Lie algebra cohomology

Relation to the de Rham cohomology of Lie groups

Presented by: Gazmend Mavraj (Master Mathematics and Diploma Physics)

Supervisor: J-Prof. Dr. Christoph Wockel (Section Algebra and Number Theory)

> Hamburg July 2010

Abstract

We define the complex of invariant forms on a left G-manifold M, and prove that the cohomology of this complex is isomorphic to the cohomology of M if the manifold M is compact and the Lie group Gcompact and connected.

1 Foundational Material

In this section, we give a crash course on manifolds, Lie groups, their associated Lie algebras and de Rham cohomology. General references are [1], [2], [3], [4], [5], [6] and [7] for instance.

Definition 1.1 (Topological manifold). Let \mathcal{M} be a topological space. We say \mathcal{M} is a *topological manifold of dimension* n if it has the following properties:

- \mathcal{M} is a Hausdorff space: For every pair of points $p, q \in \mathcal{M}$, there are disjoint open subsets $U, V \subset \mathcal{M}$ such that $p \in U$ and $q \in V$.
- \mathcal{M} is second countable: There exists a countable basis for the topology of \mathcal{M} .
- *M* is locally Euclidean of dimension n: Every point p in *M* has a neighborhood
 U such that there is a homeomorphism¹ φ from U onto an open subset of Rⁿ.

Let U be an open subset of \mathcal{M} . We call the pair $(U, \phi : U \to \mathbb{R}^n)$ a chart of \mathcal{M}, U a coordinate neighborhood of \mathcal{M} , and ϕ a coordinate map on U.

Definition 1.2. Two charts $(U, \phi : U \to \mathbb{R}^n)$, $(V, \psi : V \to \mathbb{R}^n)$ of a topological manifold are C^{∞} -compatible if the two maps

$$\phi \circ \psi^{-1} : \psi \left(U \cap V \right) \to \phi \left(U \cap V \right), \quad \psi \circ \phi^{-1} : \phi \left(U \cap V \right) \to \psi \left(U \cap V \right)$$

are C^{∞} . These two maps are called the *transition functions* between the charts.

Definition 1.3. A C^{∞} atlas or simply an atlas on a locally Euclidean space \mathcal{M} is a collection $\{(U_i, \phi_i)\}_{i \in I}$ of compatible charts that cover \mathcal{M} such that $\mathcal{M} = \bigcup_{i \in I} U_i$.

An altas $\mathcal{A} = \{(U_i, \phi_i)\}_{i \in I}$ on a locally Euclidean space is said to be *maximal* if it is not contained in a larger atlas.

 $^{^1\}mathrm{A}$ homeomorphism is a bijective continuous map with continuous inverse.

Definition 1.4 (Smooth manifold). A smooth or C^{∞} manifold is a topological manifold \mathcal{M} together with a maximal atlas.

The maximal altas is also called a *differentiable structure* on \mathcal{M} . A monifold is said to have a dimension n if all of its connected components have dimension n. A manifold of dimension n is also called *n*-manifold.

For further information about tangent space, tangent bundle, 1-forms,..., see Appendix!

Definition 1.5. A map $f : M \to N$ between two smooth manifolds is said to be smooth (or differentiable or C^{∞}) if, for any chart ϕ on M and ψ on N, the function $\psi \circ f \circ \phi^{-1}$ is smooth as soon as it is defined.

The map f is a diffeomorphism if it is a bijection and both f and f^{-1} are smooth.

Definition 1.6 (Lie group). A *Lie group* is a C^{∞} manifold *G* which is also a group such that the two group operations, multiplication

$$\mu: G \times G \to G, \qquad \mu(a, b) = ab$$

and inverse

$$\iota: G \to G, \qquad \iota(a) = a^{-1}$$

are C^{∞} .

A homomorphism of Lie groups is a homomorphism of groups which is also a smooth map. An *isomorphism of Lie groups* is a homomorphism f which admits an inverse (also C^{∞}) f^{-1} as maps and such that f^{-1} is also a homomorphism of Lie groups.

