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1 Motivation

Kac-Moody algebras are a generalization of the finite-dimensional semi-simple
Lie algebras which preserve almost the full original structure. In the last
decades, they have attracted the attention of physicists as they revealed them-
selves as a useful tool in theoretical physics. They arise in e.g. dimensional
reductions of gravity and supergravity theories, such as in dynamical summe-
tries in string theory, conformal field theory and the theory of exactly solvable
models.

2 Prerequisites

Some definitions we will need to introduce Kac-Moody algebras:

Definition 1. An (associative) algebra is a vector space A over k = R or
C together with a bilinear map ◦ : A × A → A called multiplication that is
associative, i.e. (a ◦ b) ◦ c = a ◦ (b ◦ c), ∀a, b, c ∈ A. If, in addition, there exists
an e ∈ A such that e ◦ a = a ◦ e = a, ∀a ∈ A, e is called the unit and A is called
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an associative unitary algebra. A subalgebra of an associative unitary algebra A
is a linear subspace B ⊂ A that is closed under multiplication, i.e. b ◦ b′ ∈ B,
∀b, b′ ∈ B, and that contains the unit (e ∈ B). An algebra is called abelian or
commutative if a ◦ b = b ◦ a, ∀a, b ∈ A

Definition 2. An algebra g is called a Lie algebra if the multiplication, called
the Lie bracket is defined such that

1. it is antisymmetric, i.e. [x, y] = − [y, x]

2. it satisfies the Jacobi identity : [[x, y] , z]+[[y, z] , x]+[[z, x] , y] = 0, ∀x, y, z ∈
g

Notice that Lie algebras do not have to be associative.

Definition 3. Let g be a Lie algebra and let I be a linear subspace of g. Then
I is an ideal of g if [x, y] ∈ g, ∀x ∈ I, y ∈ g.

Definition 4. The center of a Lie algebra, denoted Z (g) is an ideal:

Z (g) = {x ∈ g| [x, y] = 0, ∀y ∈ g}

Definition 5. A simple Lie algebra is a non-abelian Lie algebra whose only
ideals are the trivial one and itself.

Definition 6. A Lie algebra is called semi-simple if it is a direct sum of simple
Lie algebras.

Definition 7. A free Lie algebra, over a given field K, is a Lie algebra generated
by any set X without any imposed relations.

Definition 8. The adjoint map is a linear map such that, ∀x ∈ g,

adx : g→ g (1)

y 7→ adx(y) := [x, y] (2)

Definition 9. The Killing form (also Cartan-Killing form) is defined as:

κ (x, y) = tr (adx ◦ ady) (3)

or, given a basis {T a|a = 1, . . . , d} of g,

κab :=
1

Iad
κ
(
T a, T b

)
=

1

Iad
tr (adTa ◦ adT b) =

1

Iad

d∑
c,e=1

f bce f
ae
c (4)

where Iad is a normalization constant and f bce , faec are the structure constants
of the Cartan-Weyl basis.
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3 Review of the finite-dimensional classification
of semi-simple Lie algebras

Our aim is to classify the different types of (finite-dimensional) semi-simple Lie
algebras. This reveals to be easier if we go to a special basis, the Cartan-Weyl
basis.

Let g be a semi-simple Lie algebra defined over C.

Definition 10. The ad-diagonalizable or semi-simple elements of g are all those
x ∈ g with the property that the map adx is diagonalizable.

Choose a maximal set of linearly independent elements Hi among the ad-
diagonalizable elements of g, such that:[

Hi, Hj
]

= 0 ∀i, j = 1, ..., r (5)

Definition 11. The linear hull g0 ≡ spanC{Hi, i = 1, ...r} is called a Cartan
subalgebra of g.

Remark 1. • g can have many different Cartan subalgebras, but all of them
are related by automorphisms of g such that the freedom in choosing a
Cartan subalgebra does not lead to any arbitrariness.

• all Cartan subalgebras have the same dimension r (property of g), called
rank of g

r ≡ rank (g) = dim (g0) (6)

A consequence of (5) is that g can be spanned by any y ∈ g such that

[h, y] ≡ adh (y) = αy (h) y (7)

where αy (h) ∈ C and h ∈ g∗0.

Definition 12. αy (h) satisfying (7) is called a root of g (relative to the chosen
Cartan subalgebra g0).

