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Abstract

We define the complex of invariant forms on a left G-manifold M ,
and prove that the cohomology of this complex is isomorphic to the
cohomology of M if the manifold M is compact and the Lie group G
compact and connected.



1 Foundational Material

In this section, we give a crash course on manifolds, Lie groups, their associated Lie

algebras and de Rham cohomology. General references are [1], [2], [3], [4], [5], [6]

and [7] for instance.

Definition 1.1 (Topological manifold). Let M be a topological space. We say

M is a topological manifold of dimension n if it has the following properties:

• M is a Hausdorff space: For every pair of points p, q ∈ M, there are disjoint

open subsets U, V ⊂M such that p ∈ U and q ∈ V .

• M is second countable: There exists a countable basis for the topology ofM.

• M is locally Euclidean of dimension n: Every point p inM has a neighborhood

U such that there is a homeomorphism1 φ from U onto an open subset of Rn.

Let U be an open subset of M. We call the pair (U, φ : U → Rn) a chart of M, U

a coordinate neighborhood of M, and φ a coordinate map on U .

Definition 1.2. Two charts (U, φ : U → Rn), (V, ψ : V → Rn) of a topological

manifold are C∞-compatible if the two maps

φ ◦ ψ−1 : ψ (U ∩ V )→ φ (U ∩ V ) , ψ ◦ φ−1 : φ (U ∩ V )→ ψ (U ∩ V )

are C∞. These two maps are called the transition functions between the charts.

Definition 1.3. A C∞ atlas or simply an atlas on a locally Euclidean space M is

a collection {(Ui, φi)}i∈I of compatible charts that cover M such that M =
⋃
i∈I
Ui.

An altas A = {(Ui, φi)}i∈I on a locally Euclidean space is said to be maximal if it

is not contained in a larger atlas.

1A homeomorphism is a bijective continuous map with continuous inverse.
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Definition 1.4 (Smooth manifold). A smooth or C∞ manifold is a topological

manifold M together with a maximal atlas.

The maximal altas is also called a differentiable structure on M. A monifold is

said to have a dimension n if all of its connected components have dimension n. A

manifold of dimension n is also called n-manifold.

For further information about tangent space, tangent bundle, 1-forms,. . ., see Ap-

pendix!

Definition 1.5. A map f : M → N between two smooth manifolds is said to be

smooth (or differentiable or C∞) if, for any chart φ on M and ψ on N , the function

ψ ◦ f ◦ φ−1 is smooth as soon as it is defined.

The map f is a diffeomorphism if it is a bijection and both f and f−1 are smooth.

Definition 1.6 (Lie group). A Lie group is a C∞ manifold G which is also a group

such that the two group operations, multiplication

µ : G×G→ G, µ(a, b) = ab

and inverse

ι : G→ G, ι(a) = a−1

are C∞.

A homomorphism of Lie groups is a homomorphism of groups which is also a smooth

map. An isomorphism of Lie groups is a homomorphism f which admits an inverse

(also C∞) f−1 as maps and such that f−1 is also a homomorphism of Lie groups.

We introduce here the notion of Lie algebras and the example of main interest

for us, the tangent space Te(G) of a Lie group G at the identity e.

Definition 1.7 (Lie algebra). A Lie algebra over R is a vector space g together

with a bilinear homomorphism, called the Lie bracket,

[−,−] : g× g→ g

such that, for any x ∈ g, y ∈ g, z ∈ g, one has:

[x, y] = −[y, x] (skew symmetry)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).
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A homomorphism of Lie algebras is a linear map φ : g → g′ with φ([x, y]) =

[φ(x), φ(y)] for all x, y ∈ g.

Definition 1.8. A fixed element g ∈ G gives the left translation Lg : G→ G with

Lg(h) = g ·h for all h ∈ G. Similarly, we define right translations Rg by Rg(h) = h·g.

Recall first that, if p : T (G)→ G is the tangent bundle of the manifold G, a vector

field X on G is a smooth section of p.

Definition 1.9. Denote by DLg : T (G)→ T (G) the map induced by the left trans-

lation Lg. A vector field X on G is called left invariant if DLg(X) = X, for any

g ∈ G. This means DLg(Xh) = Xgh, for any h ∈ G.

In other words, a vector field X is left-invariant if and only if it is Lg-related to

itselft for all g ∈ G.

