element discretization in space is combined
with second-order time discretization by a damped Crank-Nicolson scheme for coping
with data irregularities in the model. The a posteriori error analysis is developed within
the general framework of the Dual Weighted Residual (DWR) method for sensitivity-
based goal-oriented error estimation and mesh optimization. In particular, the correct
form of the dual problem with damping is considered.
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1 Introduction

In this article, we are mainly concerned with the derivation of an a posteriori error esti-
mator for a damped Crank-Nicolson scheme in the spirit of the Dual Weighted Residual
(DWR) method for goal-oriented mesh adaptation introduced in Becker and Rannacher
(1996, 2001) (see also Bangert and Rannacher (2003)).

To avoid technicalities unnecessary for the understanding of the main points of the
article, we focus on a rather simple model problem in computational finance although
more complex situations could be handled by the described method as well. As a model
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application, we have in mind a multivariate Black-Scholes partial differential equation
for the pricing of European plain vanilla options.

In this case, due to possible irregularities of the initial data, the use of the second-order
Crank-Nicolson method requires a certain amount of damping such as proposed in Luskin
and Rannacher (1982) and Rannacher (1984) in order to compensate for the known weak
stability properties of this scheme. The importance of damping has also been recognized
in computational finance, see, eg, Pooley et al. (2003), Duffy (2004), Carter and Giles
(2006), Forsyth and Vetzal (2002) and the references cited therein. This nonstandard
time discretization is combined with a standard conforming finite element approach in
space. The key to the application of the DWR method to this space-time discretization is
its reformulation as a conforming Galerkin method in space-time. The resulting strategy
for the simultaneous adaptation of time step and spatial mesh size is illustrated by some
simple test examples.

To calculate sensitivities of the solution it is required to solve a, so-called, dual problem
whose initial data are given depending on the the quantity of interest for the sensitivities.
These dual initial data are rather irregular for quantities typically of interest in computa-
tional finance such as the price of the option at a certain time and price of the underlying
asset, or derivatives of the price, so-called, Greeks. This irregularity makes damping of
the dual equation even more necessary than for the primal problem itself. Thus, in order
to obtain a consistent discretization, ie, one where the dual to the discrete problem is
also the discrete of the dual problem, one has to modify the damped Crank-Nicolson
scheme even further.

This modified scheme is not only of interest for the application of adaptive methods,
but in any case where sensitivities of the solution are required. Such situations arise for
instance in calibration problems where local volatilities are adjusted to given (known)
option prices.

The use of mesh adaptivity based on a posteriori error estimates is well accepted in
the context of finite element discretization of partial differential equations. There are
two main approaches in this context: error estimation with respect to natural “energy
norms” induced by the given variational problem, see, eg, Verfürth (1996), Ainsworth
and Oden (2000) and Babuška and Strouboulis (2001) for surveys. As an alternative
approach “goal-oriented” error estimation with respect to a pre-assigned “quantity of
interest” is going back to Eriksson et al. (1996), Becker and Rannacher (1996, 2001). For
parabolic problems a posteriori error estimates with respect to global norms have been
derived, eg, in Akrivis et al. (2006), Chen and Feng (2004), Eriksson and Johnson (1991,
1995), Lang (2001) and Picasso (1998). The case of goal-oriented error estimation for
space-time finite element discretization of parabolic problems was considered in Schmich
and Vexler (2008), see also Meidner and Vexler (2007) for the case of parabolic optimal
control problems. In Ern et al. (2004) the authors apply a dual weighted residual error
estimator for a space-time finite element discretization of the one-dimensional Black-
Scholes equation using continuous finite elements in space and piece-wise constant or
linear discontinuous finite elements in time. A similar setting is considered in Foufas and
Larson (2008). However, because of the choice of the time discretization, in particular
the use of a discontinuous Galerkin methods in time for the dual problem, the above
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mentioned articles did not need to consider the necessity of damping due to irregular
primal and dual initial values.

Error estimation and adaptivity in the framework of finite difference schemes applied
to the Black-Scholes equation is studied in Achdou and Pironneau (2005), Pironneau and
Hecht (2000), Lötstedt et al. (2007) and Persson and von Sydow (2007). In the same
context temporal adaptivity for a θ-scheme is considered in Khaliq et al. (2008).

However, none of the afore mentioned articles take care of the important case of the
Crank-Nicolson method with damping. Such damping is required in order to avoid os-
cillations in the solution in the case of irregular initial data. A thorough analysis of the
effect of irregular initial data on the behavior of the standard Crank-Nicolson scheme
and strategies for dealing with this complication can be found in Luskin and Rannacher
(1982) and Rannacher (1984).

Such irregular initial data appears naturally in the Black-Scholes model; see for in-
stance Black and Scholes (1973) and Merton (1973). Therefore, we will consider goal-
oriented error estimation for the damped Crank-Nicolson method for the Black-Scholes
equation as an instructive example. We focused this analysis on the damped Crank-
Nicolson method because it is most popular in financial engineering, see for example
Pooley et al. (2003), Duffy (2004), Carter and Giles (2006), Forsyth and Vetzal (2002)
and the references cited therein. The adjoint time stepping scheme proposed in this
article introduces additional damping in the time stepping scheme in order to assert
smoothing properties for the adjoint scheme. The smoothing properties of the adjoint
scheme are required here in order to accurately calculate the sensitivity factors. The most
interesting property of the described method is that the order of computing sensitivities
and discretizing the equation does not matter, ie, the discrete sensitivities are in fact
approximations to the continuous ones.

Although, we have limited our discussion here to the case of a European option in or-
der to avoid technicalities obstructing the view on the, already quite technical, derivation
of an appropriate adjoint scheme one should note that an extension of the techniques is
possible to a variety of other options. For example, residual type estimators for American
options have been considered in Allegretto et al. (2006); Moon et al. (2007); Nochetto
et al. (2010). Dual weighted residual error estimates can be extended to the case of Amer-
ican options using the techniques developed for the treatment of variational inequalities,
see, eg, Blum and Suttmeier (2000); Suttmeier (2008).

This article is structured as follows: In Section 2, we describe the problem under
consideration together with its time and space discretization. In Section 3, we derive the
time-stepping scheme for the dual/adjoint problem. In particular, we reformulate the
primal scheme from Section 2 as a Galerkin method in time. Then, we discuss a posteriori
error estimates and their separation into local spatial and temporal contributions in
Section 4. Finally, in Section 5, we conclude with some results of numerical experiments,
which confirm our claim on the need for damping of the dual problem.
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2 The Problem and its Discretization

2.1 The Black-Scholes Equation

We begin by a brief review of the Black-Scholes equation for describing the price of a
plain vanilla European option. For an introduction of this model, we refer the reader
to the original papers from Black and Scholes (1973) and Merton (1973), or the book
of Kwok (1998) and the references cited therein for the multivariate case. Here, we are
particularly concerned with the fair price u of an European plain vanilla option on a
basket of d risky underlying assets. In the following, we consider an option with maturity
T > 0 and strike price K > 0. For the sake of simplicity, we assume the interest rate
r > 0 and the volatility of the i-th asset σi > 0, 1 ≤ i ≤ d, to be constant. Further,
we assume the matrix ρ = (ρij) of the correlation factors ρij with −1 ≤ ρij ≤ 1 for
1 ≤ i, j ≤, to be positive definite. Of course ρ is symmetric with ρii = 1. As an
abbreviation, we define the symmetric positive definite Matrix Ξ := (σiρijσj).

With (t, x) ∈ I = (0, T ] × R
d
+ denoting the prices x of the underlying assets at the

time t, the problem of determining the fair price u of such an option is (after a time
reversal) given by the following equation:

∂tu− 1
2

d∑

i,j=1

Ξijxixj∂xi∂xju− r
d∑

i=1

xi∂xiu+ ru = 0 in (0, T ]× R
d
+, (2.1a)

u(0) = u0 in R
d
+. (2.1b)

Where the initial condition u0 ∈ C0
(
R
d
+

)
(ie, the payoff) is given depending of the type

of the option. For example:

u0 :=

{
max(

∑d
i=1 xi −K, 0), u is a Call,

max(K −
∑d

i=1 xi, 0), u is a Put.

where x = (xi) ∈ R
d
+.

Using standard arguments, see, eg, Friedman (1983), the existence of a solution to this
problem can be shown. This solution is unique provided an additional growth condition

|u(t, x)| ≤

{∑d
i=1 xi, u is a Call,

K, u is a Put,
for (t, x) ∈ [0, T ]× R

d
+,

is required.
In order to discretize (2.1) it is desirable to consider a bounded domain. For this

purpose let xi > 0, (i = 1, . . . , d) be given and consider the domain

Ω := (0, x1)× . . .× (0, xd).

We now require additional boundary values on

ΓD := ∂Ω ∩ R
d
+.
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These values are chosen compatible with u0 using knowledge on the asymptotic behavior
of the solution to (2.1). For the two types of options considered here these values are
given as follows:

g(t, x) :=

{∑d
i=1 xi −Ke−rt, u is a Call,

0, u is a Put,
(2.2)

see for instance Pironneau and Achdou (2009).
Then, we consider the following problem on a bounded polygonal domain:

∂tu− 1
2

d∑

i,j=1

Ξijxixj∂xi∂xju− r
d∑

i=1

xi∂xiu+ ru = 0 in (0, T ]× Ω, (2.3a)

u|ΓD
= g on [0, T ]× ΓD, (2.3b)

u(0) = u0 in Ω. (2.3c)

The error introduced by cutting of the domain can be made arbitrary small by choosing
the domain Ω sufficiently large as been shown in Kangro and Nicolaides (2000). In
particular, there holds:

Theorem 1. Let u be a regular solution of (2.1) and let uco be a regular solution
of (2.3). Then, for any point (t, x) ∈ [0, T ]× Ω such that

ln
xi
xi

≥ (σ2i + 2r)t ≥ 0

the following error estimate holds:

|u(t, s)− uco(t, s)| ≤‖u− g‖L∞((t,T )×ΓD)

·

(
d∑

i=1

exp
(
−

ln xi
xi

(
ln xi

xi
− (σ2i + 2r)t

)

2σ2i t

))
.