We introduce here the notion of Lie algebras and the example of main interest for us, the tangent space $T_e(G)$ of a Lie group G at the identity e.

Definition 1.7 (Lie algebra). A Lie algebra over \mathbb{R} is a vector space \mathfrak{g} together with a bilinear homomorphism, called the Lie bracket,

$$[-,-]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$$

such that, for any $x \in \mathfrak{g}, y \in \mathfrak{g}, z \in \mathfrak{g}$, one has:

$$[x, y] = -[y, x] \qquad (skew \ symmetry)$$
$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \qquad (Jacobi \ identity).$$

A homomorphism of Lie algebras is a linear map $\phi : \mathfrak{g} \to \mathfrak{g}'$ with $\phi([x,y]) = [\phi(x), \phi(y)]$ for all $x, y \in \mathfrak{g}$.

Definition 1.8. A fixed element $g \in G$ gives the *left translation* $L_g : G \to G$ with $L_g(h) = g \cdot h$ for all $h \in G$. Similarly, we define *right translations* R_g by $R_g(h) = h \cdot g$.

Recall first that, if $p: T(G) \to G$ is the tangent bundle of the manifold G, a vector field X on G is a smooth section of p.

Definition 1.9. Denote by $DL_g : T(G) \to T(G)$ the map induced by the left translation L_g . A vector field X on G is called left invariant if $DL_g(X) = X$, for any $g \in G$. This means $DL_g(X_h) = X_{gh}$, for any $h \in G$.

In other words, a vector field X is left-invariant if and only if it is L_g -related to itselft for all $g \in G$.

If G is a Lie group, we denote by \mathfrak{g} the vector space of left invariant vector fields on G. If X and Y are vector fields, then their *bracket* is defined to be the vector field [X, Y]f = X(Yf) - Y(Xf) for all functions f. The bracket is anti-commutative and satisfies a Jacobi identity. If X and Y are left invariant vector fields, their bracket [X, Y] is also left invariant. Therefore, the vector space \mathfrak{g} has the structure of a Lie algebra, called *the Lie algebra associated to the Lie group G*.

X is a vector field on a Lie group G, we see directly from the definition that X is left invariant if and only if

$$X_g = (DL_g)(X_e).$$

The vector space \mathfrak{g} is isomorphic to the tangent space, $T_e(G)$, at the identity e of G.

Proposition 1.10. There is a morphism of Lie groups $\operatorname{Ad} : G \to Gl(\mathfrak{g})$ given by $\operatorname{Ad}(g)(X) = ((DR_g)^{-1} \circ (DL_g))(X)$, where $Gl(\mathfrak{g})$ is the group of linear isomorphisms of the Lie algebra \mathfrak{g} .

Definition 1.11. The map $Ad: G \to Gl(\mathfrak{g})$ is called the *adjoint representation* of the Lie group G.

Let G be a Lie group and M a differentiable manifold (always of class C^{∞}). A differentiable action of G on M is an action $G \times M \to M$ which is a C^{∞} -differentiable map. A manifold M together with a differentiable action of G on it is called a differentiable G-manifold.

Definition 1.12. A Lie group G acts on a manifold M, on the left, if there is a smooth map $G \times M \to M$, $(g, x) \mapsto gx$, such that $(g \cdot g')x = g(g' \cdot x)$ and ex = x for any $x \in M$, $g \in G$, $g' \in G$. Such data endows M with the appellation of a left *G*-manifold. A left action is called

- effective if gx = x for all $x \in M$ implies g = e;
- free if gx = x for any $x \in M$ implies g = e.

Example 1.13. Let G be a Lie group. The Lie group multiplication gives to G the structure of a

- left G-manifold, with $L: G \times G \to G$, $L(g,g') = L_g(g') = g \cdot g'$,
- right G-manifold, with $R: G \times G \to G$, $R(g',g) = R_g(g') = g' \cdot g$.

We denote the *p*-forms on M by $A_{DR}^p(M)$ and the entire graded algebra of forms by $A_{DR}(M)$.

