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1 Introduction
The BRST (Becchi, Rouet, Sora, Tyutin) method is a tool used for describing physical systems
with symmetries. By a physical system we mean space of configurations P (this is usually some
infinite dimensional vector space) and a system of (differential) equations (so called "equations
of motion") with variables in P . Solutions of those equations constitute a subset of P , denoted
by Σ. As an example we can take a space of smooth functions on R4 (P = C∞(R4)) and as the
equation of motion, the wave equation: 2φ(t,x) = (∂2

t −∆x)φ(t,x) = 0.
The situation starts to be more complicated if we have n equations but only k < n of them

are independent. We say, that the system possesses a symmetry. This is the case in many
interesting physical examples:

• electrodynamics

• nonabelian gauge theories (Yang-Mills), in particular the Standard Model

• general relativity

The BRST method was originally introduced in QFT [16, 17]. It was put in a more general
setting, called BV (Batalin, Vilkovinski) formalism [18, 19, 20, 21]. A very complete review
of this formalism, with emphasis put on the cohomological tools is provided by [1]. General
features of the BRST method, with a view towards quantization, are also well described in [2].
For more abstract view on BV formalism see for example notes of Urs Schreiber [8].
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2 Toy model

2.1 Statement of the problem

In this talk I will present the general features of the BRST method using a simplified model.
To avoid problems with the calculus on general locally convex vector spaces, I will assume,
that the configuration space P is simply an n dimensional smooth Riemannian manifold. Let
S ∈ C∞(P,R) be a functional on P . It should also satisfy certain regularity condition, which
would be specified below. Let d be the exterior derivative.

Definition 1. We call a point x ∈ P a critical point if dxS ≡ 0.

Let Σ be the set of all critical points of S, i.e.

Σ = {x ∈ P | dS(x) ≡ 0}. (1)

The condition dS(x) = 0 can be written in local coordinates (with respect to a chart (Uα, ϕα)
as a system of n equations for n variables: σi((ϕ−1

α )1(x), . . . , (ϕ−1
α )n(x)) = 0, i = 1, . . . n. In

physics those correspond to "equations of motion". The surface Σ ( P is referred to as the
"space of solutions". A critical point is called nondegenerate if at this point the (local) Hessian
matrix HS(ϕ−1

α (x)) is nondegenerate. In this case we have a system of independent equations.
In general only k < n of them are independent. We require following regularity condition
imposed on S:

Assumption 1. For each point x ∈ Σ there exists an open neighborhood with the correspondng
chart (Uα, ϕα) such that σi((ϕ−1

α )1(x), . . . , (ϕ−1
α )k(x)) = 0, i = 1, . . . k are independent, i.e.

the Hessian matrix HS(ϕ−1
α (x)) is of rank k for all x ∈ Σ .

In the following we denote the local coordinates by x1 .
= (ϕ−1

α )1(x) and we keep the local
chart implicit. Under the regularity condition 1 we can choose (σ1 . . . σk, xk+1, . . . , xn) as new
local coordinates in the neighbourhood of each point of Σ. Let C∞(P )

.
= C∞(P,R) denote

the space of smooth functions on P . This is a vector space with addition and multiplication
by scalars from R defined pointwise. Moreover it is a commutative algebra with multiplication
also defined pointwise. Let I be an ideal of C∞(P ) consisting of functions that vanish on Σ:

I
.
= {f ∈ C∞(P )|f(x) = 0 ∀x ∈ Σ} (2)

We have a following useful result:

Proposition 1. Let f ∈ C∞(P ) be a smooth function that vanishes on Σ. Then locally we have:

f(x) =
n∑
i=1

f i(x)σi(x), i = 1 . . . n for f i(x) smooth.