In order to obtain a variational formulation, we follow Achdou and Pironneau (2005)
and define

V :=
{
v ∈ L2(Ω)

∣∣ xi∂xiv ∈ L2(Ω), 1 ≤ i ≤ d
}
.

Then, with the scalar product (·, ·) of L2(Ω), we define a scalar product on V by

(u, v)V := (u, v) +

d∑

i=1

(xi∂xiu, xi∂xiv).

Thereby V becomes a Hilbert space with norm ‖v‖V := (v, v)
1/2
V . In order to include

boundary values, we introduce the space

V0 := C∞
0 (Ω)

‖·‖V
= {v ∈ V | v|ΓD

= 0}.

The semi-norm | · |V := (
∑d

i=1 ‖xi∂xi · ‖
2
Ω)

1/2 is a norm on V0, which is equivalent to
‖ · ‖V due to a Poincaré type inequality.
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Let H := L2(Ω), Y = V or Y = V0 and Y ′ be the topological dual of Y . Then, Y →֒
H →֒ Y ′ forms a Gelfand triple. We define the function space W (Y ) := W (0, T )(Y )
through

W (0, T )(Y ) := {w ∈ L2(0, T ;Y ) | ∂tw ∈ L2(0, T ;Y ′)}.

For the Hilbert space W (Y ) the embedding W (Y ) ⊂ C0([0, T ];H) holds, see, eg, Wloka
(1987, Theorem 25.5). Further, we define the functions A : Rd → R

d×d and β : Rd → R
d

by

Ax :=
(
1
2Ξijxixj

)d
ij=1

, βx :=
((

Ξii +
1
2

∑d

j=1,j 6=i
Ξij − r

)
xi

)d
i=1
,

and the bilinear forms a : V × V → R and a :W (V )×W (V ) → R by

a(v, w) := (A∇v,∇w) + (β · ∇v, w) + r(v, w),

a(v, w) :=

∫ T

0
a(v(t), w(t)) dt.

With this notation, we can state the weak formulation of (2.3): Given u0 ∈ L2(Ω), find
u ∈ g̃ +W (V0) such that

((∂tu, ϕ)) + a(u, ϕ) + (u(0), ϕ(0)) = (u0, ϕ(0)) ∀ϕ ∈W (V0), (2.4)

where we denoted by ((·, ·)) the scalar product on L2(I × Ω) and g̃ ∈ W (V ) is any
continuation of the boundary data g.

It has been shown for d = 1 in Achdou and Pironneau (2005) and is otherwise clear
by definition that a is continuous and fulfills Gårdings inequality in the space V0, ie,
there exist constants C, c, λ > 0 such that for any v, w ∈ V0 there holds:

a(v, w) ≤ C|v|V |w|V , a(v, v) ≥ c|v|2V − λ‖v‖2.

Hence, by standard arguments there exists a unique solution u ∈ g +W (V0) of (2.4),
see, eg, Wloka (1987, Theorem 26.1).

Remark 2.1. At this point, we remark that in the presented framework of option pricing
one is particularly interested in the value of the solution today at the actual price of the
asset x0, ie, in the value u(T, x0). Other quantities of interest are, so-called, Greeks,
which are basically partial derivatives of the solution u, also evaluated at the point
(T, x0). For example, the Greek Delta of the solution u is defined as ∂xu. For further
information about the sensitivities and their role in option pricing, we refer to Hull (2006).

2.2 Semi-discretization in Time

In this section, we describe the semi-discretization in time of (2.4) by means of a Galerkin
method. We choose time points tl for 0 ≤ l ≤M such that

0 = t0 < · · · < tl < · · · < tM = T.
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Then, we set Im = (tm−1, tm] and km = tm−tm−1 for 1 ≤ m ≤M to obtain a partition
Tk = {Il | 1 ≤ l ≤M} of I, ie,

I = {0} ∪
⋃

Il∈Tk

Il.

In the next Section 2.2.1, we will recall the continuous formulation of the Crank-Nicolson
time-stepping scheme. It is crucial, for our later analysis to note that the Crank-Nicolson
method can be embedded into the context of Galerkin methods (cG(1)-method), see
Section 3.1. We continue by formulating the damped Crank-Nicolson method to cover non
regular initial values. We note that this can be embedded into the Galerkin framework
as well, see Section 3.2, which is one of the contributions of this article and allows for
an easy way to calculate adjoint information. This will then be used for purposes of
error estimation in Section 4 but will be equally important in the context of calibration
problems.

2.2.1 The damped Crank-Nicolson Scheme

We will first restate the well known Crank-Nicolson time marching scheme. To this end
let g̃mk ∈ V for 0 ≤ m ≤M be some continuation of the boundary data, eg, g̃mk = g(tm).
Then, the Crank-Nicolson scheme takes the form: Given u0 ∈ V , find umk ∈ g̃mk +V0 for
0 ≤ m ≤M such that

(u0k − u0, ψ) = 0 ∀ψ ∈ L2(Ω), (2.5)

(umk − um−1
k , ψ) + 1

2kma(u
m
k + um−1

k , ψ) = 0 ∀ψ ∈ V0, 1 ≤ m ≤M. (2.6)

It is immediately clear from (2.5) that we may only consider initial data u0 ∈ V in
order to have a well posed semi-discrete problem. This is in contrast to the continuous
problem (2.4) in which initial conditions in L2(Ω) were possible. Furthermore, even
for initial data in V convergence of optimal order with respect to k is usually not
obtained. In order to ensure optimal convergence one may replace one (or several) steps
of the Crank-Nicolson method by two steps of an implicit Euler scheme, see Luskin and
Rannacher (1982) or Rannacher (1984).

Remark 2.2. Let us make a remark on the number of damping steps. Even though the
theorems in the aforementioned works state that two damping steps (ie, two implicit
Euler-steps) are sufficient for initial data in L2(Ω), sometimes more damping steps are
needed. The number of damping steps in fact depends on the lack of regularity in the
initial conditions. For example, if the initial conditions show a ’kink’ or a jump, ie, they
are in L2(Ω), two damping steps are sufficient. However, if we consider less regular initial
data like a Dirac functional or derivatives thereof, we need to apply three or four damping
steps respectively. Such irregular initial conditions arise naturally in the adjoint equation
for the evaluation of point-values or derivatives as they appear in the, so-called, Greeks.

In fact, a careful analysis of Rannacher (1984) shows that for initial conditions u0 ∈
Hm with m ≤ 2, at least 2 − m damping steps are required to gain optimal rates of
convergence. Because we replace one step of the Crank-Nicolson scheme by two implicit
Euler steps, we consider only even numbers of damping steps in this paper.
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According to Remark 2.2, it is clear that the precise number of damping steps needs
to bee adjusted to the given initial data. Thus, for the description of the time-stepping
scheme, we select L intervals, 0 ≤ L ≤ M , of the partition Tk on which we intend to
damp the method. The number L then needs to be picked according to the comments
above depending on the regularity of the initial data.

Let JL be the corresponding set of indices, JL = {l1, . . . , lL} ⊂ {1, . . . ,M}. For
l ∈ JL, we split the interval. Hence, we set tl−1/2 := tl −

1
2kl. Then, we define the set

J0 of intervals on which we use an implicit Euler step as well as the set J1 on which we
use the Crank-Nicolson method by

J0 = {l, l − 1
2 | l ∈ JL}, J = J0 ∪ {n ∈ N| 1 ≤ n ≤M}, J1 = J \ J0. (2.7)

By this, we also redefine the intervals Im for indices in J . Therefore let

Im =

{
(tm−1, tm], m ∈ J1,

(tm−1/2, tm], m ∈ J0,
and km = |Im|.