Let G be a Lie group. If M is a left G-manifold, we denote by

$$g^*: A_{DR}(M) \to A_{DR}(M)$$

the "pullback" map induced on differential forms by the action of $g \in G$. More specifically, for vector fields X_1, \ldots, X_k and a k-form ω , we define at $m \in M$,

$$g^*\omega(X_1,\ldots,X_k)(m) = \omega_{g \cdot m}(Dg_m X_1(m),\ldots,Dg_m X_k(m)).$$

We sometimes write $\omega_x(X_1,\ldots,X_k) = \omega(X_1,\ldots,X_k)(x), L_g^* = g^*\omega$ and $Dg = DL_g$.

Definition 1.14. An invariant form on a left G-manifold M is a differential form $\omega \in A_{DR}(M)$ such that $g^*\omega = \omega$ for any $g \in G$. We denote the set of invariant forms by $\Omega_L(M)$.

In the case of a Lie group G, we note that the left invariant forms (right invariant forms) correspond to the left (right) translation action. We denote these sets by

 $\Omega_L(G)$ and $\Omega_R(G)$ respectively. A form on G that is left and right invariant is called bi-invariant (or invariant if there is no confusion). The corresponding set is denoted by $\Omega_I(G)$.

The aim of this section is to prove that these different sets of invariant forms allow the determination of the cohomology of G-manifolds and Lie groups.

There are several important operations that are performed on forms to create new ones illuminating certain geometric properties. Let M^n be a manifold with a vector field X and a (p + 1)-form α defined on it, then we define a p-form $i(X)\alpha$ by

$$(i(X)\alpha)(Y_0,\ldots,Y_{p-1}) = \alpha(X,Y_0,\ldots,Y_{p-1})$$

where Y_0, \ldots, Y_{p-1} are vector fields. The operation on the (p+1)-form α that produces the *p*-form $i(X)\alpha$ is called *interior multiplication* by X.

We defined the differential of a function f to be the 1-form df satisfying df(X) = Xffor a vector field X. The operator d is called the *exterior derivative* and is defined on all forms. For a (p-1)-form α and vector fields Y_0, \ldots, Y_{p-1} , the *p*-form $d\alpha$ is defined by

$$d\alpha(Y_0, \dots, Y_{p-1}) = \sum_{j=0}^{p-1} (-1)^j Y_j(\alpha((Y_0, \dots, \hat{Y}_j, \dots, Y_{p-1}))) + \sum_{i< j} (-1)^{i+j} \alpha([Y_i, Y_j], Y_0, \dots, \hat{Y}_i, \dots, \hat{Y}_j, \dots, Y_{p-1}),$$

where "hats" above Y'_is indicate that they are missing. We denote this operation on forms by $d: A^p_{DR}(M) \to A^{p+1}_{DR}(M)$. For instance, from the formula, we recover the definition df(Y) = Yf and, for a 1-form α , we find

$$d\alpha(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y]).$$

A collection of vector spaces $\{V^k\}_{k=0}^{\infty}$ with linear maps $d_k : V^k \to V^{k+1}$ such that $d_{k+1} \circ d_k = 0$ is called a *differential complex* or a *cochain complex*. For any open subset U of \mathbb{R}^n , the exterior derivative d makes the vector space $\Omega^*(U)$ of C^{∞} forms on U into a cochain complex, called the *de Rham complex of U*:

$$\Omega^0(U) \stackrel{d}{\longrightarrow} \Omega^1(U) \stackrel{d}{\longrightarrow} \Omega^2(U) \stackrel{d}{\longrightarrow} \dots$$

The closed forms $(d\omega = 0)$ are precisely the elements of the kernel of d and the exact forms are the elements of the image of d.

