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1 Lie algebras

1.1 Definition and examples

Definition 1.1. A Lie algebra is a vector space g over a field F with an operation [·, ·] : g× g→ g which we
call a Lie bracket, such that the following axioms are satisfied:

• It is bilinear.

• It is skew symmetric: [x, x] = 0 which implies [x, y] = −[y, x] for all x, y ∈ g.

• It satisfies the Jacobi Identitiy : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Definition 1.2. A Lie algebra Homomorphism is a linear map H ∈ Hom(g, h)between to Lie algebras
g and h such that it is compatible with the Lie bracket:

H : g→ h and H([x, y]) = [H(x), H(y)]

Example 1.1. Any vector space can be made into a Lie algebra with the trivial bracket :

[v, w] = 0

for all v, w ∈ V.

Example 1.2. Let g be a Lie algebra over a field F. We take any nonzero element x ∈ g and construct the
space spanned by x, we denote it by Fx. This is an abelian one dimentional Lie algebra: Let a, b ∈ Fx. We
compute the Lie bracket.

[αx, βx] = αβ[x, x] = 0.

where α, β ∈ F . Note: This shows in particular that all one dimentional Lie algebras have a trivial bracket.

Example 1.3. Any associative algebra A can be made into a Lie algebra by taking commutator as the Lie
bracket:

[x, y] = xy − yx

for all x, y ∈ A.

Example 1.4. Let V be any vector space. The space of End(V ) forms an associative algebra under function
composition. It is also a Lie algebra with the commutator as the Lie bracket. Whenever we think of it as a
Lie algebra we denote it by gl(V ). This is the General Linear Lie algebra.

Example 1.5. Let V be a finite dimentional vector space over a field F. Then we identify the Lie algebra
gl(V ) with set of n×n matrices gln(F), where n is the dimension of V . The set of all matrices with the trace
zero slnF is a subalgebra of gln(F).

Example 1.6. The set of anti symmetric matrices with the trace zero denoted by son forms a Lie algebra
under the commutator as the Lie bracket .

Example 1.7. Heisenberg algebra: We look at the vector space H generated over F by the matrices: 0 1 0
0 0 0
0 0 0

 ,

 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0


This is a linear subspace of gl3(F ) and becomes a Lie algebra under the commutator bracket. The fact that
H is closed under the commutator bracket follows from the well-known commutator identity on the standard
basis of n× n matrices:

[Eij , Ekl] = δjkEil − δliEkj
where δij is the Kronecker delta.
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1.2 Some Basic Notions

Definition 1.3. Let g be a Lie algebra over F . Then a linear subspace U ⊆ g is a Lie subalgebra if U is
closed under the Lie bracket of g:

[x, y] ∈ U
for all x, y ∈ U .

Definition 1.4. Let I be a linear subspace of a Lie algebra g. Then I is an ideal of g if

[x, y] ∈ I

whenever x ∈ I and y ∈ g.

Definition 1.5. A Lie algebra g is called abelian if the Lie bracket vanishes for all elements in g:

[x, y] = 0

for all x, y ∈ g.

Definition 1.6. Let U be a non empty subset of g, we call 〈U〉 the Lie subalgebra (ideal) generated
by U , where:

〈U〉 =
⋂
{I ⊆ g : I is Lie subalgebra (ideal) containing U}

2 Free Lie Algebras

Let X be a set. We define WX =
⊕

x∈X F ,where F is an arbitrary field. Then we denote the tensor algebra
of WX by TWX which is as well a Lie algebra. The Free Lie algebra on X is the Lie subalgebra in TWX

generated by X. Where X can be canonically embedded into WX via the map:

f : X →WX

x 7→ ex

.

3 Representations

A representation of a Lie algebra g is a Lie algebra homomorphism from g to the Lie algebra End(V ):

ρ : g→ gl(V ).

Definition 3.1. For a Lie algebra g and any x ∈ g we define a map

adx : g→ g, y 7→ [x, y]

which is the adjoint action.

Every Lie algebra has a representation on itself, the adjoint representation defined via the map:

ad : g→ gl(g)

x 7→ adx

.

Definition 3.2. For two representations of a Lie algebra g, φ : g→ gl(V ) and φ′ : g→ gl(V ′) a morphism
from φ to φ′ is a linear map ψ : V → V ′ such that it is compatible with the action of g on V and V ′:

φ′(x)ψ = ψφ(x)

For all x ∈ g. This constitutes the category g−Mod.
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4 The Universal Enveloping Algebra

For any associative algebra we construct a Lie algebra by taking the commutator as the Lie bracket. Now let
us think in the reverse direction. We want to see if we can construct an associative algebra from a given Lie
algebra and its consequences. With this construction, instead of non-associative scructures;Lie algebras, we
can work with nicer and better developed structures: Unital associative algebras that captures the important
properties of our Lie algebra.

4.1 Constructing U(g)

Let us construct the tensor algebra of the Lie algebra g:

Tg =

∞⊕
k=0

T kg =

∞⊕
k=0

g⊗ ...⊗ g︸ ︷︷ ︸
k times

We look at the two sided ideal I generated by : g ⊗ h− h⊗ g − [g, h] For g, h ∈ Tg. Its elements look like:

k∑
i=0

ci(x
(i)
1 ⊗ ...⊗ x(i)ni )⊗ (gi ⊗ hi − hi ⊗ gi − [gi, hi])⊗ (y

(i)
1 ⊗ ...⊗ y(i)ni )

for gi, hi ∈ Tg.
Now the universal enveloping algebra is constructed by taking the quotient of our tensor algebra: U(g) =

T (g)/I.