If G is a Lie group, we denote by g the vector space of left invariant vector fields on

G. If X and Y are vector fields, then their bracket is defined to be the vector field

[X, Y ]f = X(Y f)−Y (Xf) for all functions f . The bracket is anti-commutative and

satisfies a Jacobi identity. If X and Y are left invariant vector fields, their bracket

[X, Y ] is also left invariant. Therefore, the vector space g has the structure of a Lie

algebra, called the Lie algebra associated to the Lie group G.

X is a vector field on a Lie group G, we see directly from the definition that X

is left invariant if and only if

Xg = (DLg)(Xe).

The vector space g is isomorphic to the tangent space, Te(G), at the identity e of G.

Proposition 1.10. There is a morphism of Lie groups Ad : G → Gl(g) given by

Ad(g)(X) = ((DRg)
−1◦(DLg))(X), where Gl(g) is the group of linear isomorphisms

of the Lie algebra g.

Definition 1.11. The map Ad : G→ Gl(g) is called the adjoint representation of

the Lie group G.
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Let G be a Lie group and M a differentiable manifold (always of class C∞). A dif-

ferentiable action of G on M is an action G×M →M which is a C∞-differentiable

map. A manifold M together with a differentiable action of G on it is called a

differentiable G-manifold.

Definition 1.12. A Lie group G acts on a manifold M , on the left, if there is a

smooth map G ×M → M , (g, x) 7→ gx, such that (g · g′)x = g(g′ · x) and ex = x

for any x ∈ M , g ∈ G, g′ ∈ G. Such data endows M with the appellation of a left

G-manifold. A left action is called

• effective if gx = x for all x ∈M implies g = e;

• free if gx = x for any x ∈M implies g = e.

Example 1.13. Let G be a Lie group. The Lie group multiplication gives to G the

structure of a

• left G-manifold, with L : G×G→ G, L(g, g′) = Lg(g
′) = g · g′,

• right G-manifold, with R : G×G→ G, R(g′, g) = Rg(g
′) = g′ · g.

We denote the p-forms on M by ApDR(M) and the entire graded algebra of forms by

ADR(M).

Let G be a Lie group. If M is a left G-manifold, we denote by

g∗ : ADR(M)→ ADR(M)

the “pullback” map induced on differential forms by the action of g ∈ G. More

specifically, for vector fields X1, . . . , Xk and a k-form ω, we define at m ∈M ,

g∗ω(X1, . . . , Xk)(m) = ωg·m(DgmX1(m), . . . , DgmXk(m)).

We sometimes write ωx(X1, . . . , Xk) = ω(X1, . . . , Xk)(x), L∗g = g∗ω and Dg = DLg.

Definition 1.14. An invariant form on a left G-manifold M is a differential form

ω ∈ ADR(M) such that g∗ω = ω for any g ∈ G. We denote the set of invariant

forms by ΩL(M).

In the case of a Lie group G, we note that the left invariant forms (right invariant

forms) correspond to the left (right) translation action. We denote these sets by
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ΩL(G) and ΩR(G) respectively. A form on G that is left and right invariant is called

bi-invariant (or invariant if there is no confusion). The corresponding set is denoted

by ΩI(G).

The aim of this section is to prove that these different sets of invariant forms allow

the determination of the cohomology of G-manifolds and Lie groups.

There are several important operations that are performed on forms to create new

ones illuminating certain geometric properties. Let Mn be a manifold with a vector

field X and a (p+ 1)-form α defined on it, then we define a p-form i(X)α by

(i(X)α)(Y0, . . . , Yp−1) = α(X, Y0, . . . , Yp−1),

where Y0, . . . , Yp−1 are vector fields. The operation on the (p+ 1)-form α that pro-

duces the p-form i(X)α is called interior multiplication by X.

We defined the differential of a function f to be the 1-form df satisfying df(X) = Xf

for a vector field X. The operator d is called the exterior derivative and is defined

on all forms. For a (p − 1)-form α and vector fields Y0, . . . , Yp−1, the p-form dα is

defined by

dα(Y0, . . . , Yp−1) =

p−1∑
j=0

(−1)jYj(α((Y0, . . . , Ŷj, . . . , Yp−1))

+
∑
i<j

(−1)i+jα([Yi, Yj], Y0, . . . , Ŷi, . . . , Ŷj, . . . , Yp−1),

where “hats” above Y ′i s indicate that they are missing. We denote this operation

on forms by d : ApDR(M) → Ap+1
DR (M). For instance, from the formula, we recover

the definition df(Y ) = Y f and, for a 1-form α, we find

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]).