Proof. We choose a local coordinate system x = (z1, . . . , zn) such that zi = σi(x), i = 1, . . . k.
In those coordinates we have: f(0, zk+1, . . . , zn) = 0. We can therefore write:

f(z1, . . . , zn) =

1∫
0

d

dt
f(tz1, . . . , tzk, zk+1, . . . , zn)dt (3)
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This in turn is equal to:

f(z1, . . . , zn) =

1∫
0

df(0, zk+1, . . . , zn)[tz1, . . . , tzk, zk+1, . . . , zn]dt (4)

Setting f i(z) =
1∫
0

df(0, zk+1, . . . , zn)[0, . . . , t, . . . , 0]dt for i = 1, . . . , k, and f i(z) = 0 for

i = k + 1, . . . , n we obtain the result: f(z) =
n∑
i=1

f i(z)σi(z).

Obviously each vector field X ∈ Γ∞(TP ) acting on a function f ∈ C∞(P ) can be written

locally as: X(f) =
n∑
i=1

X i∂if , where coefficients X i are smooth functions. In particular:

X(S) =
n∑
i=1

X i∂iS =
n∑
i=1

X iσi. Therefore every vector field X ∈ Γ∞(TP ) induces an element

of I by the map: dS(.) : Γ∞(TP )→ I . Moreover, if in addition X(S) ≡ 0, X induces a trivial
element of I . We can define a subalgebra of the Lie algebra of vector fields Γ∞(TP ) by:

g = {X ∈ Γ∞(TP )| X(S) = 0} , (5)

Obviously Ker(dS(.)) = g.
We now take the quotient of C∞(P ) by ideal I and obtain the algebra C∞(Σ) = C∞(P )/I

of functions on the solution space Σ.

Digression 1. In physics we call C∞(P ) the algebra of "functionals off-shell". The quotient
space C∞(Σ) = C∞(P )/I is referred to as the "on-shell algebra". Both concepts are crucial in
QFT in the so called "functional approach". For reference see for example: [10, 12, 11]

Now let Diff(P ) denote the group of diffeomorphisms of P . We define a subgroup of
Diff(P ) of those diffeomorphisms, that leave S invariant:

G
.
= {α ∈ Diff(P )|S(α(x)) = S(x) ∀x ∈ P} (6)

ObviouslyG leaves Σ invariant. We have a natural action of Diff(P ) on C∞(P ) by the pullback:

(α(f))(x)
.
= α∗f(x) = (f ◦ α)(x) (7)

This induces also the action of G on C∞(P ) and of G on C∞(Σ). The last one is well defined
on the equivalence classes C∞(P )/I since for α ∈ G, f ∈ I we have:

dS(x) ≡ 0 ∀x ∈ Σ⇒ dS(α(x)) ≡ 0 ∀x ∈ Σ⇒ f(α(x)) = 0 ∀x ∈ Σ⇒ α(f) ∈ I (8)

The action of G on C∞(Σ) is not faithful. Let G0 be the subgroup of G consisting of those
diffeomorphisms that act on C∞(Σ) trivially:

G0
.
= {α ∈ G| α∗f − f ∈ I ∀f ∈ C∞(P )} (9)

It is easy to see that G0 is a normal subgroup of G and we can take the quotient: GS
.
= G/G0.

The action of GS on C∞(Σ) is faithful. In general GS is not a subgroup of G.
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Digression 2. The group GS is called in physics the group of symmetries of the action S. It
maps solutions to other solutions and as a consequence it maps on-shell functionals to other
on-shell functionals. Usually we are not interested in the full GS but in it’s subgroups.

Definition 2. A 1-parameter group of (smooth) transformations of P is a mapping of R × P
into P , (t, p) ∈ R× P → φt(p) ∈ P , which satisfies the following conditions:

1. For each t ∈ R, φt : p→ φt(p) is a transformation of P ;

2. For all t, s ∈ R and p ∈ P , φt+s(p) = φt(φs(p)).

In particular we can have 1-parameter subgroups of G and GS . Let φt be a one-parameter
subgroup of G. For each point x ∈ Σ we can define a curve x(t) = φt(p). Clearly x(t) lies
on Σ. We call x(t) the orbit of x. Each 1-parameter group of transformations induces a vector
field X ∈ Γ∞(TP ).