Remark 2. With def. 12, we can split the algebra as:

g = g0 ⊕
⊕
α6=0

gα (8)

where
gα = {x ∈ g| [h, x] = α (h)x}

Definition 13. (8) is called the root space decomposition

This decomposition means that there exists another basis in g, apart from the
{Hi} of the chosen Cartan subalgebra, which consists of elements Eα satisfying:[

Hi, Eα
]

= α (H)Eα ∀i = 1, . . . , r (9)

for α : g0 → C linear, H ∈ g0.

Definition 14. The r-dimensional vector
(
αi
)

is called a root vector
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Definition 15. The set of all roots of g is called the root system of g and
denoted by φ ≡ φ (g)

Remark 3. • The root system is not degenerate

• gα = spanC{Eα}

• g0 = spanC (φ)

• The only multiples of α ∈ φ which are roots are ±α
Putting together both bases:

Definition 16.
B = {Hi|i = 1, . . . , r} ∪ {Eα|α ∈ φ} (10)

such that (5) and (7) hold, is called a Cartan-Weyl basis of g

At this point, we need to define an inner product on the space of roots:

(α, β) := cαcβκ
(
Hα, Hβ

)
(11)

where the c’s are normalization constants cα = 1
2 (α, α) and κ is the Killing

form. Finite dimensional Lie algebras have only finitely many roots, and hence
it is possible to find a hyperplane in the root space which does not contain any
root, dividing the root space into two disjoint half spaces V±. Then, define the
sets of positive and negative as:

φ+ := {α ∈ φ|α > 0} (12)

φ− := φ \ φ+ (13)

and thus,
{Eα|α ∈ φ} = {Eα|α > 0} ∪ {E−α|α > 0} (14)

We will call the full set of Eα step operators, Eα the raising operators and
E−α the lowering operators. Given a Cartan subalgebra g0 of g, the subspaces
of g that are spanned by the step operators for positive and negative roots
respectively are in fact subalgebras,

g± := spanC{E±α|α > 0} (15)

Putting together (8) and (15), we get:

g = g+ ⊕ g0 ⊕ g− (16)

which is called the triangular or Gauss decomposition.

Definition 17. Given φ+, a simple root of g is a positive root which cannot be
obtained as a linear combination of other positive roots with positive coefficients

Remark 4. • Denote by Ei± := E±α
(i)

the step operators associated to sim-
ple roots

• Independently of the choice of the separating hyperplane, there are exactly
r simple roots φs := {α(i)|i = 1, . . . , r}
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• The simple roots provide a basis for the root space, i.e. they are linearly
independent and they span the whole root space

• The basis of simple roots is not orthonormal. This orthonormality is
encoded in the Cartan matrix A of g with respect to φ, which is defined
as the r × r matrix with entries:

Aij := 2

(
α(i), α(j)

)(
α(j), α(j)

) (17)

The Cartan matrix summarizes the structure of a semi-simple Lie algebra
completely (up to isomorphism). Its defining properties are:

1. Aii = 2

2. Aij = 0↔ Aji = 0

3. Aij ∈ Z≤0, ∀i 6= j

4. detA > 0 1

5. It is indecomposable 2, i.e. not equivalent to the form

A =

(
A(1) 0

0 A(2)

)
(18)

The Cartan matrix can be of 3 kinds (and consequently the algebras generated
by it):

1. If all of its principal minors are positive, then A is of finite type

2. If its proper principal minors are positive and detA = 0, then A is of
affine type

3. Otherwise, A is called to be of indefinite type

Then,

Proposition 1. The Lie algebra algebraically generated by the 3r generators
{Ei±, Hi|i = 1, . . . , r}, subjected to the relations[

Hi, Hj
]

= 0 (19)[
Hi, Ej±

]
= ±AjiEj± (20)[

Ei+, E
j
−

]
= δijH

i (21)(
adEi

+

)1−Aji

Ej± = 0 (22)

(where Aij is a Cartan matrix and r is its (finite) rank) is a uniquely determined
semi-simple Lie algebra associated to a set of simple roots.

Proof 1. Algorithm ”Serre construction”.