This defines a new partition T̂k = {Il|l ∈ J}. We are now able to formulate the damped
Crank-Nicolson method: Given u0, find umk ∈ g̃mk + V0 such that for m ∈ J ∪ {0} the
following holds:

(u0k, ψ) = (u0, ψ) ∀ψ ∈ L2(Ω), if m = 0, (2.8a)

(umk , ψ) + km a(u
m
k , ψ) = (u

m−1/2
k , ψ) ∀ψ ∈ V0, if m ∈ J0, (2.8b)

(umk , ψ) +
1
2km a(u

m
k + um−1

k , ψ) = (um−1
k , ψ) ∀ψ ∈ V0, if m ∈ J1. (2.8c)

2.3 Spatial Discretization

We discretize the infinite dimensional function space V0 by means of V0-conforming finite
elements. For this purpose, for each time point tm with m ∈ J ∪ {0} let T m

h = {K}
be a shape regular non-overlapping partition of Ω into (closed) d-dimensional triangular
or quadrilateral cells K. For details on this construction, we refer to the usual finite
element literature, eg, Ciarlet (1987). The discretization parameter h is defined as
h = maxm∈J∪{0}maxK∈T m

h
diam(K). Then, for s ∈ N, s ≥ 1, we define the finite

dimensional spaces V s,m
h by

V s,m
h :=

{
v ∈ C0(Ω)| v|K∈ Qs(K), ∀K ∈ T m

h

}
⊂ V,

where Qs(K) denotes the usual space of isoparametric Ps or Qs finite elements of
polynomial degree s. Further, we set V s,m

h,0 = V s,m
h ∩V0. With this, we can discretize (2.8)

to get a fully discrete time-marching scheme:
Given u0, find umkh ∈ g̃mk + V s,m

h,0 such that for m ∈ J ∪ {0} there holds

(u0kh, ψh) = (u0 − g̃0k, ψh) ∀ψh ∈ V s,0
h,0 , if m = 0 (2.9a)

(umkh, ψh) + km a(u
m
kh, ψh) = (u

m−1/2
kh , ψh) ∀ψh ∈ V s,m

h,0 , if m ∈ J0, (2.9b)

(umkh, ψh) +
1
2km a(u

m
kh + um−1

kh , ψh) = (um−1
kh , ψh) ∀ψh ∈ V s,m

h,0 , if m ∈ J1. (2.9c)
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Remark 2.3. For readers unfamiliar with the finite element notation, we should that
the above equations can easily be written in a matrix-vector form by expanding the
solution umkh into a basis and then evaluating the integrals for appropriate pairs of basis
functions. For a more detailed introduction into the finite element method see Brenner
and Scott (2007, Chapter 0.6) as well as to Brenner and Scott (2007, Chapter 0.5) where
the connection to finite differences is discussed in more detail.

3 The Dual Time Stepping Scheme

Now, we come to the important issue of deriving the dual time stepping scheme. Although
one could in principle derive the dual time stepping scheme directly from the primal
one. Unfortunately, the finite difference discretization of the time derivatives may cause
trouble in this calculation. This is because then it needs to be checked whether the
above formulation (2.9) is adjoint consistent, ie, whether the calculated discrete adjoint
corresponds to a reasonable discretization of the continuous adjoint. For the numerical
problems associated with this if adjoint consistency is not given, we refer to Sachs and
Schu (2012).

This is why we take the trouble to reformulate the above time-stepping scheme in terms
of a Galerkin method. It is well known that Galerkin methods are adjoint consistent by
construction. Reader uninterested in the details may wish to skip this derivation and
continue directly in Section 3.4.

3.1 The cG(r)-Method

Let Y = V or Y = V0. For r ∈ N, r ≥ 1, we define the following semi-discrete spaces
Xr

k(Y ) and X̃r−1
k (Y ) by

Xr
k(Y ) = {ϕk ∈ C0(I, L2(Ω))|ϕk|Im∈ Pr(Im, Y ), 1 ≤ m ≤M}, (3.1)

X̃r−1
k (Y ) = {ϕk : I → Y |ϕk|Im∈ Pr−1(Im, Y ), 1 ≤ m ≤M ; ϕk(0) ∈ L2(Ω)}. (3.2)

Here, we denote by Pr(Im, Y ) the space of polynomials of degree lower or equal to r on
Im with values in Y . The space Xr

k(Y ) can be identified with a subspace of W (0, T )(Y ).

Due to the possible discontinuities for functions ϕk ∈ X̃r−1
k (Y ) at the time points tl,

1 ≤ l ≤ M , X̃r−1
k (Y ) is not a subspace of W (0, T )(Y ), but it may be viewed as a

subspace of L2(I, Y ).
In order to deal with the discontinuities in X̃r−1

k (Y ), we introduce the following stan-
dard notation:

vl,+ = lim
εց0

v(tl + ε), vl,− = lim
εր0

v(tl + ε) = v(tl), [v]l = vl,+ − vl,−,

for functions v ∈ X̃r−1
k (Y ) and any 0 ≤ l ≤M .

Now, let gk ∈ {ϕk ∈ C0([0, T ], L2(ΓD))| ϕk|Im∈ P (Im, L
2(ΓD))} be an interpolation

of the boundary data g such that

(g − gk)(tl) = 0, 0 ≤ l ≤M.
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Further, let g̃k ∈ Xr
k(V ) be a continuation of these boundary data.

By replacing trial and test space in (2.4) by Xr
k(V0) and X̃r−1

k (V0), respectively, we
obtain the following semi-discretized form of the cG(r)-method: Given u0 ∈ V , find
uk ∈ g̃k +Xr

k(V0) such that

((∂tuk, ϕk)) + a(uk, ϕk) + (uk(0)− u0, ϕ
0,−
k ) = 0 ∀ϕk ∈ X̃r−1

k (V0). (3.3)

We will now consider the case r = 1 which is frequently used for the solution of this
problem. We will specify (3.3) for this case and see that we recover the well known
Crank-Nicolson scheme (2.5). For functions vk ∈ X1

k(V ), we set

vlk := vk(tl) = vl,−k ∈ V, 0 ≤ l ≤M.

Hence for t ∈ Im, 1 ≤ m ≤M ,

vk(t) = k−1
m (tm − t)vm−1

k + k−1
m (t− tm−1)v

m
k , ∂tvk(t) = k−1

m (vmk − vm−1
k ).

Since the coefficients in a do not depend on time, using test functions ϕk that are
non zero on one interval Im only, we obtain the Crank-Nicolson time marching scheme
already given in (2.5): Given u0 ∈ V , find umk ∈ g̃mk + V0 for 0 ≤ m ≤M such that

(u0k − u0, ψ) = 0 ∀ψ ∈ L2(Ω),

(umk − um−1
k , ψ) + 1

2kma(u
m
k + um−1

k , ψ) = 0 ∀ψ ∈ V0, 1 ≤ m ≤M.

Then, the solution uk to (3.3) is defined on t ∈ I by linear interpolation of the discrete
values umk , ie,

uk(t) = u0kχ{0}(t) +

M∑

m=1

(
k−1
m (tm − t)um−1

k + k−1
m (t− tm−1u

m
k

)
χIm(t).

3.2 Damped Crank-Nicolson Scheme as Galerkin Method

For the cG(r) method it is again clear from (3.3) that we may only consider initial data
u0 ∈ V in order to have a well posed semi-discrete problem (3.3).

As in Section 2.2.1, we define the set J0 of intervals on which we use an implicit Euler
step. This scheme is now interpreted as a step of a discontinuous Galerkin method of
order zero (dG(0)-method). Further, we define the set J1 on which we use the cG(1)
method by (2.7).

Now, with the same notation as in Section 2.2.1, we recall the formulation of the
damped Crank-Nicolson method from (2.8): Given u0, find umk ∈ g̃mk + V0 such that for
m ∈ J ∪ {0} the following holds:

(u0k, ψ) = (u0, ψ) ∀ψ ∈ L2(Ω), m = 0, (3.4a)

(umk , ψ) + km a(u
m
k , ψ) = (u

m−1/2
k , ψ) ∀ψ ∈ V0, m ∈ J0, (3.4b)

(umk , ψ) +
1
2km a(u

m
k + um−1

k , ψ) = (um−1
k , ψ) ∀ψ ∈ V0, m ∈ J1. (3.4c)

10
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In order to derive our error estimates it is convenient to reformulate this scheme as
a Galerkin method. To this end, we have to properly define our trial space. As the
implicit Euler method corresponds to a dG(0) method, we will have to allow for possible
discontinuities on the left side of the intervals where we employ the dG(0) method. Hence,
we set

Jdc = {l − 1
2 | l ∈ J0}, Jc = (J ∪ {0}) \ Jdc.

Here Jdc denotes the time points where discontinuities may occur, while Jc are the
time points where the semi-discrete solution is continuous. Then, we define for r ≥ 1

X̂r
k(Y ) =

{
ϕk : I → Y

∣∣ ϕk|Im∈ Pr(Im, Y ), ϕk|Il∈ Pr−1(Il, Y ),

[ϕk]n = 0, l ∈ J0, m ∈ J1, n ∈ Jc
}
⊂ L2(I, Y ).

(3.5)

Let, in abuse of notation,

gk ∈
{
ϕk : I → L2(ΓD)

∣∣ ϕk|Im∈ Pr(Im, L
2(ΓD)), ϕk|Il∈ Pr−1(Il, L

2(ΓD)),

[ϕk]n = 0, l ∈ J0, m ∈ J1, n ∈ Jc
}
,

be an interpolation of the boundary data g such that

(g − gk)(tl) = 0, l ∈ J ∪ {0}. (3.6)

Once again, we denote by g̃k ∈ X̂1
k(V ) a continuation of the boundary data gk. Now,

we can state the Galerkin version of (3.4): Given u0, find uk ∈ g̃k + X̂1
k(V0) such that

∑

m∈J

((∂tuk, ϕk))m + a(uk, ϕk) +
∑

l∈Jdc

([uk]l, ϕ
l,+
k ) + (uk(0)− u0, ϕ

0,−
k ) = 0 (3.7)

holds for all ϕk ∈ X̃0
k(V0). For m ∈ J , we denote the scalar product in L2(Im × Ω) by

((·, ·))m.

3.3 Spatial Discretization

Now, in order to discretize the problem completely, it is no longer sufficient to discretize
the infinite dimensional function space V0 by means of V0-conforming finite elements as
we did with the space V s,m

h,0 in Section 2.3. Instead, we need to find completely discrete

spaces corresponding to X̂r
k and X̃r−1

k . To do so, we proceed analogously to (3.2) by
setting

X̃r,s
kh,0 :=

{
ϕkh : I → Y

∣∣ ϕkh|Im ∈ Pr(Im, V
s,m
h,0 ), m ∈ J ; ϕkh(0) ∈ V s,0

h,0

}
.