The exterior derivative $d: A^p_{DR}(M) \to A^{p+1}_{DR}(M)$ makes $A^*_{DR}(M)$ a cochain complex. Its cohomology is called the *de Rham cohomology* $H^*_{DR}(M)$,

$$H_{DR}^{p}(M) = \frac{\operatorname{Ker}\left(d: A_{DR}^{p}(M) \to A_{DR}^{p+1}(M)\right)}{\operatorname{Im}\left(d: A_{DR}^{p-1}(M) \to A_{DR}^{p}(M)\right)} \quad (p\text{-th de Rham cohomology})$$

The de Rham cohomology is the quotient of the closed forms modulo the exact forms. For instance, if $f: M \to \mathbb{R}$ is a smooth function on a connected manifold M, then df = 0 only if f is a constant function. Since there are no exact 0-forms, we have $H_{DR}^0(M) = \mathbb{R}$. If M is not connected, then a function could take different constant values on different components. If there are k components, $H_{DR}^0(M) = \mathbb{R}^k$.

2 Lie algebra and de Rham cohomology

We will typically write $H^*(M; \mathbb{R})$ when we refer to cohomology, even though it may be coming from forms.

The de Rham cohomology of the compact Lie group G is isomorphic to the Lie algebra cohomology of the Lie algebra \mathfrak{g} (Theorem 2.3). Actually, the Lie algebra cohomology can be defined as the cohomology of the complex of left-invariant differential forms on the corresponding group G. Note that cohomology classes of the compact group G can be represented by left-invariant forms by averaging over the group any closed form from a given cohomology class.

A reference for this section is [2] (section 1.6) and [8] (chapter 10 and 12):

Proposition 2.1. Let G be a Lie group and M be a left (or a right) G-manifold. Then the set of invariant forms of M is stable under d. Then the sets of left invariant forms on G are invariant under i(X), for X a left invariant vector field.

Proof. Suppose ω is a left invariant form on G and X is a left invariant vector field on G. We have, using the left invariance of X and ω ,

$$L_g^*i(X)\omega(Y_1,\ldots,Y_k)(x) = L_g^*\omega(X,Y_1,\ldots,Y_k)(x)$$

= $\omega_{gx}(DL_gX(x),DL_gY_1(x),\ldots,DL_gY_k(x))$
= $i(DL_gX)\omega(DL_g(Y_1),\ldots,DL_g(Y_k))(gx)$
= $i(X)\omega(Y_1,\ldots,Y_k)(gx).$

Hence, $i(X)\omega$ is left invariant.

The previous result justifies the following definition.

Definition 2.2. Let G be a Lie group and M be a left G-manifold. The invariant cohomology of M is the homology of the cochain complex $(\Omega_L(M), d)$. We denote it by $H_L^*(M)$.

The main result is the following theorem.

Theorem 2.3. Let G be a compact connected Lie group and M be a compact left G-manifold. Then

$$H^*_L(M) \cong H^*(M; \mathbb{R}).$$

We will prove that the injection map $\Omega_L(M) \to A_{DR}(M)$ induces an isomorphism in cohomology. For that, we need some results concerning integration on a compact connected Lie group.

Proposition 2.4. On a compact connected Lie group, there exists a bi-invariant volume form.

Proof. Recall from the Foundational Material that the tangent bundle of G trivializes as $T(G) \cong G \times \mathfrak{g}$. If \mathfrak{g}^* is the dual vector space of \mathfrak{g} , we therefore have a trivialization of the cotangent bundle $T^*(G) \cong G \times \mathfrak{g}^*$ and of the differential forms bundle. Exactly as for vector fields, we observe that left (right) invariant forms are totally determined by their value at the unit e and that we have isomorphisms of vector spaces

$$\Omega_L(G) \cong \Omega_R(G) \cong \wedge \mathfrak{g}^*,$$

where $\wedge \mathfrak{g}^*$ is the exterior algebra on the vector space \mathfrak{g}^* . To make this space precise, recall that the elements of \mathfrak{g}^* are left invariant 1-forms dual to left invariant vector fields. If we choose a basis $\{\omega_1, \ldots, \omega_n\}$ dual to a basis of left invariant vector fields, an element of $\wedge \mathfrak{g}^*$ may be written

$$\alpha = \sum a_{i_1 \cdots i_p} \,\omega_{i_1} \cdots \omega_{i_p}$$

where the $a_{i_1 \cdots i_p}$'s are constant. Choose such an α of degree n equal to the dimension of G. We associate to α a unique left invariant form α_L such that $(\alpha_L)_e = \alpha$ and a unique right invariant form α_R such that $(\alpha_R)_e = \alpha$. More precisely, we set:

$$(\alpha_L)_e(X_1, \dots, X_n) = \alpha((DL_g)^{-1}X_1, \dots, (DL_g)^{-1}X_n),$$

$$(\alpha_R)_e(X_1, \dots, X_n) = \alpha((DR_g)^{-1}X_1, \dots, (DR_g)^{-1}X_n).$$