Definition 18. For any root α, we define its dual root or coroot as:

α∨ :=
2α

(α, α)
(23)

1This condition implies finite dimensionality
2This condition is equivalent to the restriction to pass from simple algebras to semi-simple

ones
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4 Kac-Moody algebras

Definition 19. A matrix A is a generalized Cartan matrix (GCM) if it satisfies:

1. Aii = 2, ∀i

2. Aij ∈ Z≤0, ∀i 6= j

3. Aij = 0⇒ Aji = 0, ∀i, j

4. Aij is indecomposable.

Definition 20. A Kac-Moody algebra is a complex Lie algebra generated by
3 (l + 1) generators h0, . . . , hl, e0, . . . , el, f0, . . . , fl satisfying:

[hi, hj ] = 0 (24)

[ei, fj ] = δijhi (25)

[hi, ej ] = Aijej (26)

[hi, fj ] = −Aijfj (27)[
ek, d

−
ij

]
= 0 (28)[

fk, d
+
ij

]
= 0 (29)

where Aij is a GCM and

d+ij = (adei)
1−Aij ej (30)

d−ij = (adfi)
1−Aij fj (31)

The first 4 relations are called the Chevalley-Serre relations, and the last two
are the Serre relations.

5 Affine algebras

Among the whole class of Kac-Moody algebras, we will restrict ourselves to a
special type, the symmetrizable 3 ones.

Definition 21. We say that a matrix is degenerate positive semidefinite if it
satisfies:

detA{i} > 0 ∀i = 0, . . . , r (32)

where A{i} denotes those matrices which are obtained from A by deleting the
i-th row and the i-th column (A{i} are called the principal minors of A).

Definition 22. An (irreducible) affine Cartan matrix A is an irreducible GCM
which is degenerate positive semidefinite and in addition satisfies

det (A) = 0 (33)

Definition 23. The corank of a matrix A is the dimension of its kernel.

3A Kac-Moody algebra is called symmetrizable if there exists a non-degenerate diagonal
matrix D such that the matrix DA, with A being the GCM which generates the Kac-Moody
algebra, is symmetric.

6



Remark 5. Affine Cartan matrices have corank 1

Definition 24. A Kac-Moody algebra whose GCM is an affine Cartan matrix
is called an affine Lie algebra

Remark 6. Affine Lie algebras are necessarily infinite-dimensional.

Proposition 2. Affine Lie algebras possess a non-zero center.

Proof 2. Consider the element:

K :=

r∑
i=0

a∨i h
i (34)

where a∨i is defined by the equation:

r∑
j=0

Aija∨j = 0 (35)

Then,

[K,hi] = 0 (36)

[K, ei] = 0 (37)

(36) follows from eq. (24), (37) from (35); same for fi. Ergo, K is a central
element. From (32), we know that for affine Cartan matrices A = Aij |i,j=1,...,n,
we have dim (ker (A)) = 1, so the center of g is one dimensional, and all the
central elements are multiples of K. K is called the canonical central element
of g.

6 Central extensions and loop algebras

At this point, we want to construct a sufficiently big class of examples of affine
Lie algebras. We can attack this problem of constructing a so-called central
extension of a Lie algebra g from two different points of view:

1. In a basis-independent formulation, the extension of a Lie algebra by cen-
tral elements is another Lie algebra ĝ = V ⊕ g, where V is a vector space.
The Lie bracket of this new Lie algebra is given by:

[(v, x) , (w, y)] := (Ω (x, y) , [x, y]) (38)

where Ω is a complex function defined on g×g. This bracket must be anti-
symmetric, bilinear and satisfy the Jacobi identity, thus requiring Ω (x, y)
to be also antisymmetric, bilinear and satisfy:

Ω (x, [y, z]) + Ω (y, [z, x]) + Ω (z, [x, y]) = 0 (39)

i.e. Ω is a cocycle of g. The central extension is trivial precisely if Ω
is a coboundary, i.e. when Ω (x, y) is a linear function of [x, y]. The in-
equivalent non-trivial central extensions are then described by the vector
space of 2-cocycles modulo coboundaries, i.e. the (Lie algebra) cohomol-
ogy H2 (g,C). An alternative way to relate ĝ and g is by requiring

0→ C→ ĝ→ g→ 0 (40)

to be a short exact sequence.
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2. In a basis-dependent formulation, for any arbitrary Lie algebra g, we can
construct a centrally extended Lie algebra ĝ adding l generators Kj , j =
1, . . . , l to a basis {T a} of g imposing the relations[

Ki,Kj
]

= 0 (41)[
T a,Kj

]
= 0 (42)

∀i, j = 1, . . . , l, ∀a = 1, . . . , d while keeping the original values fabc of those
structure constants involving only the generators T a. The most general
form of the brackets among the ĝ-generators reads:

[
T a, T b

]
=

d∑
c=1

fabc T
c +

l∑
i=1

sabi K
i (43)

where sabi are the structure constants of g in the basis {T a}. An (l-
dimensional) central extension of g is the Lie algebra ĝ satisfying the
additional relations (42) and (43).