In order to discretize the trial space, we have to ensure continuity at time points tl for
l ∈ Jc. To this end, we use the construction described in Schmich and Vexler (2008).
Let {τ0, τ1, . . . , τr} be a Lagrangian basis of Pr(Im,R), m ∈ J1 such that

τ0(tm−1) = 1, τ0(tm) = 0, τk(tm−1) = 0 (k = 1, . . . , r). (3.8)

11
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In the case r = 1 a basis fulfilling (3.8) is given by

τ0(t) := k−1
m (tm − t), τ1(t) = k−1

m (t− tm−1), t ∈ Im.

Notice that for m ∈ J1 it holds m − 1 ∈ Jc. We define the spaces Xr,s,m
kh,0 on the

sub-intervals Im by

Xr,s,m
kh,0 := span

{
τivi
∣∣ v0 ∈ V s,m−1

h,0 , vj ∈ V s,m
h,0 , j ≥ 1, i = 0, . . . , r

}
.

By definition Xr,s,m
kh,0 ⊂ Pr(Im, V ). Then, the fully discretized trial space is analogously

to (3.5) given by

X̂r,s
kh,0 :=

{
ϕkh : I → Y

∣∣ ϕkh|Im ∈ Xr,s,m
kh,0 , ϕkh|Il ∈ Pr−1(Il, V

s,l
h,0), [ϕkh]n = 0,

for l ∈ J0, m ∈ J1, n ∈ Jc
}
⊂ X̂r

k(V0).

Analogously to the above construction, we define the spaces X̃r,s
kh , X̂

r,s
kh and Xr,s,m

kh

through replacing V s,m
h,0 by V s,m

h in the above definitions.
With these preparations, we can now state the fully discretized version of (3.7). We

remark that due to the form of the boundary data (2.2), we can choose the continuation
in (3.6) such that g̃k ∈ X̂1,s

kh .

Then, the fully discretized problem reads as follows: Given u0, find ukh ∈ g̃k + X̂1,s
kh,0

such that
∑

m∈J

((∂tukh, ϕkh))m + a(ukh, ϕkh)

+
∑

l∈J̃dc

([ukh]l, ϕ
l,+
kh ) + (ukh(0)− u0, ϕ

0,−
kh ) = 0,

(3.9)

for all ϕkh ∈ X̃0,s
kh,0. Again, taking test functions ϕkh with support on only one of the

subintervals Im one readily sees that this is equivalent to the damped Crank-Nicolson
scheme given in (2.9).

3.4 Dual Time Marching Scheme

For the purpose of sensitivity/duality-based error estimation, we will have to consider a
dual problem of the form: Find z ∈W (V0) such that

−((ϕ, ∂tz)) + a(ϕ, z) + (ϕ(T ), z(T )) = J (ϕ(T )) ∀ϕ ∈W (V0). (3.10)

with a given linear functional J ∈ V ′. In addition, we require semi-discretized and fully
discretized versions of this dual problem and corresponding solutions zk and zkh, which
have to be determined in X̃0

k(V0) and X̃0,s
kh (V0), respectively such that zk and zkh are

feasible as test functions in (3.7) and (3.9), respectively. To this end, we use the formal
dual problems to (3.7) and (3.9), respectively. In the case of (3.7) this leads us the
following dual time marching scheme: For l ∈ J ∪ {0} find zlk ∈ V0 such that for any
ψ ∈ V0 there holds:

12
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i. For l =M :

a) M ∈ J0 : (ψ, zMk ) + kM a(ψ, zMk ) = J (ψ), (3.11a)

b) M ∈ J1 : (ψ, zMk ) + 1
2kM a(ψ, zMk ) = J (ψ), (3.11b)

ii. For 0 < l < M :

a) l ∈ Jdc, l ∈ J1 : (ψ, zlk) +
1
2kl a(ψ, z

l
k) = (ψ, z

l+1/2
k ), (3.11c)

b) l ∈ Jdc, l ∈ J0 : (ψ, zlk) + kl a(ψ, z
l
k) = (ψ, z

l+1/2
k ), (3.11d)

c) l ∈ Jc, l ∈ J0 : (ψ, zlk) + kl a(ψ, z
l
k) +

1
2kl+1 a(ψ, z

l+1
k ) = (ψ, zl+1

k ), (3.11e)

d) l ∈ Jc, l ∈ J1 : (ψ, zlk) +
1
2kl a(ψ, z

l
k) = (ψ, zl+1

k )− 1
2kl+1 a(ψ, z

l+1
k ), (3.11f)

iii. For l = 0:

a) 0 ∈ Jdc : (ψ, z0k) = (ψ, z1k), (3.11g)

b) 0 ∈ Jc : (ψ, z0k) = (ψ, z1k)−
1
2k1 a(ψ, z

1
k). (3.11h)

The dual scheme corresponding to the fully discretized problem (2.9) or (3.9) reads
exactly the same except that zkh, ψh ∈ V s,m

h,0 .

Remark 3.1. We remark that the above time marching schemes with a constant step size
and J0 = ∅ coincide with a Crank-Nicolson method whose time intervals are shifted by
1
2k.

4 A Posteriori Error Estimation

After the initial considerations in the previous section, we are now prepared to derive
dual weighted a posteriori error estimates for both the temporal as well as the spatial
error with respect to a given quantity of interest J (u). Let u, uk and ukh be the
solutions to (2.4), (3.7), and (3.9), respectively. We intend to derive error estimators ηh
and ηk such that the following holds:

J (u)− J (ukh) = {J (u)−J (uk)}+ {J (uk)−J (ukh)} ≈ ηk + ηh.

For simplicity and because this situation is of particular interest in financial mathematics,
we assume J : V → R to be a continuous linear functional. Two examples which we
consider in Section 5 are the value of an option and the value of the Delta of an option
at the time t = T (ie, today) for a given price of the underlying x0. In this cases the
functionals would read J (u(T )) = u(T, x0) and J (u(T )) = ∂xu(T, x0) respectively.

Remark 4.1. In fact, the above given functionals are not continuous on V . To cope with
this difficulty, one can either use local mean values of these quantities, or do an analysis
in a slightly modified setting, where primal and dual variables live in different function
spaces. Since the resulting error indicators will not be effected by these technicalities we
refrain from the these modifications in the following.
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For notational simplicity, we will introduce two additional bilinear forms B :W (V )×
W (V ) → R and B̃ :

{
W (V ) ∪ X̂1

k

}
×
{
W (V ) ∪ X̃0

k

}
→ R by

B(v, w) := ((∂tv, w)) + a(v, w) + (v(0), w(0)),

B̃(vk, wk) :=
∑

m∈J

((∂tvk, wk))m + a(vk, wk) +
∑

l∈Jdc

([vk]l, w
l,+
k ) + (vk(0), wk(0)).

Then, the solutions u ∈ g̃ +W (V0), uk ∈ g̃k + X̂1
k(V0), and ukh ∈ g̃k + X̂1,1

kh,0 to (2.4),
(3.7), and (3.9) can equivalently be obtained by

B(u, ϕ) = (u0, ϕ(0)) ∀ϕ ∈W (V0), (4.1a)

B̃(uk, ϕk) = (u0, ϕk(0)) ∀ϕk ∈ X̃0
k(V0), (4.1b)

B̃(ukh, ϕkh) = (u0, ϕkh(0)) ∀ϕkh ∈ X̃0,1
kh,0. (4.1c)

Analogously, the dual solutions z ∈ W (V0), zk ∈ X̃0
k(V0), and zkh ∈ X̃0,1

kh,0 given by
(3.10) and (3.11) are also given by

B(ϕ, z) = J (ϕ(T )) ∀ϕ ∈W (V0), (4.2a)

B̃(ϕk, zk) = J (ϕk(T )) ∀ϕk ∈ X̂1
k(V0), (4.2b)

B̃(ϕkh, zkh) = J (ϕkh(T )) ∀ϕkh ∈ X̂1,1
kh,0. (4.2c)

Then, we define the corresponding Lagrange functionals L : W (V ) ×W (V0) → R and
L̃ : X̂1

k(V )× X̃0
k(V0) → R by

L(δu, δz) := J (δu(T ))−B(δu, δz) + (u0, δz(0)), (4.3a)

L̃(δuk, δzk) := J (δuk(T ))− B̃(δuk, δzk) + (u0, δzk(0)). (4.3b)

From (4.3), we obtain using (4.1) and (4.2) that the primal solutions u, uk and ukh
together with their adjoint/dual counterparts z, zk and zkh are stationary points of
these Lagrangians in the sense that

L′(u, z)(δu, δz) = 0 ∀(δu, δz) ∈W (V0)×W (V0), (4.4a)

L̃′(uk, zk)(δuk, δzk) = 0 ∀(δuk, δzk) ∈ X̂1
k(V0)× X̃0

k(V0), (4.4b)

L̃′(ukh, zkh)(δukh, δzkh) = 0 ∀(δukh, δzkh) ∈ X̂1,1
kh,0 × X̃0,1

kh,0. (4.4c)

We note that for functions δz ∈ W (V0) ∪ X̃
0
k(V0) and δu ∈ W (V0) ∪ X̂

1
k(V0) the corre-

sponding residuals of the primal and dual equations are defined by

ρ(u)(δz) = L̃′
z(u, z)(δz) = −B̃(u, δz) + (u0, δz(0)),

ρ′(z)(δu) = L̃′
u(u, z)(δu) = −B̃(δu, z) + J(δu(T )).