Recall, from Definition 1.11, the homomorphism of Lie groups $Ad: G \to Gl(\mathfrak{g})$. As

direct consequences of the definitions, we have

$$(L_g^* \alpha_R)_h(X_1, \dots, X_n) = (\alpha_R)_{gh}(DL_g(X_1), \dots, DL_g(X_n))$$

= $\alpha((DR_{gh})^{-1} \circ (DL_g)(X_1), \dots)$
= $\alpha((DR_h)^{-1} \circ (DR_g)^{-1} \circ DL_g(X_1), \dots)$
= $(\alpha_R)_h((DR_g)^{-1} \circ DL_g(X_1), \dots)$
= $(\det(\operatorname{Ad}(g))(\alpha_R)_h(X_1, \dots, X_n).$

The composition det $\circ Ad$: $G \to \mathbb{R}$ has for image a compact subgroup of \mathbb{R} ; that is, {1} or {-1,1}. Since the group G is connected, we get det(Ad(g)) = 1, for any $g \in G$, and α_R is a bi-invariant volume form.

Proof of Theorem 2.3

Denote by $\iota : \Omega_L(M) \hookrightarrow A_{DR}(M)$ the canonical injection of the set of left invariant forms. We choose the bi-invariant volume form on G such that the total volume of G is 1, $\int_G dg = 1$ (dg = measure on G). This volume form allows the definition of $\int_G dg \in \mathbb{R}^k$ for any smooth function $f : G \to \mathbb{R}^k$.

Let $\omega \in A_{DR}^k(M)$ and $x \in M$ be fixed. As a function f, we take $G \to \wedge T_x(M)^*$, $g \mapsto g^*\omega(x)$. We get a differential form $\rho(\omega)$ on M defined by:

$$\rho(\omega)(X_1,\ldots,X_k)(x) = \int_G g^* \omega(X_1,\ldots,X_k)(x) dg$$
$$= \int_G (L_g)^* \omega(X_1,\ldots,X_k)(x) dg$$

We have thus built a map $\rho : A_{DR}(M) \to A_{DR}(M)$ and we now analyze its properties:

Fact 1: $\rho(\omega) \in \Omega_L(M)$.

Proof. Let $g' \in G$ be fixed. The map $(DL_{g'}) : T_x(M) \to T_{g'x}(M)$ induces a map $\wedge (DL_{g'})^* : \wedge T_{g'x}(M)^* \to \wedge T_x(M)^*$. Therefore, one has (in convenient shorthand):

$$(DL_{g'})^* \rho(\omega)(x) = \wedge (DL_{g'})^* \int_G (Lg)^* \omega(x) dg$$

=
$$\int_G (L_{g' \cdot g})^* \omega(x) dg$$

=
$$\int_G (L_g)^* \omega(x) dg$$

=
$$\rho(\omega)(x).$$

ID:	-	-	-	

Fact 2: If $\omega \in \Omega_L(M)$ then $\rho(\omega) = \omega$.

Proof. If $(L_g)^*\omega(x) = \omega(x)$, then $\rho(\omega)(x) = \int_G (L_g)^*\omega(x)dg = \omega(x)\int_G dg = \omega(x)$.

Fact 3: $\rho \circ d = d \circ \rho$.

Proof. This is an easy verification from the definitions of d and ρ .

From Facts 1-3, we deduce that $H(\rho) \circ H(\iota) = \text{id and } H(\iota)$ is injective.