Remark 7. • The sabi ’s can’t be chosen arbitrarily, as the brackets are
required to satisfy the Jacobi identity.

• A possible solution is taking sabi = 0. In this case:

ĝ ∼ g⊕ Cl (44)

It is not the only solution, but it is the most trivial one. ĝ is of this
form whenever there exists a choice of basis elements

T̃ a = T a +

l∑
i=1

uaiK
i (45)

with suitable coefficients uai in which the transformed structure con-
stants

f̃abi = fabi −
d∑
c=1

fabc u
c
i (46)

are zero.

Definition 25. Consider the vector space C
[
t, t−1

]
. The extended algebra of

g with C
[
t, t−1

]
is called the loop algebra over g and it is denoted by gloop:

gloop = C
[
t, t−1

]
⊗C g (47)

A basis of this vector space is given by:

B = {T̃ an |a = 1, . . . , d;n ∈ Z} (48)

where T̃ an := T a ⊗ zn = T a ⊗ e2πitn. This space inherits a natural bracket
operation from g,[

T̃ am, T̃
b
n

]
=
[
T a ⊗ zm, T b ⊗ zn

]
:=
[
T a, T b

]
⊗ (zmzn) =

=

d∑
c=1

fabc T
c ⊗ zm+n =

d∑
c=1

fabc T̃
c
m+n

(49)
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∀T a ∈ g, ∀zm, zn ∈ C
[
t, t−1

]
, where fabc are the structure constants of g, which

in the basis B, take the value: fabc δm+n,l. With this bracket, C
[
t, t−1

]
⊗C g

becomes a Lie algebra.

Remark 8. • The index n of T̃ an is additive and provides a Z-gradation of
gloop.

• The subset of gloop generated by T̃ a0 is a Lie subalgebra, called the zero
mode subalgebra of gloop, and it is isomorphic to g.

Loop algebras C
[
t, t−1

]
⊗C g are not yet affine Lie algebras: the center of

the loop algebra based on a simple Lie algebra is trivial. Thus, let us consider
a central extension of a loop algebra of simple Lie algebras. Define a C-valued
2-cocycle on the loop algebra:

ψ (a, b) = κ (x, y)ϕ (P,Q) (50)

where a = P ⊗ x, b = Q⊗ y, P,Q ∈ C
[
t, t−1

]
, x, y ∈ g, and

ϕ (P,Q) = Res
dP

dt
Q (51)

is a bilinear C-valued function defined on C
[
t, t−1

]
4 satisfying:

1. ϕ (P,Q) = −ϕ (Q,P )

Proof 3.

ϕ (P,Q) + ϕ (Q,P ) = Res
dP

dt
Q+ ResP

dQ

dt
= Res

d (PQ)

dt
= 0

qed.

2. ϕ (PQ,R) + ϕ (QR,P ) + ϕ (RP,Q) = 0

Proof 4.

ϕ (PQ,R) = Res
d (PQ)

dt
R = Res

dP

dt
QR+Res

dQ

dt
PR = ϕ (P,QR)+ϕ (Q,PR)

(53)
Using the first property, (53) cancels the other terms of the equality, qed.

The 2-cocycle satisfies:

1. ψ (a, b) = −ψ (b, a)

2. ψ ([a, b] , c) + ψ ([b, c] , a) + ψ ([c, a] , b) = 0

These properties are easy to check using both the properties of ϕ (P,Q) above
and of the Killing form (bilinearity, symmetry and ad-invariance). This 2-
cocycle is correlated to the central extension as:

4The residue of a Laurent polynomial P =
∑

k∈Z ckt
k is defined by ResP = c−1, a linear

functional on the algebra of polynomials in t defined by the properties:

Rest−1 = 1 Res
dP

dt
= 0 (52)
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Proposition 3. There exists a non-trivial extension ĝ of gloop:

ĝ = gloop ⊕ CK =
(
C
[
z, z−1

]
⊗C g

)
⊕ CK (54)

whose bracket is given by:

[a+ λK, b+ µK] = [a, b] + ψ (a, b)K (55)