With this notation, we recall the following basic theorem from Schmich and Vexler (2008)
with a minor modification taking care of the time dependent Dirichlet data.
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Theorem 2. Let (u, z) ∈ g̃ +W (V0) ×W (V0), (uk, zk) ∈ g̃k + X̂1
k(V0) × X̃0

k(V0) and

(ukh, zkh) ∈ g̃k + X̂1,1
kh,0 × X̃0,1

kh,0 be solutions to (4.4). Then, the following error represen-
tation hold for the temporal and spatial discretization errors:

J (u(T ))− J (uk(T )) =
1
2

(
ρ(uk)(z − ψk) + ρ′(zk)(u− ϕk)

)
+ Bk,

J (uk(T ))− J (ukh(T )) =
1
2

(
ρ(ukh)(zk − ψkh) + ρ′(zkh)(uk − ϕkh)

)
.

The functions (ϕk, ψk) ∈ g̃k + X̂1
k(V0) × X̃0

k(V0) and (ϕkh, ψkh) ∈ g̃k + X̂1,1
kh,0 × X̃0,1

kh,0

can be chosen arbitrarily. The term Bk is defined by

Bk = inf
ϕ∈g̃+W (V0)

−1
2B̃(ϕ− g̃k)(z)

and measures the oscillation of the time dependent Dirichlet data.

4.1 Evaluation of the Error Identities

The representation of the error in Theorem 2 is not yet useful for estimating the error,
because it contains the unknown semi-discrete solutions (uk, zk) and the weights (u −
ϕk, z−ψk), (uk−ϕkh, zk−ψkh) as well as the data oscillation term Bk. This problem is
circumvented by simply replacing the semi-discrete solution (uk, zk) by the fully discrete
solution (ukh, zkh) in the first argument of the residual. This approximation leads to
reasonable estimates as is demonstrated in Schmich and Vexler (2008). Second, we neglect
the data oscillation term Bk. Although this is not feasible in general, here the oscillating
term is at worst given as a piece-wise linear approximation of e−rt for t ∈ I and is
concentrated near the boundary where the weight z is small. The resulting approximate
error representations read as follows:

J (u)− J (uk) ≈
1
2

(
ρ(ukh)(z − ψk) + ρ′(zkh)(u− ϕk)

)
,

J (uk)− J (ukh) =
1
2

(
ρ(ukh)(zk − ψkh) + ρ′(zkh)(uk − ϕkh)

)
.

Now, we turn to the remaining approximation of the weights. There are several possible
ways to do this, see Becker and Rannacher (2001). Here, we use local post-processing of
the computed solution on the current space-time mesh through higher order interpolation
on mesh patches. This means, we define the approximate errors

Π
(u)
k ukh ≈ u− ϕk, Π

(z)
k zkh ≈ z − ψk,

Π
(u)
h ukh ≈ uk − ϕkh, Π

(z)
h zkh ≈ zk − ψkh.

Here the temporal approximations are defined by

Π
(u)
k : X̂1,1

kh → X̂2,1
kh ∩ C0(I;V ), Π

(u)
k := ı̂

(2)
2k − id,

Π
(z)
k : X̃0,1

kh,0 → X̃1,1
kh,0, Π

(z)
k := ı̂

(1)
k − id,
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t0 t1
2

t1

ı̂
(1)
k ϕkh

ϕkh

(a) 1 ∈ J0 and t ∈ I1/2

tmtm−1
2

tm−1

ϕkh

i
(1)
k ϕkh

(b) t ∈ Im

Figure 1: Sketch of ı̂
(1)
k ϕkh on Im.

and the spatial approximations by

Π
(u)
h : X̂1,1

kh → X̂1,2
kh , Π

(u)
h := i

(2)
2h − id,

Π
(z)
h : X̃0,1

kh,0 → X̃0,2
kh,0, Π

(z)
h := i

(2)
2h − id.

Here, id denotes the identity mapping on the corresponding space. The higher-order

interpolation operators ı̂
(2)
k and ı̂

(1)
k are defined as follows:

ı̂
(1)
k ϕkh(t) :=

{
t1−t
t1−t0

ϕ0
kh +

t−t0
t1−t0

ϕ1
kh, 1 ∈ J0, t ∈ I1/2,

i
(1)
k ϕkh(t), otherwise,

ı̂
(2)
2k ϕkh(t) :=

{
i
(1)
k ϕkh(t), t ∈ Im, m ∈ J0,

i
(2)
2k ϕkh(t), t ∈ Im, m ∈ J1.

Remark 4.2. Except for the time point t1/2 the function Π
(z)
k zkh is continuous for any

zkh ∈ X̃0,1
kh,0. The special treatment for t1/2 is due to the fact that in case 1 ∈ JL, we

have 0 ∈ Jdc and hence z
1/2
kh = z0kh because of (3.11g). This is why (i

(1)
k − id)z

1/2
kh ≈ 0

is not a good approximation for the interpolation error, see Figure 1.

The temporal interpolation operator i
(1)
k is defined as follows:

i
(1)
k ϕkh(t) :=

{
tm−t
km

ϕm−1
kh + t−tm−1

km
ϕm
kh, t ∈ Im, m ∈ J1,

tm−t
km

ϕ
m−1/2
kh +

t−tm−1/2

km
ϕm
kh, t ∈ Im, m ∈ J0.

A sketch of the corresponding operator ı̂
(1)
k can be seen in Figure 1.

To define i
(2)
2k , we have to consider several different cases. Let t ∈ Im with m ∈ J .

Then, we define i
(2)
2k ϕkh(t) by
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(a) m− 1 ∈ 2N, m+ 1 ∈ J1 :

i
(2)
2k ϕkh(t) :=

(tm − t)(tm+1 − t)

km(km + km+1)
ϕm−1
kh +

(t− tm−1)(tm+1 − t)

kmkm+1
ϕm
kh

+
(t− tm)(t− tm−1)

km+1(km + km+1)
ϕm+1
kh ,

(b) m− 1 ∈ 2N, m+ 1/2 ∈ J0 :

i
(2)
2k ϕkh(t) :=

(tm − t)(tm+1/2 − t)

km(km + km+1/2)
ϕm−1
kh +

(t− tm−1)(tm+1/2 − t)

kmkm+1/2
ϕm
kh

+
(t− tm)(t− tm−1)

km+1/2(km + km+1/2)
ϕ
m+1/2
kh ,

(c) m ∈ 2N, m− 1 ∈ J1 :

i
(2)
2k ϕkh(t) :=

(tm−1 − t)(tm − t)

km−1(km−1 + km)
ϕm−2
kh +

(t− tm−2)(tm − t)

km−1km
ϕm−1
kh

+
(t− tm−1)(t− tm−2)

km(km−1 + km)
ϕm
kh,

(d) m ∈ 2N, m− 1 ∈ J0 :

i
(2)
2k ϕkh(t) :=

(tm−1 − t)(tm − t)

km−1(km−1 + km)
ϕ
m−3/2
kh +

(t− tm−3/2)(tm − t)

km−1km
ϕm−1
kh

+
(t− tm−1)(t− tm−3/2)

km(km−1 + km)
ϕm
kh.

A sketch of the operator i
(2)
2k ϕkh is shown in Figure 2.

For the construction of the spatial interpolation operator i
(2)
2h , we assume that all

spatial meshes possess a patch structure. That is for all m, we assume that T m
h is given

as a global uniform refinement of a mesh T m
2h . Then, for each element K in T m

h there
exist 2d − 1 neighbors such that their union defines an element K̃ ∈ T m

2h . Thereby, we

can define a piece-wise (with respect to T m
2h ) quadratic interpolation i

(2)
2h : V 1,m

h → V 2,m
2h .

By application of this for all m ∈ J , we obtain the desired interpolation for ϕkh ∈ X̂1,1
kh

or ϕkh ∈ X̃0,1
kh,0 by

(i
(2)
2h ϕkh)(t) := i

(2)
2h (ϕkh(t)) .

As a consequence of the previous considerations, we can now define a computable
error estimator η = ηk+ηh, where the temporal error estimator ηk and the spatial error
estimator ηh are given by

ηk := 1
2

(
ρ(ukh)(Π

(z)
k zkh) + ρ′(zkh)(Π

(u)
k ukh)

)
,

ηh := 1
2

(
ρ(ukh)(Π

(z)
h zkh) + ρ′(zkh)(Π

(u)
h ukh)

)
.
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tm+1tmtm−1

ϕkh

i
(2)
k ϕkh

(a) m− 1 ∈ 2N and m+ 1 ∈ J1

tm−1 tm tm+1
2

ϕkh

ß
(2)
k ϕkh

(b) m− 1 ∈ 2N and m+ 1/2 ∈ J0

tmtm−1tm−2

ϕkh

ß
(2)
k ϕkh

(c) m ∈ 2N and m− 1 ∈ J1

tmtm−1tm−3
2

ϕkh

ß
(2)
k ϕkh

(d) m ∈ 2N and m− 1 ∈ J0

Figure 2: Sketch of i
(2)
2k ϕkh on Im.

Then, with this notation, we have the following approximate a posteriori error estimate:

J (u)− J (ukh) ≈ η := ηk + ηh.

Remark 4.3. The derivation of the above a posteriori error estimator includes various
approximations, particularly the approximation of the weights by local post-processing.
This may be seen as a weak point generally inherent to the DWR method. However, there
is some theoretical justification through superconvergence on uniform meshes, cf. Bangert
and Rannacher (2003), and by the rich practical experience also on locally adapted
meshes.