A collection of vector spaces
{
V k
}∞
k=0

with linear maps dk : V k → V k+1 such that

dk+1 ◦ dk = 0 is called a differential complex or a cochain complex. For any open

subset U of Rn, the exterior derivative d makes the vector space Ω∗(U) of C∞ forms

on U into a cochain complex, called the de Rham complex of U :

Ω0(U)
d−→ Ω1(U)

d−→ Ω2(U)
d−→ . . . .

The closed forms (dω = 0) are precisely the elements of the kernel of d and the exact

forms are the elements of the image of d.
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The exterior derivative d : ApDR(M)→ Ap+1
DR (M) makes A∗DR(M) a cochain complex.

Its cohomology is called the de Rham cohomology H∗DR(M),

Hp
DR(M) =

Ker
(
d : ApDR(M)→ Ap+1

DR (M)
)

Im
(
d : Ap−1DR (M)→ ApDR(M)

) (p-th de Rham cohomology).

The de Rham cohomology is the quotient of the closed forms modulo the exact

forms. For instance, if f : M → R is a smooth function on a connected manifold

M , then df = 0 only if f is a constant function. Since there are no exact 0-forms,

we have H0
DR(M) = R. If M is not connected, then a function could take different

constant values on different components. If there are k components, H0
DR(M) = Rk.
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2 Lie algebra and de Rham

cohomology

We will typically write H∗(M ;R) when we refer to cohomology, even though it may

be coming from forms.

The de Rham cohomology of the compact Lie group G is isomorphic to the Lie

algebra cohomology of the Lie algebra g (Theorem 2.3). Actually, the Lie algebra

cohomology can be defined as the cohomology of the complex of left-invariant dif-

ferential forms on the corresponding group G. Note that cohomology classes of the

compact group G can be represented by left-invariant forms by averaging over the

group any closed form from a given cohomology class.

A reference for this section is [2] (section 1.6) and [8] (chapter 10 and 12):

Proposition 2.1. Let G be a Lie group and M be a left (or a right) G-manifold.

Then the set of invariant forms of M is stable under d. Then the sets of left invariant

forms on G are invariant under i(X), for X a left invariant vector field.

Proof. Suppose ω is a left invariant form on G and X is a left invariant vector field

on G. We have, using the left invariance of X and ω,

L∗gi(X)ω(Y1, . . . , Yk)(x) = L∗gω(X, Y1, . . . , Yk)(x)

= ωgx(DLgX(x), DLgY1(x), . . . , DLgYk(x))

= i(DLgX)ω(DLg(Y1), . . . , DLg(Yk))(gx)

= i(X)ω(Y1, . . . , Yk)(gx).

Hence, i(X)ω is left invariant.

The previous result justifies the following definition.

Definition 2.2. Let G be a Lie group and M be a left G-manifold. The invariant

cohomology of M is the homology of the cochain complex (ΩL(M), d). We denote

it by H∗L(M).
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The main result is the following theorem.

Theorem 2.3. Let G be a compact connected Lie group and M be a compact left

G-manifold. Then

H∗L(M) ∼= H∗(M ;R).

We will prove that the injection map ΩL(M) → ADR(M) induces an isomorphism

in cohomology. For that, we need some results concerning integration on a compact

connected Lie group.

Proposition 2.4. On a compact connected Lie group, there exists a bi-invariant

volume form.

Proof. Recall from the Foundational Material that the tangent bundle of G trivi-

alizes as T (G) ∼= G × g. If g∗ is the dual vector space of g, we therefore have a

trivialization of the cotangent bundle T ∗(G) ∼= G× g∗ and of the differential forms

bundle. Exactly as for vector fields, we observe that left (right) invariant forms are

totally determined by their value at the unit e and that we have isomorphisms of

vector spaces

ΩL(G) ∼= ΩR(G) ∼= ∧g∗,

where ∧g∗ is the exterior algebra on the vector space g∗. To make this space precise,

recall that the elements of g∗ are left invariant 1-forms dual to left invariant vector

fields. If we choose a basis {ω1, . . . , ωn} dual to a basis of left invariant vector fields,

an element of ∧g∗ may be written

α =
∑

ai1···ip ωi1 · · ·ωip

where the ai1···ip ’s are constant. Choose such an α of degree n equal to the dimension

of G. We associate to α a unique left invariant form αL such that (αL)e = α and a

unique right invariant form αR such that (αR)e = α. More precisely, we set:

(αL)e(X1, . . . , Xn) = α((DLg)
−1X1, . . . , (DLg)

−1Xn),

(αR)e(X1, . . . , Xn) = α((DRg)
−1X1, . . . , (DRg)

−1Xn).

