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1 Lie algebras

1.1 Definition and examples

Definition 1.1. A Lie algebra is a vector space g over a field F with an operation [-,-] : g x g — g which we
call a Lie bracket, such that the following axioms are satisfied:

e It is bilinear.
o It is skew symmetric: [x,z] = 0 which implies [z,y] = —[y, x| for all z,y € g.
e It satisfies the Jacobi Identitiy: [z, [y, z]] + [y, [z, z]] + [z, [z, y]] = 0.

Definition 1.2. A Lie algebra Homomorphism is a linear map H € Hom(g, h)between to Lie algebras
g and b such that it is compatible with the Lie bracket:

H:g—=bh and H(lz,y]) = [H(z), H(y)]
Example 1.1. Any vector space can be made into a Lie algebra with the trivial bracket:

[va} =0
for all v,w € V.

Example 1.2. Let g be a Lie algebra over a field F. We take any nonzero element z € g and construct the
space spanned by x, we denote it by Fx. This is an abelian one dimentional Lie algebra: Let a,b € Fx. We
compute the Lie bracket.

[azx, fz] = af[z,z] = 0.

where «, 5 € F'. Note: This shows in particular that all one dimentional Lie algebras have a trivial bracket.

Example 1.3. Any associative algebra 2f can be made into a Lie algebra by taking commutator as the Lie
bracket:

[z, y] = 2y — yx
for all z,y € 2A.

Example 1.4. Let V be any vector space. The space of End(V') forms an associative algebra under function
composition. It is also a Lie algebra with the commutator as the Lie bracket. Whenever we think of it as a
Lie algebra we denote it by gl(V'). This is the General Linear Lie algebra.

Example 1.5. Let V be a finite dimentional vector space over a field F. Then we identify the Lie algebra
gl(V) with set of n x n matrices gl,,(F), where n is the dimension of V. The set of all matrices with the trace
zero s[, F is a subalgebra of gl,,(F).

Example 1.6. The set of anti symmetric matrices with the trace zero denoted by so,, forms a Lie algebra
under the commutator as the Lie bracket .

Example 1.7. Heisenberg algebra: We look at the vector space §) generated over F' by the matrices:

)
010 0 01 0 00
0 00]J],/0O0O0],] 001
0 0O 0 0O 0 0O
This is a linear subspace of gl;(F') and becomes a Lie algebra under the commutator bracket. The fact that

9 is closed under the commutator bracket follows from the well-known commutator identity on the standard

basis of n X n matrices:
(Eij, Eri] = 0 Ea — 01y

where §;; is the Kronecker delta.



1.2 Some Basic Notions

Definition 1.3. Let g be a Lie algebra over F. Then a linear subspace U C g is a Lie subalgebra if U is
closed under the Lie bracket of g:
[z,y] €U

for all z,y € U.

Definition 1.4. Let I be a linear subspace of a Lie algebra g. Then I is an ideal of g if
[z,y] € T

whenever x € [ and y € g.

Definition 1.5. A Lie algebra g is called abelian if the Lie bracket vanishes for all elements in g:
[z,4] =0

for all x,y € g.

Definition 1.6. Let U be a non empty subset of g, we call (U) the Lie subalgebra (ideal) generated
by U, where:
U) = m{l Cg:1I is Lie subalgebra (ideal) containing U}

2 Free Lie Algebras

Let X be a set. We define Wx = @, x F,where F is an arbitrary field. Then we denote the tensor algebra
of Wx by TWx which is as well a Lie algebra. The Free Lie algebra on X is the Lie subalgebra in TWx
generated by X. Where X can be canonically embedded into Wx via the map:

f:X—)WX

T — €y

3 Representations

A representation of a Lie algebra g is a Lie algebra homomorphism from g to the Lie algebra End(V):
p:g—gl(V).

Definition 3.1. For a Lie algebra g and any = € g we define a map

ady :g— 9, y—[z,9]
which is the adjoint action.
Every Lie algebra has a representation on itself, the adjoint representation defined via the map:

ad: g — gl(g)

T — ady,

Definition 3.2. For two representations of a Lie algebra g, ¢ : g — gl(V) and ¢': g — gl(V’') a morphism
from ¢ to ¢’ is a linear map @ : V — V'’ such that it is compatible with the action of g on V and V':

¢ (2)) = V(z)
For all z € g. This constitutes the category g — Mod.



4 The Universal Enveloping Algebra

For any associative algebra we construct a Lie algebra by taking the commutator as the Lie bracket. Now let
us think in the reverse direction. We want to see if we can construct an associative algebra from a given Lie
algebra and its consequences. With this construction, instead of non-associative scructures;Lie algebras, we
can work with nicer and better developed structures: Unital associative algebras that captures the important
properties of our Lie algebra.