4.2 Localization of the Error Estimates

In order to use the error estimators ηh and ηk for local mesh refinement, we need to
localize them to element-wise contributions.
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4.2.1 Localization in Time

In order to localize the error estimates in time, we define for functions v, w and m ∈ J
the following abbreviation:

am(v, w) :=

∫

Im

a(v(t), w(t)) dt.

Then, we define the local primal and dual residuals ρm(ukh, δz) and ρ′m(zkh, δu) for
m ∈ J ∪ {0}, δu ∈ X̂2,2

kh,0 and δz ∈ X̃1,1
kh,0 ∪ X̃

0,2
kh,0 as follows:

• The local primal residual ρm(δu)(δz) is defined by

(a) For m ∈ J0 :

ρm(ukh, δz) = −((∂tukh, δz))m + am(ukh, δz) + ([ukh]m−1/2, δz
m−1/2,+),

(b) For m ∈ J1 :

ρm(ukh, δz) = −((∂tukh, δz))m + am(ukh, δz),

(c) For m = 0, 1/2 ∈ J0 :

ρ0(ukh, δz) = (u0 − ukh(0), δz
0,−) + ([ukh]0, δz

0,+),

(d) For m = 0, 1 ∈ J1 :

ρ0(ukh, δz) = (u0 − ukh(0), δz
0,−).

• The local dual residual ρ′m(zkh)(δu) is defined by

(a) For m =M :

ρ′M (zkh, δu) := J (δu)− aM (δu, zkh)− (δu(tM ), zM,−
kh ),

(b) For m 6=M, m 6= 0 :

ρ′m(zkh, δu) := −am(δu, zkh)− (δu(tm), [zkh]m),

(c) For m = 0 :
ρ′0(zkh, δu) := −(δu(0), [zkh]0).

Now, we can define the local primal and dual error indicators η̂p,mk , η̂d,mk , ηp,lh and ηd,lh

for m ∈ J and l ∈ J ∪ {0} as follows:

η̂p,mk := ρm(ukh,Π
(z)
k zkh), η̂d,mk := ρ′m(zkh,Π

(u)
k ukh),

ηp,lh := ρl(ukh,Π
(z)
h zkh), ηd,lh := ρ′l(zkh,Π

(u)
h ukh).
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In particular, we can split the global time error estimator into local contributions η̂mk
such that

ηk = 1
2

∑

m∈J

η̂mk , η̂mk = η̂p,mk + η̂d,mk . (4.5)

The global spatial error estimator can then be split into the contributions ηlh from the
different time intervals

ηh = 1
2

∑

l∈J∪{0}

ηlh, ηlh = ηp,lh + ηd,lh . (4.6)

The local indicators η̂mk from (4.5) can immediately be used to stir temporal refinement.
In contrast the indicators ηlh from (4.6) are not local in space, yet.

However, we do not intend to refine the temporal mesh T̂k but rather Tk. To this end,
we add the temporal indicators on two consecutive intervals in J0 to obtain

ηmk :=

{
η̂mk , m ∈ J1,

η̂mk + η̂
m−1/2
k , m ∈ JL.

4.2.2 Localization in Space

We will now consider the localization of ηlh into element-wise contributions. A direct
localization of ηlh as done in the temporal case leads to problems due to the oscillatory
behavior of the cell residuals, see, eg, Carstensen and Verfürth (1999). To overcome this
problem, we integrate by parts and obtain

a(v, w) =
∑

K∈T l
h

{
(ABSv, w)K + 1

2([n · (A∇v)], w)∂K
}
, (4.7)

a(v, w) =
∑

K∈T l
h

{
(v,A′

BSw)K + 1
2(v, [n · (A∇w)])∂K

}
, (4.8)

for arbitrary functions v, w ∈ V s,l
h,0 with l ∈ J ∪ {0}. Here, ABS and A′

BS denote the
strong form of the Black-Scholes operator, ie, with the notation of (2.4) and functions
ṽ, w̃ ∈ C∞(K) on K ∈ T l

h , it holds

ABSṽ := −∇ · (A∇ṽ)− β · ∇ṽ + rṽ,

A′
BSw̃ := −∇ · (A∇w̃)−∇ · (βw̃) + rw̃.

With these preparations, we can localize ηp,lh and ηd,lh to element-wise contributions at
time tl as

ηp,lh =
∑

K∈T l
h

ηp,lh,K , ηd,lh =
∑

K∈T l
h

ηd,lh,K . (4.9)

For m ∈ J and K ∈ T m
h , we denote the scalar product on L2(Im ×K) by ((·, ·))m,K

and the scalar product on L2(Im × ∂K) by ((·, ·))m,∂K . Then, the summands ηp,mh,K in
(4.9) are defined by
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(a) For m ∈ J0 :

ηp,mh,K =− ((∂tukh +ABSukh,Π
(z)
h zkh))m,K − 1

2(([n · (A∇ukh(t))],Π
(z)
h zkh))m,∂K

+ ([ukh]m−1/2, (Π
(z)
h zkh)

m−1/2,+)K ,

(b) For m ∈ J1 :

ηp,mh,K = −((∂tukh +ABSukh,Π
(z)
h zkh))m,K ,

(c) For m = 0, 1/2 ∈ J0 :

ηp,0h,K = (u0 − ukh(0), (Π
(z)
h zkh)

0,−)K + ([ukh]0, (Π
(z)
h zkh)

0,+)K ,

(d) For m = 0, 1 ∈ J1 :

ηp,0h,K = (u0 − ukh(0), (Π
(z)
h zkh)

0,−)K ,

and the summands ηd,mh,K are defined by

(a) For m =M :

ηd,Mh,K :=J (Π
(u)
h ukh|K)− ((Π

(u)
h ukh, A

′
BSzkh))M,K

− 1
2((Π

(u)
h ukh, [n · (A∇zkh)]))M,∂K − (Π

(u)
h ukh(tM ), zM,−

kh )K ,

(b) For m 6=M, m 6= 0 :

ηd,mh,K :=− ((Π
(u)
h ukh, A

′
BSzkh))m,K − 1

2((Π
(u)
h ukh(t), [n · (A∇zkh(t))]))m,∂K

− (Π
(u)
h ukh(tm), [zkh]m)K ,

(c) For m = 0 :

ηd,0h,K := −(Π
(u)
h ukh(0), [zkh]0)K .

Hence, we can rewrite ηh as follows:

ηh = 1
2

∑

l∈J∪{0}

∑

K∈T l
h

ηlh,K , ηlh,K = ηp,lh,K + ηd,lh,K .

Since we are concerned with one spatial mesh for all time points tl with l ∈ J ∪ {0}, we
sum all element indicators for one element over time and obtain ηh,K =

∑
l∈J∪{0} η

l
h,K .

Then, we have

ηh = 1
2

∑

l∈J∪{0}

∑

K∈T l
h

ηlh,K =
∑

K∈Th

ηh,K .

Thereby, we have obtained two sets of local error indicators Σk and Σh given by

Σk := {ηmk |1 ≤ m ≤M}, Σh := {ηh,K |K ∈ Th}.

On this basis, we can now stir the simultaneous adaptation of space and time discretiza-
tion.
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4.3 Refinement Cycle

We will now briefly describe the algorithm for space-time adaptivity based on the above
a posteriori error estimates. In order to obtain an efficient algorithm, we attempt to
balance the temporal and spatial error contributions. Hence for some given parameter
κ ≥ 1, we attempt to choose Tk and Th such that

1

κ
≤
ηh
ηk

≤ κ.

In our computations, we have chosen κ = 4. In addition, for a sequence kn and hn
denote the cardinality of the corresponding triangulations by Mn = card(Tkn) and Nn =
card(Thn). Then, the algorithm reads as described in Algorithm 1.

There are several techniques available in order to choose a subset of elements in Tk or
Th to be refined in Algorithm 1. Here, we will employ a refinement strategy based upon
minimization of the product of expected error and computational effort required for the
solution on the new mesh, see Richter (2005). However, due to the way we evaluate the
weights in the error estimate, we require that both temporal and spatial mesh satisfy a
patch structure after refinement.

Algorithm 1 Space time adaptive finite elements

1: Choose parameters Mmax, Nmax ∈ N, κ ≥ 1 and TOL > 0.
2: Choose initial meshes Tk0 and Th0

.
3: Choose a subset of damped intervals J0

L.
4: Let n = 0.
5: loop

6: Determine T̂kn from Jn
L and Tkh .

7: Compute primal and dual solution uknhn and zknhn .
8: Compute local error indicators Σkn , Σhn and error estimates ηkn and ηhn .
9: if Mn ≥Mmax or Nn ≥ Nmax or ηkn + ηhn ≤ TOL then

10: return

11: else

12: if |ηkn | > κ|ηhn | then

13: Use Σkn to refine Tkn .
14: else if |ηhn | > κ|ηkn | then

15: Use Σhn to refine Thn .
16: else

17: Use Σkn and Σhn to refine both Tkn and Thn .
18: Compute Jn+1

L .
19: Let n = n+ 1.

5 Numerical Examples

We will now test the proposed algorithm for mesh adaptation and discuss the effect of
the damping in the Crank-Nicolson scheme on the error estimation by some numerical
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examples in one and two space dimensions. As a quantity of interest, we consider a point
evaluation of the solution u or the Delta of u , ie, ∂xu, as mentioned in Remark 2.1.

