Introduction To Lie algebras

Paniz Imani
Contents

1 Lie algebras 3
 1.1 Definition and examples ... 3
 1.2 Some Basic Notions ... 4

2 Free Lie Algebras 4

3 Representations 4

4 The Universal Enveloping Algebra 5
 4.1 Constructing $U(g)$.. 5

5 Simple Lie algebras, Semisimple Lie algebras, Killing form, Cartan criterion for semisimplicity 6
1 Lie algebras

1.1 Definition and examples

Definition 1.1. A Lie algebra is a vector space g over a field F with an operation $\cdot : g \times g \rightarrow g$ which we call a Lie bracket, such that the following axioms are satisfied:

- It is bilinear.
- It is skew symmetric: $[x, x] = 0$ which implies $[x, y] = -[y, x]$ for all $x, y \in g$.
- It satisfies the Jacobi Identity: $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$.

Definition 1.2. A Lie algebra Homomorphism is a linear map $H \in \text{Hom}(g, h)$ between to Lie algebras g and h such that it is compatible with the Lie bracket:

$H : g \rightarrow h$ and $H([x, y]) = [H(x), H(y)]$.

Example 1.1. Any vector space can be made into a Lie algebra with the trivial bracket: $[v, w] = 0$ for all $v, w \in V$.

Example 1.2. Let g be a Lie algebra over a field F. We take any nonzero element $x \in g$ and construct the space spanned by x, we denote it by Fx. This is an abelian one dimensional Lie algebra: Let $a, b \in Fx$. We compute the Lie bracket.

$[\alpha x, \beta x] = \alpha \beta [x, x] = 0$.

where $\alpha, \beta \in F$. Note: This shows in particular that all one dimensional Lie algebras have a trivial bracket.

Example 1.3. Any associative algebra \mathfrak{A} can be made into a Lie algebra by taking commutator as the Lie bracket:

$[x, y] = xy - yx$

for all $x, y \in \mathfrak{A}$.

Example 1.4. Let V be any vector space. The space of $\text{End}(V)$ forms an associative algebra under function composition. It is also a Lie algebra with the commutator as the Lie bracket. Whenever we think of it as a Lie algebra we denote it by $\mathfrak{gl}(V)$. This is the General Linear Lie algebra.

Example 1.5. Let V be a finite dimensional vector space over a field F. Then we identify the Lie algebra $\mathfrak{gl}(V)$ with set of $n \times n$ matrices $\mathfrak{gl}_n(F)$, where n is the dimension of V. The set of all matrices with the trace zero $\mathfrak{sl}_n(F)$ is a subalgebra of $\mathfrak{gl}_n(F)$.

Example 1.6. The set of anti symmetric matrices with the trace zero denoted by \mathfrak{so}_n forms a Lie algebra under the commutator as the Lie bracket .

Example 1.7. Heisenberg algebra: We look at the vector space \mathfrak{h} generated over F by the matrices:

$$
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}
$$

This is a linear subspace of $\mathfrak{gl}_3(F)$ and becomes a Lie algebra under the commutator bracket. The fact that \mathfrak{h} is closed under the commutator bracket follows from the well known commutator identity on the standard basis of $n \times n$ matrices:

$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{li} E_{kj}$

where δ_{ij} is the Kronecker delta.
1.2 Some Basic Notions

Definition 1.3. Let \(g \) be a Lie algebra over \(F \). Then a linear subspace \(U \subseteq g \) is a **Lie subalgebra** if \(U \) is closed under the Lie bracket of \(g \):

\[
[x, y] \in U
\]

for all \(x, y \in U \).

Definition 1.4. Let \(I \) be a linear subspace of a Lie algebra \(g \). Then \(I \) is an **ideal** of \(g \) if

\[
[x, y] \in I
\]

whenever \(x \in I \) and \(y \in g \).

Definition 1.5. A Lie algebra \(g \) is called **abelian** if the Lie bracket vanishes for all elements in \(g \):

\[
[x, y] = 0
\]

for all \(x, y \in g \).

Definition 1.6. Let \(U \) be a non empty subset of \(g \), we call \(\langle U \rangle \) the **Lie subalgebra (ideal) generated by** \(U \), where:

\[
\langle U \rangle = \bigcap \{ I \subseteq g : I \text{ is Lie subalgebra (ideal) containing } U \}
\]

2 Free Lie Algebras

Let \(X \) be a set. We define \(W_X = \bigoplus_{x \in X} F \), where \(F \) is an arbitrary field. Then we denote the tensor algebra of \(W_X \) by \(TW_X \) which is as well a Lie algebra. **The Free Lie algebra** on \(X \) is the Lie subalgebra in \(TW_X \) generated by \(X \). Where \(X \) can be canonically embedded into \(W_X \) via the map:

\[
f : X \rightarrow W_X \quad x \mapsto e_x
\]

3 Representations

A representation of a Lie algebra \(g \) is a Lie algebra homomorphism from \(g \) to the Lie algebra \(\text{End}(V) \):

\[
\rho : g \rightarrow \text{gl}(V).
\]

Definition 3.1. For a Lie algebra \(g \) and any \(x \in g \) we define a map

\[
ad_x : g \rightarrow g, \quad y \mapsto [x, y]
\]

which is the **adjoint action**.