∀a, b ∈ C
[
z, z−1

]
⊗C g, ∀λ, µ ∈ C

A simple computation shows that the extended loop algebra C
[
t, t−1

]
⊗C

g⊕CK is infinite-dimensional. In order to make the root space of the extended
loop algebra finite dimensional, let us add a last generator D:

ḡ = ĝ⊕ CD (56)

ḡ is a complex vector space. To obtain a Lie algebra structure on ḡ, we define
the Lie bracket of ḡ as:

[(x, y) , (x′, y′)] := (yx′ − y′x+ [x, y] , 0) (57)

where x, x′ ∈ ĝ, y, y′ ∈ CD. A basis-dependent formulation of this bracket can
be:

[D,T am] = mT am (58)

[D,K] = 0 (59)

where K is the canonical central element. More generally, D = Ds can be
defined as the endomorphism of ḡ defined by

Ds = −ts+1 d

dt
Ds (K) = 0 (60)

so that D0 = −D. D is called a derivation of ḡ.
And finally,

Definition 26. (Extended Cartan matrix ) Let A be a positive definite inde-
composable Cartan matrix and let g = g (A) be the associated simple finite-
dimensional Lie algebra with generators: Hi, E

i
±, ∀i = 1, . . . , r. There exists a

unique non-zero element E0
+ (E0

−) in g such that
[
E0

+, E
i
−
]

(
[
E0
−, E

i
+

]
) vanishes

for i = 1, . . . , r. Then
[
E0

+, E
0
−
]

= H0, where H0 is a linear combination of the
Hi, and one normalizes E0

+ and E0
− by the conditions[

H0, E
0
+

]
= 2E0

+ (61)[
H0, E

0
−
]

= −2E0
− (62)

Then,
[
H0, E

i
+

]
= α0iE

i
+,
[
Hi, E

0
+

]
= αi0E

0
+ for i = 1, . . . , r where the α’s are

certain non-positive integers, and one puts

Aext =


2 α01 . . . α0r

α10

... A
αr0

 (63)

This is a positive semidefinite (r + 1)×(r + 1) GCM, and it is called an extended
Cartan matrix
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Theorem 6.1. Let g be a simple, complex, finite-dimensional Lie algebra and
let A be its extended Cartan matrix. Then, C

[
t, t−1

]
⊗C g ⊕ CK ⊕ CD is the

affine Kac-Moody algebra associated to A.

Proof 5. (Sketch) We want to show that the algebra C
[
t, t−1

]
⊗C g⊕CK⊕CD

is an affine Kac-Moody algebra associated to an affine Cartan matrix A. Steps
to follow:

1. Identification of the elements candidates to be the generators of the alge-
bra: if, associated to an affine Cartan matrix A, we have the generators
(Hi, Ei, Fi)i=0,...,n, then for the algebra (56) we will have:

Hi ↔ 1⊗ hi (i = 1, . . . , n) (64)

H0 ↔ D (65)

Ei ↔ 1⊗ ei (66)

E0 ↔ t⊗ e0 (67)

Fi ↔ 1⊗ fi (68)

F0 ↔ t−1 ⊗ f0 (69)

2. Show that the 3 (l + 1) generators from step 1 generate the Lie algebra ḡ.

3. Show that the Kac-Moody relations between the generators hold.

Extended Cartan matrices comprise more than half of the affine Cartan
matrices. Those affine Lie algebras whose affine Cartan matrices are extended
Cartan matrices are called in the literature ”untwisted”, and those whose are
not, ”twisted”. As we can see, this theorem comprises then most of the affine
Lie algebras, although it is possible to extend it to the twisted case. The full
classification of Kac-Moody algebras (apart from the already completed simple,
affine and hyperbolic cases) is far from being completed, but at least, there are
some parts which have been accomplished, and the one presented above is an
important one. There is still a lot to do in this field!

To finish our exposition, we would like to give some examples of physical
fields where these constructions arise:

1. WZW theories (two-dimensional conformal field theory), as current alge-
bras.

2. In string theory, the conformal field theories based on affine Lie algebras
give, for example, rise to the gauge bosons in a heterotic string compact-
ification.

3. The Virasoro algebra: it is a bit further extended untwisted affine Lie
algebra, where one introduces another central element C and infinitely
many generators Lm, m ∈ Z satisfying

[Lm, Ln] = (m− n)Lm+n +
1

12
m
(
m2 − 1

)
δm+n,0C (70)

[Lm, C] = 0 (71)
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