In order to evaluate the quality of the error estimator, we define the effectivity index

Ieff =
η

J
(
(u− ukh)(T )

) .

In order to discuss the effect of the damping, we will consider several choices of the
damping intervals. Hence for mp,md ∈ N, we denote by dk -mp-md a damped Crank-
Nicolson method where on the first mp and the last md intervals damping is used, ie, the
set JL defined in Section 3.2 is given by JL = {1, . . . ,mp}∪{M +1−md, . . . ,M}. The
reason to allow for damping at the end of the time interval is that we have to solve the
dual problem (3.11), which corresponds on the undamped intervals to a Crank-Nicolson
method in the interval midpoints. Since the initial condition for the dual problem is
given as J it is reasonable–and as we will see necessary–to apply damping to the dual
problem, see also our discussion at the beginning of Section 2.2.1

For the subsequent computations, we will consider plain vanilla European options. In
particular, we will consider a 1D call and a 2D put with the values given in Table 1. The
data in Table 1 for the 1D call is taken from Ern et al. (2004), the exact value u(T, x0)
has been computed using an analytic formula. The 2D put comes from Reisinger (2004).
Because the value of u(T, x0) is unknown in this case, we computed a reference value on
a very fine mesh (M = 512, N = 800065 ) using the dk -2-0 method. We note that the
initial condition in Reisinger (2004) was chosen as max(K − 0.5x1 − 0.5x2, 0) in contrast
to the default value stated earlier in this paper. In order to have better comparability,
we do our computations with the changed initial condition.

Table 1: Data for the test cases: The data for the call option is taken from Ern et al.
(2004). The data for the put option on two uncorrelated shares is taken from
Reisinger (2004).

x0 K T σ x r u(T, x0) ∂xu(T, x0)

1d-Call 100 100 1 0.2 200 log(1.1) ≈ 12.9927 ≈ 0.7179
2d-Put (25,25) 25 1 ( 1

2
, 3

10
) (100, 100) 0.05 ≈ 2.2692

In both cases the choice of x0 was motivated by the fact that the computation of
u(T, x0) is most challenging near the strike price K.

The computations were done using the C++-library deal.II, see Bangerth et al.
(2007) together with UMFPACK Davis (2004) for the solution of the linear equations.
All the integrals are evaluated with a numerical quadrature formula, and all integrals
involving only piece-wise polynomials are evaluated exactly. However, we did not com-
pute the exact projection of the initial conditions for the 2d put onto the finite element
space. We remark that there is a slight sensitivity of the error estimator regarding the
numerical integration of the initial data. For the numerical calculations we used a high
order Gaussian quadrature rule (order seven) to compute the projection of the initial
data.
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Remark 5.1. We should note that in the example considered here the memory of our
workstation has been more than sufficient to store both the primal and dual solutions in
main memory. Due to the local nature of the reconstruction process involved it is at any
time sufficient to have the primal and dual solution at three neighboring time points to

be able to calculate the reconstructions Π
(u)
h and Π

(z)
h . Thus, it is possible to store most

of the solution on the hard-disc if main memory is a limiting factor. Furthermore, if such
techniques fail there are, so-called, check-pointing strategies available that allow a trade
of between memory requirements and computational time, see, eg, Becker et al. (2007);
Berggren et al. (1996); Griewank (1991). Finally, for real high-dimensional problems
different spatial discretizations like sparse grids may be employed, see Bungartz and
Griebel (2004).

5.1 Independence of the Error Estimators ηk, ηh and Effects of Damping

We begin by considering the behavior of the temporal error estimate ηk under spatial
refinement and the behavior of the spatial error estimate ηh under temporal refinement.
The results for the 1d case are shown in Table 2 the results in 2D are given in Table 3.

Table 2: Invariance of ηh under temporal refinement (a) and invariance of ηk under
spatial refinement (b) for the 1D call. (Computation of u(T, x0))

M ηh

dk -1-0 dk -1-1

4 1.68 · 10−3 1.88 · 10−3

8 1.79 · 10−3 1.85 · 10−3

16 1.87 · 10−3 1.84 · 10−3

32 1.84 · 10−3 1.84 · 10−3

64 1.84 · 10−3 1.84 · 10−3

128 1.84 · 10−3 1.84 · 10−3

(a) Behavior of ηh for N = 129.

N ηk

dk -1-0 dk -1-1

33 1.02 · 10−4 3.20 · 10−4

65 1.02 · 10−4 3.18 · 10−4

129 1.01 · 10−4 3.17 · 10−4

257 −2.46 · 10−4 3.18 · 10−4

513 −1.59 · 10−5 3.14 · 10−4

1 025 −1.36 · 10−4 3.17 · 10−4

(b) Behavior of ηk for M = 50.

Table 3: Invariance of ηh under temporal refinement (a) and invariance of ηk under spatial
refinement (b) for the 2D put. (Computation of u(T, x0))

M ηh

dk -1-0 dk -1-1

8 7.55 · 10−4 7.74 · 10−4

16 7.81 · 10−4 7.72 · 10−4

32 7.72 · 10−4 7.71 · 10−4

64 7.71 · 10−4 7.71 · 10−4

128 7.71 · 10−4 7.71 · 10−4

(a) Behavior of ηh for N = 16 641.

N ηk

dk -1-0 dk -1-1

81 2.12 · 10−4 1.09 · 10−3

289 2.56 · 10−4 9.77 · 10−4

1 089 2.48 · 10−4 9.44 · 10−4

4 225 −4.76 · 10−4 9.43 · 10−4

16 641 −8.49 · 10−4 9.38 · 10−4

(b) Behavior of ηk for M = 16.
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We observe that the spatial error estimate remains unchanged under temporal refine-
ment. In contrast, the temporal error estimate remains constant under spatial refinement
only for the dk -1-1 method while it changes drastically in the case of the dk -1-0 method.
In fact, for these examples the temporal error estimate remains invariant under spatial
refinement as long as damping is applied to the dual equation on an interval Im with
m > 1. Already from this example, we can see the importance of appropriate dual
damping.

After these initial considerations, we will show the numerical quality of the temporal
error estimator under refinement in time. To this end, we consider a very fine spatial
discretization in order to ensure that the temporal error is dominant. In Table 4, we
compare the effectivity indices for the dk -1-0 and dk -1-1 method.

Table 4: Comparison of the effectivity of the temporal error estimator ηk for dominant
temporal error under uniform refinement in time for the 1D call. In fact, we
have ηh ≈ 1.1 · 10−7 for the present situations. (Computation of u(T, x0))

dk -1-0 dk -1-1

M |J (e)| ηk Ieff |J (e)| ηk Ieff

8 4.17 · 10−3 −3.67 · 10−3 −0.88 1.35 · 10−2 1.23 · 10−2 0.91
16 1.13 · 10−3 −1.02 · 10−3 −0.90 3.36 · 10−3 3.07 · 10−3 0.92
32 2.94 · 10−4 −2.69 · 10−4 −0.91 8.38 · 10−4 7.73 · 10−4 0.92
64 7.51 · 10−5 −6.94 · 10−5 −0.92 2.09 · 10−4 1.94 · 10−4 0.93

128 1.90 · 10−5 −1.77 · 10−5 −0.92 5.24 · 10−5 4.86 · 10−5 0.93
256 4.87 · 10−6 −4.55 · 10−6 −0.91 1.32 · 10−5 1.22 · 10−5 0.93

As we have observed already in Table 2 and Table 3, there is a change in the sign of
the error estimator for the dk -1-0 method once the temporal error becomes dominant.
From Table 4, we infer that the change in sign is not due to behavior of the real error,
but is rather due to the bad quality of the error estimator. We observe that this effect
does not occur for the dk -1-1 method where we obtain good error estimates. This shows
the importance of sufficient damping not only for the computation of the value u(x0, T ),
which is computed equally well by both methods but even better for the error estimation.
In particular, we see that the dk -1-0 method is unsuitable for adaptive computation, or
even error estimation alone, in the context of the Black-Scholes equation.

In the next test, we consider the quality of the spatial error estimation in the regime
of dominant spatial error. By the previous results from Table 4, we only consider the
dk -1-1 method.

In Table 5 the results are depicted for the 1D call. The quality of the estimate is
remarkably good. However, as the situation in 1D is quite different from the situation in
2D. We consider additionally the 2D put.
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Table 5: Comparison of the effectivity of the spatial error estimator ηh for dominant
spatial error under uniform refinement for the 1D call (Computation of u(T, x0))
using the dk -1-1 method. In the present case, we have ηk ≈ 3.2 · 10−6.

N |J (e)| ηh Ieff

9 5.42 · 10−1 6.79 · 10−1 1.25
17 1.20 · 10−1 1.57 · 10−1 1.30
33 2.95 · 10−2 3.08 · 10−2 1.04
65 7.35 · 10−3 7.42 · 10−3 1.01

129 1.84 · 10−3 1.84 · 10−3 1.00
257 4.62 · 10−4 4.59 · 10−4 1.00
513 1.18 · 10−4 1.15 · 10−4 1.00

We note that the effectivity index in Table 6 is only 0.68. This is due to the fact, that
the recovery of the singular dual solution for the weights z−zkh is not satisfactory. This
can be circumvented by using only the dual residual for the purpose of error estimation,
see, eg, Bangert and Rannacher (2003). When employing this trick the effectivity rises
to 0.98 and is hence quite satisfactory.