Definition 4.1. For two ring homomorphisms S : U(g)→ End(W ) and S′ : U(g)→ End(W ′) a morphism
from S to S′ is a map t : W →W ′ such that it is compatible with the action of U(g) on W and W ′:

S′(x)t = tS(x).

This constitutes the category U(g)−Mod.

Theorem 4.1. To each representation φ : g → gl(V ) we can associate some Sφ : U(g) → End(V ) and to
each ring homomorphism S : U(g)→ End(V ) we can associate some φS : g→ gl(V ), such that a morphism
ψ from φ to φ′ is also a morphism from Sφ to S′

φ and a morphism t from S to S′ is also a morphism from
φs to φ′S,and φSφ = φ and SφS = S.

Remark. This is equivalent as to say g-Mod is equivalent to U(g)-Mod.

Proof. Suppose we are given a representation φ, we want to construct Sφ such that it will satisfy the properties
of a ring homomorphism, that is:

(1) Sφ(1) = 1

(2) Sφ(r + r′) = S(r) + S(r)

(3) Sφ(rr′) = S(r)S(r′)

We define Sφ as follows:
Sφ(1) = 1

So that (1) holds. We consider an element of x1 ⊗ ...⊗ xn ∈ U(g), we define S on x1 ⊗ ...⊗ xn:

Sφ(x1 ⊗ ...⊗ xn) = φ(x1) ◦ φ(x2)... ◦ φ(xn).

Now we define S on the rest of U(g) by linear extension:

Sφ(x1 ⊗ ...xn + y1 ⊗ ...ym) = Sφ(x1 ⊗ ...xn) + Sφ(y1 ⊗ ...yn)
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It is clear that (2) is also satisfied. We show that (3) is satisfied as well:

Sφ(x1 ⊗ ...xn ⊗ y1 ⊗ ...ym) = φ(x1) ◦ ...φ(xn) ◦ φ(y1)... ◦ φ(ym) = Sφ(x1 ⊗ ...xn) ◦ Sφ(y1 ⊗ ...yn)

Now suppose we have S and we want to define φS :

φS(x) = S(x)

we want to show that its a Lie algebra representation:

φS([x, y]) = S(x⊗y−y⊗x) = S(x⊗y)−S(y⊗x) = S(x)◦S(y)−S(y)◦S(x) = φS(x)◦φS(y)−φS(y)◦φS(x)

Now we will show if ψ is a morphism from φ to φ′ then it is also a morphism from Sφ to Sφ′ . By definition
Sφ = φ, Thus:

Sφ′(x)ψ = ψ ◦ S(x).

Taking another element x⊗ y ∈ U(g)−Mod, we will have:

Sφ′(x⊗ y)ψ = ψ ◦ S(x⊗ y)

S′(x) ◦ S′(y) ◦ ψ = S′(x) ◦ ψ ◦ S(y) = ψ ◦ s(x) ◦ S(y) = ψ ◦ S(x⊗ y)

From the equation above it is obvious that this holds for any arbitrary element x1 ⊗ ...⊗ xn ∈ U(g). That is
we have:

Sφ′(x1 ⊗ ...⊗ xn)ψ = ψ ◦ Sφ(x1 ⊗ ...⊗ xn)

The other way around to show that t is also a morphism from φ to φ′ is obvious by using the one to one
correspondence between φ and s.

The only thing left is to show that φSφ(x) = φ(x) and SφS (X) = S(x). For the first case we mean that
if we start from φ go to φS and then to φSφ we get the same φ. Let’s look at the definition of φSφ . It is a
Lie algebra representation that we get from the ring homomorphism Sφ. by defining φSφ(x) := Sφ(x), and
we defined Sφ(x) = φ(x). Therefore: φSφ(X) = φ(x).

To show SφS (x) = S(x), we use the same trick. By definition:

SφS (x1 ⊗ ...⊗ xn) = φS(x1) ◦ ... ◦ φ(xn)

We insert the definition of φS(x):

φS(x1) ◦ ... ◦ φS(xn) = S(x1) ◦ ... ◦ S(xn)

but since S is a ring homomorphism, we have that it is multiplicative:

S(x1) ◦ .. ◦ S(xn) = S(x1 ⊗ ...⊗ xn).

Therefore SφS (x) = S(x).

5 Simple Lie algebras, Semisimple Lie algebras, Killing form, Car-
tan criterion for semisimplicity

Definition 5.1. A non abelian Lie algebra g is called simple if it has no non trivial ideals.

Definition 5.2. We define a Lie algebra g to be semisimple if it is the finite direct sum of simple Lie
algebras gi:

g = g1 ⊕ g2...⊕ gn.
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Definition 5.3. Let g be a finite dimentional Lie algebra over a field F. The Killing form κ is the bilinear
form κ : g× g→ F defined by

κ(x, y) = Tr(adx ◦ ady)

∀x, y, z ∈ g. It has the following properties:

• It is bilinear.

• It is symmetric.

• It is ad invariant:

κ([y, x], z) + κ(x, [y, z]) = 0

.

Definition 5.4. The Killing form is said to be non degenerate if: ∀y = 0 κ(x, y) = 0 implies x = 0.

Theorem 5.1. Cartan criterion: A Lie algebra g over a field F of characteristic zero is semisimple if
and only if the Killing form is non degenerate.
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