Fact 4: The integration can be reduced to a nighborhood of *e*.

Proof. Let U be a neighborhood of e. We choose a smooth function $\varphi : G \to \mathbb{R}$, with compact support included in U, such that $\int_G \varphi \, dg = 1$. Now we denote the bi-invariant volume form dg by ω_{vol} . By classical differential calculus on manifolds, the replacement of ω_{vol} by $\varphi \omega_{vol}$ leaves the integral unchanged. The fact that $\varphi \omega_{vol}$ has its support in U allows the reduction of the domain of integration to U.

Our construction process can now be seen in the following light.

Let $L : G \times M \to M$ be the action of G on M. Denote by $\pi^*_G(\varphi \omega_{vol})$ the pullback of $\varphi \omega_{vol}$ to $A_{DR}(U \times M)$ by the projection $\pi_G : G \times M \to G$ and by $L^* : A_{DR}(M) \to A_{DR}(U \times M)$ the map induced by L. If α is a form on $U \times M$, we denote by $I(\alpha)$ the integration of $\alpha \wedge \pi^*_G(\varphi \omega_{vol})$ over the U-variables, considering the variables in M as parameters. We then have a map $I : A_{DR}(U \times M) \to A_{DR}(M)$ which is compatible with the coboundary d and which induces H(I) in cohomology.

To any $\omega \in A_{DR}(M)$ we associate the form $L^*(\omega) \wedge \pi^*_G(\varphi \omega_{vol})$ on $U \times M$ and check easily (see [9], page 150):

$$\rho(\omega) = I(L^*(\omega)).$$

In other words, the following diagram is commutative:

For U, we now choose a contractible neighborhood of e. The identity map on $U \times M$ is therefore homotopic to the composition

$$U \times M \xrightarrow{\pi} M \xrightarrow{\jmath} U \times M,$$

where π is the projection and j sends x to (e, x).

By using $I \circ \pi^* = id$ and the compatibility of de Rham cohomology with homotopic

maps, we get:

$$H(I) \circ H(L^*) = H(I) \circ \operatorname{id}_{H(M \times U)} \circ H(L^*)$$
$$= H(I) \circ H(\pi^*) \circ H(j^*) \circ H(L^*)$$
$$= H(j^*) \circ H(L^*) = H((L \circ j)^*) = \operatorname{id}_{H(L^*)}$$

This implies $\operatorname{id} = H(\iota) \circ H(\rho)$ and $H(\iota)$ is surjective.

3 Appendix

General references for the whole appendix are [1], [2], [5], [6], [7], [8] and [10].

The dual of a vector space V over \mathbb{K} , denoted V^* , is the space $\operatorname{Hom}(V, \mathbb{K})$ of linear forms on V, i.e. of linear maps

$$\alpha: V \to \mathbb{K} \qquad \alpha(tx + sy) = t\alpha(x) + s\alpha(y) \quad \forall t, s \in \mathbb{K}, \ x, y \in V.$$

We have $\dim(V) = \dim(V^*)$ and $(V^*)^* \cong V$ for any infinite dimensional vector space V. The elements of V^* are called *covectors* or 1-covectors on V.

In calculus we visualize the tangent space $T_p(\mathbb{R}^n)$ at p in \mathbb{R}^n as the vector space of all arrows emanating from p. Elements of $T_p(\mathbb{R}^n)$ are called tangent vectors at p in \mathbb{R}^n .

As for \mathbb{R}^n , the tangent vectors at p form a vector space $T_p(M)$, called the tangent space of manifold M at p. We also write T_pM instead of $T_p(M)$.

The set $TM = \bigcup_{p \in M} T_p M$ is called the *tangent bundle*, the set $T^*M = \bigcup_{p \in M} (T_p M)^*$ the *cotangent bundle* of M.

A vector field X on an open subset U of \mathbb{R}^n is a function that assigns to each point p in U a tangent vector X_p in $T_p(\mathbb{R}^n)$.