Table 6: Comparison of the effectivity of the spatial error estimator ηh for dominant
spatial error under uniform refinement for the 2d put (Computation of u(T, x0))
using the dk -1-1 method. For the present configuration the temporal error
estimator gives ηk ≈ 2.7 · 10−6.

N |J (e)| ηh Ieff

81 2.62 · 10−1 1.58 · 10−1 0.60
289 7.08 · 10−2 4.83 · 10−2 0.68

1 089 1.80 · 10−2 1.23 · 10−2 0.68
4 225 4.51 · 10−3 3.08 · 10−3 0.68

16 641 1.13 · 10−3 7.71 · 10−4 0.69
66 049 2.82 · 10−4 1.93 · 10−4 0.69

5.2 Effect of Mesh Adaptation

We now consider the use of our error indicators to stir mesh refinement. We begin with
temporal adaptation where we choose the spatial mesh fine enough to assert dominant
temporal error.

In Table 7, we compare the error |J (e)| as well as the effectivity of the error estima-
tor and the mesh adaptation for the undamped Crank-Nicolson scheme, eg, the dk -0-0
method, with the results of the dk -1-0 and dk -1-1 method on a 1D spatial mesh with
16 385 cells.
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Table 7: Comparison of different damping strategies onto adaptive temporal refinement
on a uniform spatial mesh with 16 385 cells. The spatial error is of size 10−7.
(Computation of u(T, x0))

dk -0-0 dk -1-0 dk -1-1

M |J (e)| Ieff M |J (e)| Ieff M |J (e)| Ieff

4 4.8 · 10−1 1 230.79 4 1.4 · 10−2 −0.89 4 5.6 · 10−2 0.93
8 2.5 · 10−1 1 202.86 8 4.2 · 10−3 −0.88 8 1.4 · 10−2 0.91

16 1.2 · 10−1 1 189.18 10 1.5 · 10−3 5.33 12 2.0 · 10−3 0.92
32 6.2 · 10−2 1 179.15 20 2.9 · 10−4 7.32 20 3.3 · 10−4 0.91
64 3.1 · 10−2 1 167.05 22 7.4 · 10−4 4.31 24 4.5 · 10−4 0.94

128 1.6 · 10−2 1 148.03 24 8.7 · 10−4 4.17 40 1.4 · 10−4 0.96
256 7.6 · 10−3 1 117.78 48 2.0 · 10−4 4.75 72 3.7 · 10−5 0.98
512 3.6 · 10−3 1 079.07 50 2.2 · 10−4 6.14 76 4.9 · 10−5 0.94

We see from Table 7 that as expected the convergence order of the undamped Crank-
Nicolson method is only of order O(k) while that of the damped versions is in each case of
order O(k2). However, as already seen for global refinement, only for sufficient damping
of the dual equation the error estimator is capable of estimating the error correctly. In
particular, local refinement according to the error estimator does not help in obtaining
better efficiency if insufficient dual damping is considered. This is in contrast to the
behavior of the spatial error estimator. In Table 8 the results are shown for adaptive
spatial refinement on a fine time mesh. We see that the spatial error estimate is getting
better under adaptive refinement (compare Table 6) since the spatial singularity in the
dual solution is then resolved appropriately.

Table 8: Effectivity index for the 2D put on adaptively refined spatial meshes on an
equidistant temporal mesh with M = 300 such that ηk ≈ 3 · 10−6 with the
dk -1-1 method. (Computation of u(T, x0))

N |J (e)| ηh Ieff

81 2.62 · 10−1 1.58 · 10−1 0.60
137 7.13 · 10−2 4.59 · 10−2 0.64
207 2.22 · 10−2 1.10 · 10−2 0.50
523 6.07 · 10−3 3.99 · 10−3 0.66

1 157 2.06 · 10−3 1.41 · 10−3 0.69
2 503 7.60 · 10−4 5.99 · 10−4 0.79
4 991 3.16 · 10−4 2.63 · 10−4 0.84

10 255 1.41 · 10−4 1.23 · 10−4 0.89

5.3 Simultaneous Mesh Adaption

Finally, we consider the behavior of the adaptive Algorithm 1. We begin with the point
evaluation of the 1D call in Table 9. In Table 10, the results for a point evaluation of the
two dimensional put are depicted.
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The 1D computations were started on a spatial mesh with N = 9 and a temporal mesh
with M = 4. Similarly the 2D computations were started on a spatial mesh with N = 81
and a temporal mesh with M = 4. For reasons of brevity, we have only displayed the
results in the vicinity of an error of 10−3 in the price.

Table 9: Comparison of simultaneous space time adaptive refinement with the dk -1-1
method for the 1d call. (Computation of u(T, x0))

global nonadaptive refinement local adaptive refinement

N M |J (e)| Ieff N M |J (e)| Ieff

65 32 8.19 · 10−3 1.00 28 12 1.12 · 10−2 0.94
129 64 2.04 · 10−3 0.99 48 12 4.36 · 10−3 0.96
257 128 5.11 · 10−4 0.99 79 20 1.05 · 10−3 0.98
513 256 1.28 · 10−4 0.99 113 24 1.21 · 10−4 0.83

Table 10: Comparison of simultaneous space time adaptive refinement with the dk -1-1
method for the 2D put.

global nonadaptive refinement local adaptive refinement

N M |J (e)| Ieff N M |J (e)| Ieff

1 089 16 1.90 · 10−2 0.70 207 8 2.64 · 10−2 0.56
4 225 32 4.77 · 10−3 0.70 523 12 6.57 · 10−3 0.68

16 641 64 1.19 · 10−3 0.70 1157 12 2.56 · 10−3 0.73
66 049 128 2.95 · 10−4 0.70 2515 20 8.14 · 10−4 0.80

263 169 256 7.15 · 10−5 0.73 4971 20 3.71 · 10−4 0.84

Finally, in Table 11 the results for the evaluation of the Greek Delta in (x0, T ) of the
one dimensional call are depicted. Notice, that in this case, due to the even greater lack
of smoothness of the functional J (in comparison to a point evaluation), we employ four
damping steps near T , ie, we use the dk -1-2 method, for a discussion on the required
number of damping steps we refer to the beginning of Section 2.2.1.
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Figure 3: Comparison of mesh efficiency of global uniform refinement and adaptive re-
finement with the dk-1-1 method for the point evaluation.

Table 11: Comparison of simultaneous space time adaptive refinement with the dk -1-2
method for the point evaluation of the Greek Delta of the 1D call.

global nonadaptive refinement local adaptive refinement

N M |J (e)| Ieff N M |J (e)| Ieff

9 4 4.66 · 10−2 0.52 14 4 4.47 · 10−3 1.40
17 8 1.36 · 10−2 1.03 21 8 1.59 · 10−3 1.51
33 16 3.68 · 10−3 1.20 28 12 4.84 · 10−6 34.05
65 32 9.41 · 10−4 1.26 33 20 1.04 · 10−4 −0.60

129 64 2.37 · 10−4 1.27 39 24 1.62 · 10−4 0.50
257 128 5.93 · 10−5 1.28 50 40 9.50 · 10−5 0.84
513 256 1.48 · 10−5 1.28 60 40 7.01 · 10−5 1.28

1025 512 3.71 · 10−6 1.28 68 40 4.62 · 10−5 1.10
2049 1024 9.26 · 10−7 1.28 97 40 1.34 · 10−5 0.98

In all tables, we can clearly see that the adaptive refinement allows for substantial
savings with respect to the degrees of freedom.

Finally, we would like to comment on the gain in computation time. It is a non
trivial task to do a fair numerical comparison given that either codes for uniform as
well as adaptive computations can be tuned and the tuning for one of the tasks may be
inappropriate for the other. Thus, we refrain from displaying numbers of computation
times and instead provide a worst case complexity analysis which still yields that the
adaptive procedure is by far superior.

For the moment, let us assume that we have a solver of optimal complexity for the
linear systems, ie, the cost for computing the primal solution with M time-steps and N
spatial degrees of freedom is proportional to N ·M . Further, to calculate the refinement
indicators, we need one additional solution of the dual problem which in this case is
as costly as the primal one and the calculation of the refinement indicators which is
comparable to the evaluation of a residual. For convenience, we will assume that it is as
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expensive as a complete solution. Finally, the adaptive algorithm will need less unknowns
for the same accuracy, but as we can see in the Tables needs a few more solutions to
get the final mesh. From what we can see in the Tables, at most twice the number of
meshes is needed. Thus, in total, if we denote the amount of ’work’ needed by global
and adaptive refinement with ωglob and ωadap, we get

ωglob = NglobMglob, ωadap = 6NadapMadap.

In Table 12, we compare the effort needed to compute the solution of the numerical
examples with global and adaptive mesh refinement down to some pre selected accuracy.
We see that solving the equation with global mesh refinement needs between 6 times in
1d and 28 times more work than using the DWR method.

Table 12: Comparison of the effort of solving the numerical examples with global and
adaptive refinement.

global nonadaptive refinement local adaptive refinement

N M |J (e)| N M |J (e)| ωglob/ωadap

1d-Call 513 256 1.28 · 10−4 113 24 1.21 · 10−4 ≈ 8
2d-Put 66 049 128 2.95 · 10−4 4 971 20 3.71 · 10−4 ≈ 28
1d-Greek 513 256 1.48 · 10−5 97 40 1.34 · 10−5 ≈ 6

Moreover, if a non optimal solver is used, then the work for the solution is no longer
N ·M but in fact higher, ie, N2 ·M for a direct sparse solver. This would in turn yield a
time overhead of a factor 100 to 300 for computations using a uniform refinement instead
of adaptivity.
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