4.1 Constructing U(g)

Let us construct the tensor algebra of the Lie algebra g:

[ee] oo
Tg=BTr¢g=Pg®..29
;‘2 @%/—/

k=0 k times

We look at the two sided ideal I generated by : g @ h — h ® g — [g, h] For g, h € T'g. Its elements look like:

k
Y@@ 0e?)© (g oh —hi©g—lgh)e e e..0yP)
=0

for g;, h; € T'g.
Now the universal enveloping algebra is constructed by taking the quotient of our tensor algebra: U(g) =
T(g)/I.

Definition 4.1. For two ring homomorphisms S : U(g) — End(W) and S’ : U(g) — End(W’) a morphism
from S to S” is a map ¢t : W — W' such that it is compatible with the action of U(g) on W and W":

S'(z)t = tS(z).
This constitutes the category U(g) — Mod.

Theorem 4.1. To each representation ¢ : g — gl(V') we can associate some Sy : U(g) — End(V') and to
each ring homomorphism S : U(g) — End(V) we can associate some ¢g : g — gl(V'), such that a morphism
Y from ¢ to ¢’ is also a morphism from Sy to Sés and a morphism t from S to S’ is also a morphism from
¢s to Ppg,and ¢s, = ¢ and Sy = S.

Remark. This is equivalent as to say g-Mod is equivalent to U(g)-Mod.

Proof. Suppose we are given a representation ¢, we want to construct Sy such that it will satisfy the properties
of a ring homomorphism, that is:

We define Sy as follows:
Se(1) =1

So that (1) holds. We consider an element of 21 ® ... ® x,, € U(g), we define S on 21 ® ... ® xy,:
Sp(1 ® ... ® an) = @(a1) © P(22)... 0 P(an).

Now we define S on the rest of U(g) by linear extension:

Sp(1 @ oty + Y1 Q@ oY) = Sp(21 ® o) + Sp(11 @ . Yn)



It is clear that (2) is also satisfied. We show that (3) is satisfied as well:

Sp(21 @ .oty @Y1 @ oY) = ¢(x1) 0 ...p(xy) © P(Y1)... © P(Ym) = Sy (@1 @ ...z0) 0 S (Y1 @ ...yn)

Now suppose we have S and we want to define ¢g:

we want to show that its a Lie algebra representation:

¢s([z,y]) = S(r@y—yor) = S(@ey)-Sy®r) = 5(x)oS(y) - S(y) o S(x) = ds(x)ods(y) — ¢s(y) o ds(x)

Now we will show if ¢ is a morphism from ¢ to ¢’ then it is also a morphism from Sy to Sg. By definition
S4 = ¢, Thus:
Sur (@) = ¥ o S(x).

Taking another element z ® y € U(g) — Mod, we will have:
Sy (x@y)p=voS(x®y)

S'(x) 05" (y)orp = S'(x) opoS(y) = os(x)oS(y) =¢oS(z®y)

From the equation above it is obvious that this holds for any arbitrary element 21 ® ... ® x,, € U(g). That is
we have:
Se (21 Q... Q@Tp)) =1 0 Sp(21 ® ... ® )

The other way around to show that t is also a morphism from ¢ to ¢’ is obvious by using the one to one
correspondence between ¢ and s.

The only thing left is to show that ¢g,(7) = ¢(x) and Sy, (X) = S(z). For the first case we mean that
if we start from ¢ go to ¢s and then to ¢g, we get the same ¢. Let’s look at the definition of ¢g,. It is a
Lie algebra representation that we get from the ring homomorphism Sy. by defining ¢g, (z) := Sg(x), and
we defined Sy (x) = ¢(x). Therefore: ¢g,(X) = ¢(x).

To show Sy (x) = S(x), we use the same trick. By definition:

Sps (21 ® ... @ xy) = ds(z1) 0 ... 0 P(2)
We insert the definition of ¢g(z):
¢s(x1)0...0dg(xn) =S(x1)0...0S(zy)
but since S is a ring homomorphism, we have that it is multiplicative:
S(x1)0..08(xy) =511 ® ... ® ).

Therefore Sy, (z) = S(x).
O

5 Simple Lie algebras, Semisimple Lie algebras, Killing form, Car-
tan criterion for semisimplicity

Definition 5.1. A non abelian Lie algebra g is called simple if it has no non trivial ideals.

Definition 5.2. We define a Lie algebra g to be semzistmple if it is the finite direct sum of simple Lie
algebras g;:
=0 Dgs... Dgn-



Definition 5.3. Let g be a finite dimentional Lie algebra over a field F. The Killing form k is the bilinear
form k : g x g — F defined by
k(z,y) = Tr(ady o ady)

Vr,y,z € g. It has the following properties:

e It is bilinear.
e [t is symmetric.

e It is ad invariant:

k(ly, 2], z) + k(z, [y, 2]) =0

Definition 5.4. The Killing form is said to be non degenerate if: Yy =0 k(z,y) =0 implies x = 0.

Theorem 5.1. Cartan criterion: A Lie algebra g over a field F of characteristic zero is semisimple if
and only if the Killing form is non degenerate.