Recall, from Definition 1.11, the homomorphism of Lie groups Ad : G→ Gl(g). As
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direct consequences of the definitions, we have

(L∗gαR)h(X1, . . . , Xn) = (αR)gh(DLg(X1), . . . , DLg(Xn))

= α((DRgh)
−1 ◦ (DLg)(X1), . . .)

= α((DRh)
−1 ◦ (DRg)

−1 ◦DLg(X1), . . .)

= (αR)h((DRg)
−1 ◦DLg(X1), . . .)

= (det(Ad(g))(αR)h(X1, . . . , Xn).

The composition det ◦Ad : G → R has for image a compact subgroup of R; that

is, {1} or {−1, 1}. Since the group G is connected, we get det(Ad(g)) = 1, for any

g ∈ G, and αR is a bi-invariant volume form.

Proof of Theorem 2.3

Denote by ι : ΩL(M) ↪→ ADR(M) the canonical injection of the set of left invariant

forms. We choose the bi-invariant volume form on G such that the total volume of

G is 1,
∫
G
dg = 1 (dg = measure on G). This volume form allows the definition of∫

G
dg ∈ Rk for any smooth function f : G→ Rk.

Let ω ∈ AkDR(M) and x ∈ M be fixed. As a function f , we take G → ∧Tx(M)∗,

g 7→ g∗ω(x). We get a differential form ρ(ω) on M defined by:

ρ(ω)(X1, . . . , Xk)(x) =

∫
G

g∗ω(X1, . . . , Xk)(x)dg

=

∫
G

(Lg)
∗ω(X1, . . . , Xk)(x)dg.

We have thus built a map ρ : ADR(M)→ ADR(M) and we now analyze its proper-

ties:

Fact 1: ρ(ω) ∈ ΩL(M).

Proof. Let g′ ∈ G be fixed. The map (DLg′) : Tx(M) → Tg′x(M) induces a map

∧(DLg′)
∗ : ∧Tg′x(M)∗ → ∧Tx(M)∗. Therefore, one has (in convenient shorthand):

(DLg′)
∗ρ(ω)(x) = ∧(DLg′)

∗
∫
G

(Lg)∗ω(x)dg

=

∫
G

(Lg′·g)
∗ω(x)dg

=

∫
G

(Lg)
∗ω(x)dg

= ρ(ω)(x).
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Fact 2: If ω ∈ ΩL(M) then ρ(ω) = ω.

Proof. If (Lg)
∗ω(x) = ω(x), then ρ(ω)(x) =

∫
G

(Lg)
∗ω(x)dg = ω(x)

∫
G
dg = ω(x).

Fact 3: ρ ◦ d = d ◦ ρ.

Proof. This is an easy verification from the definitions of d and ρ.

From Facts 1− 3, we deduce that H(ρ) ◦H(ι) = id and H(ι) is injective.

Fact 4: The integration can be reduced to a nighborhood of e.

Proof. Let U be a neighborhood of e. We choose a smooth function ϕ : G → R,

with compact support included in U , such that
∫
G
ϕ dg = 1. Now we denote the

bi-invariant volume form dg by ωvol. By classical differential calculus on manifolds,

the replacement of ωvol by ϕωvol leaves the integral unchanged. The fact that ϕωvol

has its support in U allows the reduction of the domain of integration to U .

Our construction process can now be seen in the following light.

Let L : G × M → M be the action of G on M . Denote by π∗G(ϕωvol) the

pullback of ϕωvol to ADR(U × M) by the projection πG : G × M → G and by

L∗ : ADR(M)→ ADR(U ×M) the map induced by L. If α is a form on U ×M , we

denote by I(α) the integration of α∧π∗G(ϕωvol) over the U -variables, considering the

variables in M as parameters. We then have a map I : ADR(U ×M) → ADR(M)

which is compatible with the coboundary d and which induces H(I) in cohomology.

To any ω ∈ ADR(M) we associate the form L∗(ω) ∧ π∗G(ϕωvol) on U ×M and check

easily (see [9], page 150):

ρ(ω) = I(L∗(ω)).