Definition 3. Let Iε be an open interval (−ε, ε) and U an open set of P . A local 1-parameter
group of local transformations defined on Iε ×U is a mapping of Iε ×U into P which satisfies
the following conditions:

1. For each t ∈ Iε, φt : p→ φt(p) is a diffeomorphism of U onto the open set φt(U) of P ;

2. If t, s, t+ s ∈ Iε and if p, φs(p) ∈ U , then: φt+s(p) = φt(φs(p)).

Recall that we have a following result from differential geometry:

Proposition 2. Let X be a vector field on a manifold P . For each point p0 ∈ P , there exist a
neighborhood U of p0, a positive number ε and a local 1-parameter group of local transforma-
tions φt : U → P , t ∈ Iε, which induces the given X .

If there exists a (global) 1-parameter group of transformations of P which induces X , then
we say that X is complete. On a compact manifold every vector field X is complete. In physics
we are interested in functionals on Σ that are constant along the orbits generated by local 1-
parameter subgroups of GS . Those are corresponding to certain equivalence classes of vector
fields on P . To make this precise, we recall that g was defined as the algebra of vector fields
that annihilate the action S. Since we are interested only on the fields with flows contained in
Σ we have to mode out from g vector fields that vanish on Σ. Those can be also equivalently
defined as:

g0 = {X ∈ g| X(f) ∈ I ∀f ∈ C∞(P )} , (10)

We define now gΣ
.
= g/g0. It is clear that 1-parameter subgroups of GS generate elements of

gΣ. We can now make precise the notion of functions constant along the gΣ-orbits on Σ. They
are defined as:

C∞inv(Σ) = {f ∈ C∞(Σ)| X(f) = 0 ∀X ∈ gΣ} (11)

Later on we shall refer to this space as the space of invariant functions on Σ.
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2.2 Chevalley-Eilenberg cohomology
The obvious tool for finding C∞inv(Σ) is the Lie algebra cohomology. We can define the
Chevalley-Eilenberg cohomology of gΣ with coefficients in the representation on C∞(Σ):

γ :

q∧
gΣ
∗ ⊗ C∞(Σ)→

q+1∧
gΣ
∗ ⊗ C∞(Σ)

(γω)(X0, . . . , Xq+1)
.
=

q∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xq+1)) +

+
∑
i<j

(−1)i+jω
(

[Xi, Xj], . . . , X̂i, . . . , X̂j, . . . , Xq+1

)
(12)

The space of invariant functions on Σ corresponds now toH0(γ,
∧•

gΣ
∗⊗C∞(Σ)). The grading

of
∧•

gΣ will be denoted by r̃.

Digression 3. In physical situations one often needs to work "off-shell". This means that we
do not want to deal with C∞(Σ), but with C∞(P ). This is the case in QFT when we first want
to perform the quantization, introducing a certain noncommutative product on C∞(P ) and take
the quotient by the I at the very end of the construction.

The homological interpretation of C∞(Σ) = C∞(P )/I is provided by using the Koszul-Tate
resolution. This will be the next step of our construction. More on Koszul-Tate complex can
be found in [4, 5].

2.3 Koszul-Tate resolution
2.3.1 Koszul construction

We start with the Koszul construction. As argued before, elements of I can be locally written

as f(x) =
n∑
i=1

f i(x)σi(x). We choose the local basis {e1 . . . en} of TxP at point x. The dual

basis would be denoted by: {e1 . . . en}. Note that
n∑
i=1

eiσi(x) is an element of T ∗xP . We use this

fact to construct the resolution of C∞(Σ). Let
∧1(P ) be the space of 1-forms on P . We define

the Koszul map δ :
∧1(P ) →

∧0(P ) locally by setting it’s value on the basis elements and
extending it by linearity to the whole