Every Lie algebra has a representation on itself, the **adjoint representation** defined via the map:

\[
ad : g \rightarrow \text{gl}(g) \quad x \mapsto ad_x
\]

Definition 3.2. For two representations of a Lie algebra \(g \), \(\phi : g \rightarrow \text{gl}(V) \) and \(\phi' : g \rightarrow \text{gl}(V') \) a **morphism** from \(\phi \) to \(\phi' \) is a linear map \(\psi : V \rightarrow V' \) such that it is compatible with the action of \(g \) on \(V \) and \(V' \):

\[
\phi'(x)\psi = \psi\phi(x)
\]

For all \(x \in g \). This constitutes the category \(g \text{-Mod} \).
4 The Universal Enveloping Algebra

For any associative algebra we construct a Lie algebra by taking the commutator as the Lie bracket. Now let us think in the reverse direction. We want to see if we can construct an associative algebra from a given Lie algebra and its consequences. With this construction, instead of non-associative structures;Lie algebras, we can work with nicer and better developed structures: Unital associative algebras that captures the important properties of our Lie algebra.

4.1 Constructing $U(\mathfrak{g})$

Let us construct the tensor algebra of the Lie algebra \mathfrak{g}:

$$T_0 \mathfrak{g} = \bigoplus_{k=0}^{\infty} T^k \mathfrak{g} = \bigoplus_{k=0}^{\infty} \mathfrak{g} \otimes \ldots \otimes \mathfrak{g}$$

We look at the two sided ideal I generated by: $g \otimes h - h \otimes g - [g,h]$ For $g, h \in T_0 \mathfrak{g}$. Its elements look like:

$$\sum_{i=0}^{k} c_i (x_1^{(i)} \otimes \ldots \otimes x_n^{(i)}) \otimes (g_i \otimes h_i - h_i \otimes g_i - [g_i,h_i]) \otimes (y_1^{(i)} \otimes \ldots \otimes y_n^{(i)})$$

for $g_i, h_i \in T_0 \mathfrak{g}$.

Now the universal enveloping algebra is constructed by taking the quotient of our tensor algebra: $U(\mathfrak{g}) = T(\mathfrak{g})/I$.

Definition 4.1. For two ring homomorphisms $S : U(\mathfrak{g}) \rightarrow \text{End}(W)$ and $S' : U(\mathfrak{g}) \rightarrow \text{End}(W')$ a morphism from S to S' is a map $t : W \rightarrow W'$ such that it is compatible with the action of $U(\mathfrak{g})$ on W and W':

$$S'(x)t = tS(x).$$

This constitutes the category $U(\mathfrak{g}) - \text{Mod}$.

Theorem 4.1. To each representation $\phi : \mathfrak{g} \rightarrow \mathfrak{gl}(V)$ we can associate some $S_\phi : U(\mathfrak{g}) \rightarrow \text{End}(V)$ and to each ring homomorphism $S : U(\mathfrak{g}) \rightarrow \text{End}(V)$ we can associate some $\phi_S : \mathfrak{g} \rightarrow \mathfrak{gl}(V)$, such that a morphism ψ from ϕ to ϕ' is also a morphism from S_ϕ to $S_{\phi'}$ and a morphism t from S to S' is also a morphism from ϕ_s to ϕ'_s, and $\phi_{S_s} = \phi$ and $S_{\phi_s} = S$.

Remark. This is equivalent as to say \mathfrak{g}-Mod is equivalent to $U(\mathfrak{g})$-Mod.

Proof. Suppose we are given a representation ϕ, we want to construct S_ϕ such that it will satisfy the properties of a ring homomorphism, that is:

1. $S_\phi(1) = 1$
2. $S_\phi(r + r') = S(r) + S(r')$
3. $S_\phi(rr') = S(r)S(r')$

We define S_ϕ as follows:

$$S_\phi(1) = 1$$

So that (1) holds. We consider an element of $x_1 \otimes \ldots \otimes x_n \in U(\mathfrak{g})$, we define S on $x_1 \otimes \ldots \otimes x_n$:

$$S_\phi(x_1 \otimes \ldots \otimes x_n) = \phi(x_1) \circ \phi(x_2) \circ \ldots \circ \phi(x_n).$$