A section of a vector bundle $\pi : E \to M$ is a map $s : M \to E$ such that $\pi \circ s = 1_M$. This condition means precisely that for each p in M, $s(p) \in E_p$. Pictorially we visualize a section as a cross-section of the bundle (Figure 3.1). We say that a section is smooth if it is smooth as a map from M to E.

A vector field X on a manifold M is a function that assigns a tangent vector $X_p \in T_p M$ to each point $p \in M$. In terms of the tangent bundle, a vector field on M is simply a section of the tangent bundle $\pi : TM \to M$ and the vector field is *smooth* if it is smooth as a map from M to TM.

The cotangent space to \mathbb{R}^n at p, denoted by $T_p^*(\mathbb{R}^n)$ or $T_p^*\mathbb{R}^n$, is defined to be the dual space $(T_p\mathbb{R}^n)^*$ of the tangent space $T_p(\mathbb{R}^n)$.

Fig. 3.1: A section of a vector bundle.

Thus, an element of the cotangent space $T_p^*(\mathbb{R}^n)$ is a covector or a linear functional on the tangent space $T_p(\mathbb{R}^n)$. In parallel with the definition of a vector field, a *cov*ector field or a differential 1-form ω on an open subset U of \mathbb{R}^n is a function that assigns to each point p in U a covector $\omega_p \in T_p^*(\mathbb{R}^n)$. We call a differential 1-form a 1-form for short.

More generally, a differential form ω of degree k or a k-form on an open subset U of \mathbb{R}^n is a function that assigns to each point p in U an alternating k-linear function on the tangent space $T_p(\mathbb{R}^n)$.

At each point p in U, ω_p is a linear combination

$$\omega_p = \sum a_I(p) dx_p^I, \text{ with } dx_p^I = dx_p^{i_1} \wedge \dots \wedge dx_p^{i_k}, \quad 1 \le i_1 < \dots < i_k \le n,$$

and a k-form ω on U is a linear combination

$$\omega = \sum a_I dx^I,$$

with function coefficients $a_I : U \to \mathbb{R}$. We say that a k-form ω is C^{∞} on U if all the coefficients a_I are C^{∞} on U. Denote by $\Omega^k(U)$ the vector space of C^{∞} k-forms on U.

Let M be a smooth manifold. A differential 0-form on M is a smooth function $\omega: M \to \mathbb{R}$. If $k \ge 1$ is an integer, a differential k-form on M is a rule ω that to every point $p \in M$ assigns an alternating k-linear form ω_p on T_pM such that the family $\{\omega_p\}_{p\in M}$ depends smoothly on p in the following sense. If $U \subset M$ is any open subset and X_1, \ldots, X_k are smooth vector fields on U, then the function

$$\omega(X_1,\ldots,X_k): U \to \mathbb{R}, \quad p \mapsto \omega_p(X_1(p),\ldots,X_k(p)),$$

is also smooth.

Bibliography

- [1] L. W. Tu, An Introduction to Manifolds. Springer, 2007.
- [2] Y. Félix, J. Oprea, and D. Tanré, Algebraic Models in Geometry. Oxford University Press, USA, 2008.
- [3] J. Jost, *Riemannian Geometry and Geometric Analysis*. Springer, 5th ed., 2008.
- [4] J. Jost, *Geometry and Physics*. Springer, 2009.
- [5] J. Lee, Introduction to Smooth Manifolds. Springer, 2003.
- [6] C. Schweigert, "Mathematical Structures in Physics," 2010. http://www.math.uni-hamburg.de/home/schweigert/ws09/pskript.pdf.
- [7] C. Meusburger, "Concepts and Methods of Mathematical Physics," 2009. http://www.math.uni-hamburg.de/home/meusburger/skript.pdf.
- [8] W. Lück, Algebraische Topologie: Homologie und Mannigfaltigkeiten. Vieweg, 2005.
- [9] W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature, and Cohomology: Lie Groups, Principal Bundles and Characteristic Classes. Academic Press, 1973.
- [10] M. Boyarchenko, "7. Differential forms on smooth manifolds," 2010. http://www.math.lsa.umich.edu/~mityab/teaching/m396w10/ differential_forms.pdf.