In other words, the following diagram is commutative:

ADR(M) L∗ //

ρ
))SSSSSSSSSSSSSSSS

ADR(U ×M) I // ADR(M)

ΩL(M)

ι

55kkkkkkkkkkkkkkkk

For U , we now choose a contractible neighborhood of e. The identity map on U×M
is therefore homotopic to the composition

U ×M π−→M
j−→ U ×M,

where π is the projection and j sends x to (e, x).

By using I ◦ π∗ = id and the compatibility of de Rham cohomology with homotopic
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maps, we get:

H(I) ◦H(L∗) = H(I) ◦ idH(M×U) ◦H(L∗)

= H(I) ◦H(π∗) ◦H(j∗) ◦H(L∗)

= H(j∗) ◦H(L∗) = H((L ◦ j)∗) = id.

This implies id = H(ι) ◦H(ρ) and H(ι) is surjective.
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3 Appendix

General references for the whole appendix are [1], [2], [5], [6], [7], [8] and [10].

The dual of a vector space V over K, denoted V ∗, is the space Hom(V,K) of linear

forms on V , i.e. of linear maps

α : V → K α(tx+ sy) = tα(x) + sα(y) ∀t, s ∈ K, x, y ∈ V.

We have dim(V ) = dim(V ∗) and (V ∗)∗ ∼= V for any infinite dimensional vector space

V . The elements of V ∗ are called covectors or 1-covectors on V .

In calculus we visualize the tangent space Tp(Rn) at p in Rn as the vector space of

all arrows emanating from p. Elements of Tp(Rn) are called tangent vectors at p in

Rn.

As for Rn, the tangent vectors at p form a vector space Tp(M), called the tangent

space of manifold M at p. We also write TpM instead of Tp(M).

The set TM =
⋃
p∈M

TpM is called the tangent bundle, the set T ∗M =
⋃
p∈M

(TpM)∗

the cotangent bundle of M .

A vector field X on an open subset U of Rn is a function that assigns to each point

p in U a tangent vector Xp in Tp(Rn).

A section of a vector bundle π : E →M is a map s : M → E such that π ◦ s = 1M .

This condition means precisely that for each p in M , s(p) ∈ Ep. Pictorially we

visualize a section as a cross-section of the bundle (Figure 3.1). We say that a

section is smooth if it is smooth as a map from M to E.

A vector field X on a manifold M is a function that assigns a tangent vector

Xp ∈ TpM to each point p ∈ M . In terms of the tangent bundle, a vector field

on M is simply a section of the tangent bundle π : TM → M and the vector field

is smooth if it is smooth as a map from M to TM .

The cotangent space to Rn at p, denoted by T ∗p (Rn) or T ∗pRn, is defined to be the

dual space (TpRn)∗ of the tangent space Tp(Rn).
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π

s(p)

p

s

Fig. 3.1: A section of a vector bundle.

Thus, an element of the cotangent space T ∗p (Rn) is a covector or a linear functional

on the tangent space Tp(Rn). In parallel with the definition of a vector field, a cov-

ector field or a differential 1-form ω on an open subset U of Rn is a function that

assigns to each point p in U a covector ωp ∈ T ∗p (Rn). We call a differential 1-form a

1-form for short.

More generally, a differential form ω of degree k or a k-form on an open subset U

of Rn is a function that assigns to each point p in U an alternating k-linear function

on the tangent space Tp(Rn).

At each point p in U , ωp is a linear combination

ωp =
∑

aI(p)dx
I
p, with dxIp = dxi1p ∧ · · · ∧ dxikp , 1 ≤ i1 < · · · < ik ≤ n,

and a k-form ω on U is a linear combination

ω =
∑

aIdx
I ,

with function coefficients aI : U → R. We say that a k-form ω is C∞ on U if all

the coefficients aI are C∞ on U . Denote by Ωk(U) the vector space of C∞ k-forms

on U .

Let M be a smooth manifold. A differential 0-form on M is a smooth function

ω : M → R. If k ≥ 1 is an integer, a differential k-form on M is a rule ω that to

every point p ∈ M assigns an alternating k-linear form ωp on TpM such that the

family {ωp}p∈M depends smoothly on p in the following sense. If U ⊂ M is any

open subset and X1, . . . , Xk are smooth vector fields on U , then the function

ω(X1, . . . , Xk) : U → R, p 7→ ωp(X1(p), . . . , Xk(p)),

is also smooth.
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