Now we define S on the rest of $U(\mathfrak{g})$ by linear extension:

$$S_\phi(x_1 \otimes \ldots x_n + y_1 \otimes \ldots y_m) = S_\phi(x_1 \otimes \ldots x_n) + S_\phi(y_1 \otimes \ldots y_m)$$
It is clear that (2) is also satisfied. We show that (3) is satisfied as well:

\[S_\phi(x_1 \otimes \ldots x_n \otimes y_1 \otimes \ldots y_m) = \phi(x_1) \circ \ldots \circ \phi(x_n) \circ \phi(y_1) \ldots \circ \phi(y_m) = S_\phi(x_1 \otimes \ldots x_n) \circ S_\phi(y_1 \otimes \ldots y_n) \]

Now suppose we have \(S \) and we want to define \(\phi \):

\[\phi_S(x) = S(x) \]

we want to show that its a Lie algebra representation:

\[\phi_S([x, y]) = S(x \otimes y - y \otimes x) = S(x \otimes y) - S(y \otimes x) = S(x) \circ S(y) - S(y) \circ S(x) = \phi_S(x) \circ \phi_S(y) - \phi_S(y) \circ \phi_S(x) \]

Now we will show if \(\psi \) is a morphism from \(\phi \) to \(\phi' \) then it is also a morphism from \(S_\phi \) to \(S_{\phi'} \). By definition \(S_\phi = \phi \), Thus:

\[S_{\phi'}(x) \psi = \psi \circ S(x). \]

Taking another element \(x \otimes y \in U(g) - Mod \), we will have:

\[S_{\phi'}((x \otimes y) \psi = \psi \circ S(x \otimes y) \]

\[S'(x) \circ S'(y) \circ \psi = S'(x) \circ \psi \circ S(y) = \psi \circ s(x) \circ S(y) = \psi \circ S(x \otimes y) \]

From the equation above it is obvious that this holds for any arbitrary element \(x_1 \otimes \ldots \otimes x_n \in U(g) \). That is we have:

\[S_{\phi'}(x_1 \otimes \ldots \otimes x_n) \psi = \psi \circ S_{\phi}(x_1 \otimes \ldots \otimes x_n) \]

The other way around to show that \(t \) is also a morphism from \(\phi \) to \(\phi' \) is obvious by using the one to one correspondence between \(\phi \) and \(s \).

The only thing left is to show that \(\phi_{S_\phi}(x) = \phi(x) \) and \(S_{\phi_{S_\phi}}(X) = S(x) \). For the first case we mean that if we start from \(\phi \) go to \(\phi_S \) and then to \(\phi_{S_\phi} \) we get the same \(\phi \). Let’s look at the definition of \(\phi_{S_\phi} \). It is a Lie algebra representation that we get from the ring homomorphism \(S_\phi \). By defining \(\phi_{S_\phi}(x) := S_\phi(x) \), and we defined \(S_\phi(x) = \phi(x) \). Therefore: \(\phi_{S_\phi}(X) = \phi(x) \).

To show \(S_{\phi_{S_\phi}}(x) = S(x) \), we use the same trick. By definition:

\[S_{\phi_{S_\phi}}(x_1 \otimes \ldots \otimes x_n) = \phi_S(x_1) \circ \ldots \circ \phi(x_n) \]

We insert the definition of \(\phi_S(x) \):

\[\phi_S(x_1) \circ \ldots \circ \phi_S(x_n) = S(x_1) \circ \ldots \circ S(x_n) \]

but since \(S \) is a ring homomorphism, we have that it is multiplicative:

\[S(x_1) \circ \ldots \circ S(x_n) = S(x_1 \otimes \ldots \otimes x_n). \]

Therefore \(S_{\phi_{S_\phi}}(x) = S(x) \).

\[\square \]

5 Simple Lie algebras, Semisimple Lie algebras, Killing form, Cartan criterion for semisimplicity

Definition 5.1. A non abelian Lie algebra \(g \) is called **simple** if it has no non trivial ideals.

Definition 5.2. We define a Lie algebra \(g \) to be **semisimple** if it is the finite direct sum of simple Lie algebras \(g_i \):

\[g = g_1 \oplus g_2 \ldots \oplus g_n. \]
Definition 5.3. Let \mathfrak{g} be a finite dimensional Lie algebra over a field F. The Killing form κ is the bilinear form $\kappa : \mathfrak{g} \times \mathfrak{g} \to F$ defined by

$$\kappa(x, y) = \text{Tr}(\text{ad}_x \circ \text{ad}_y)$$

$\forall x, y, z \in \mathfrak{g}$. It has the following properties:

- It is bilinear.
- It is symmetric.
- It is ad invariant:

$$\kappa([y, x], z) + \kappa(x, [y, z]) = 0$$

Definition 5.4. The Killing form is said to be non degenerate if: $\forall y = 0 \; \kappa(x, y) = 0$ implies $x = 0$.

Theorem 5.1. Cartan criterion: A Lie algebra \mathfrak{g} over a field F of characteristic zero is semisimple if and only if the Killing form is non degenerate.