∧1(P ):

δ(ei)(x) = σi(x), i = 1, . . . , n (13)

It is now clear, that for an arbitrary ω ∈
∧1(P ) we have:

δ(ω)(x) =
n∑
i=1

ωi(x)σi(x) ∈ I (14)

Therefore Im(δ) = I ⊂
∧0(P ). We assign to elements of this algebra grade r equal to the

form degree. Now we extend δ to the whole graded algebra
∧•(P ) by requirement, that it is a

graded derivation.We have obviously:

H0(δ,
•∧

(P )) = C∞(Σ) (15)
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When there exist some symmetries of the action, higher order homology can be nontrivial.
To avoid this and obtain a resolution, we shall adopt the Tate construction and add further
generators to the graded algebra.

2.3.2 Tate construction

The first homology of δ is, according to the definition: H1(δ) = Ker(δ)1
Im(δ)2

. We already know that
Ker(δ)1 can be characterized by elements of g. Now we have to find out what is Im(δ)2 in
terms of elements of g. It is easy to check that those will be exactly vector fields from g that
vanish on Σ, i.e. elements of g0. Therefore we can conclude that H1(δ) can be characterized
by g/g0 = gΣ.

We choose a local linear map R : gΣ = g/g0 → g ⊂ Γ∞(TP ), such that [R(X)] = X .
In other words, R chooses representant of each equivalence class. The choice of R is
of course non unique. In general R is not a Lie algebra homomorphism. Let {fj(x)},
j = 1, . . . ,m < n be the local basis in gΣ. In local coordinate system we can write R as:

R(X)i(x) =
m∑
j=1

Ri
j(x)Xj(x).

Now take the map: gΣ 3 X 7→
n∑
i=1

R(X)iei (defined locally). It is an element of
∧1(P )⊗

g∗Σ. We can now write:
n∑
i=1

R(X)iei =
m∑
j=1

(
n∑
i=1

Ri
je
i

)
Xj , (16)

Now we proceed analogously as with the Koszul construction. Let Sk(gΣ) denote the sym-
metrized k-th tensor power of gΣ, S0(gΣ) = R. Let S•(gΣ)

.
=
⊕∞

k=0 S
k(gΣ). To elements of

this algebra we assign the grading r = 2k. We define Koszul-Tate map δ : S1gΣ →
∧1(P ) by

setting it’s value on the local basis:

(δfj)(x) =
n∑
i=1

Ri
je
i (17)

We extend δ to be a graded derivation on the whole graded algebra S•(gΣ) ⊗
∧•(P ). If we

assume that there are no further reducibility relations among the elements of gΣ we obtain:

H0 (δ, S•(gΣ)⊗
•∧

(P )) = I (18)

Hk (δ, S•(gΣ)⊗
•∧

(P )) = 0, k > 0 (19)

This is the desired Koszul-Tate resolution of I

2.4 Homological perturbation theory
Now we have two graded algebras: S•(gΣ) ⊗

∧•(P ) with the differential δ and grading r and∧•
gΣ
∗ ⊗ C∞(Σ) with grading r̃ and differential γ. We can define a joint algebra:

A .
= S•(gΣ)⊗

•∧
(P )⊗

•∧
gΣ
∗ (20)
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One can extend γ to the whole algebra A to be a differential modulo δ. We define a joint
grading N = r̃− r. Differential δ has grade r(δ) = −1 and for γ we have r̃(γ) = 1. It follows
that N(δ) = N(γ) = 1. The main theorem of homological perturbation theory (HPT) states
that there exists a differential s onA with grade N(s) = 1 such that it’s expansion with respect
to the grading r has the form:

s = δ + γ + . . . (21)

Moreover we have:
H0(s,A) = H0(γ,H0(δ,A)) = C∞inv(Σ) (22)

For more on HPT see for example the notes of Birgit Richter [7].
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