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Introductory remarks

The goal of this presentation is to explore some of the relations between “categorical Lie algebras”
and the third cohomology groups H3(g,M) of Lie algebras g with values in vector spaces M .
Examples of categorical Lie algebras rely on elements of H3(g,M)—better, on 3-cocycles ω ∈
Z3(g,M). Moreover, a whole classification of categorical Lie algebras can be given, and elements
of third cohomology groups feature into this classification.

Our exposition closely follows the paper [1] by Baez and Crans. In fact, this handout is a
simplified reproduction of that paper.

Unfortunately, it is difficult to discuss categorical Lie algebras without mentioning categorical
vector spaces; in turn, this may as well require a discussion in internal category theory. The end
of this handout features some notes on these topics as well as some cursory notes on the category
theoretic concepts relevant to this presentation. The curious reader is invited to consult texts by
Mac Lane [3] and Jacobson [2] for a more formal introduction to category theory.
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1 Categorical Lie algebras

Let k be a field. We denote by Vectk the category of vector spaces over k and their linear maps.

Definition 1. A (semistrict) Lie 2-algebra consists of the following data:

1. a 2-vector space L = (L0, L1, i, s, t, γ) in Vectk;

2. a skew-symmetric bilinear functor called the bracket, [· , ·] : L× L→ L;

3. a completely antisymmetric, trilinear natural isomorphism called the Jacobiator J ,

Jx,y,z : [[x, y], z]→ [x, [y, z]] + [[x, z], y]

for all x, y, z ∈ L0.

The Jacobiator is required to satisfy the Jacobiator identity:(
Jw,[x,z],y+J[w,z],x,y + Jw,x,[y,z]

)(
[Jw,x,z, y] + 1

)
J[w,x],y,z

=
(

[w, Jx,y,z] + 1
)(

[Jw,y,z, x] + 1
)(

J[w,y],x,z + Jw,[x,y],z

)
[Jw,x,y, z]

for all w, x, y, z ∈ L0. (There is only one choice of identity morphism 1 that can be added to each
term to make the composite well-defined.)

Here is the Jacobiator identity as a commutative diagram:

[[[w, x], y], z]

[[[w, y], x], z] + [[w, [x, y]], z] [[[w, x], z], y] + [[w, x], [y, z]]

[[[w,y],z],x]+[[w,y],[x,z]]
+[w,[[x,y],z]+[[w,z],[x,y]]

[[w,[x,z]],y]
+[[w,x],[y,z]]+[[[w,z],x],y]

[[[w,z],y],x]+[[w,[y,z]],x]
+[[w,y],[x,z]]+[w,[[x,y],z]]+[[w,z],[x,y]]

[[[w,z],y],x]+[[w,z],[x,y]]+[[w,y],[x,z]]
+[w,[[x,z],y]]+[[w,[y,z]],x]+[w,[x,[y,z]]]

[Jw,x,y, z] J[w,x],y,z

J[w,y],x,z + Jw,[x,y],z [Jw,x,z, y] + 1

[Jw,y,z, x] + 1 Jw,[x,z],y + J[w,z],x,y + Jw,x,[y,z]

[w, Jx,y,z ] + 1
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A few remarks on the Jacobiator. By definition, the Jacobiator J is a completely antisymmet-
ric, trilinear natural transformation between linear functors in Vectk—in this case, J goes from
the linear functor

[[·, ·], ·] : L3 −→ L

to the linear functor
[·, [·, ·]] + [[·, ·], ·] : L3 −→ L.

Explicitly, this means the Jacobiator is a trilinear map L0 × L0 × L0
J−→ L1, such that the

appropriate diagrams in Vectk commute; see Definition 18 for the precise diagrams.
Since Jx,y,z ∈ L1, it follows that Jx,y,z has a source and target for all triples x, y, z ∈ L0. The

source and target of Jx,y,z are specified in the definition of Lie 2-algebra for all triples x, y, z ∈ L0:

s

(
Jx,y,z

)
= [[x, y], z],

t

(
Jx,y,z

)
= [x, [y, z]] + [[x, z], y].

This explains the notation Jx,y,z : [[x, y], z] → [x, [y, z]] + [[x, z], y] of (3) in the definition of Lie
2-algebra. (However, this does not explain why we have this particular notation in the first place.
The answer to this question is more fundamental, as it pertains to the basic ideas of an internal
category: it is because we view Jx,y,z as a morphism in the category L from the object [[x, y], z]
to the object [x, [y, z]] + [[x, z], y]. See the remarks following Definition 19 for an explanation of
this.)

So far, we have explained the terms trilinear and natural transformation in the definition of
the Jacobiator, but what about completely antisymmetric? Recalling definitions 26 and 27, this
means

arrow part of Jx,y,z = Jx,y,z

def= Jx,y,z − is
(
Jx,y,z

)

= Jx,y,z − i
(

[[x, y], z]
)
,

changes sign under permutations of any pair of objects x, y, z. For instance, Jx,y,z = −Jy,x,z, etc.

Definition 2. Let L,L′ be Lie 2-algebras. A homomorphism F : L→ L′ consists of:

1. a linear functor F from the underlying 2-vector space L to that of L′;

2. a skew-symmetric, bilinear natural transformation

F2(x, y) : [F0(x), F0(y)]→ F0[x, y]

such that the following diagram commutes
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[[F0(x), F0(y)], F0(z)] [F0(x), [F0(y), F0(z)]] + [[F0(x), F0(z)], F0(y)]

[F0[x, y], F0(z)] [F0(x), F0[y, z]] + [F0[x, z], F0(y)]

F0[[x, y], z] F0[x, [y, z]] + F0[[x, z], y]

JF0(x),F0(y),F0(z)

[F2, 1]

F2

[1, F2] + [F2, 1]

F2 + F2

F1(Jx,y,z)

Given Lie 2-algebra homomorphisms L F→ L′ and L′
G→ L′′, we can suitably define their

composition so that L GF−→ L′′ is a Lie 2-algebra homomorphism as well. The definition goes as
follows:

Definition 3. The composition GF of Lie 2-algebra homomorphisms L F→ L′ and L′
G→ L′′ is

defined to be the usual composite of F and G as linear functors

L
F−→ L′

G−→ L′′,

with (GF )2 defined as the following composite

[(FG)0(x), (FG)0(y)] (FG)0[x, y]

G0[F0(x), F0(y)]

(GF )2

G2
F2 ◦G

The aim of all this is

Proposition 1. Semistrict Lie 2-algebras in Vectk and their homomorphisms form a category,
which we denote Lie2Alg.

Idea of proof. A proof of the proposition only requires straight-forward checking. One must of
course verify that the composition of Lie 2-algebra homomorphisms, as defined above, indeed
yields a Lie 2-algebra homomorphism, and that the composition is associative.
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2 Examples of Lie 2-algebras

Here are some examples of Lie 2-algebras.

Example 1. Let M be a vector space over k. We obtain a 2-vector space V = (V0, V1, i, s, t, γ) from M
as follows.

Set the trivial vector space as the object of objects, V0
def
= 0, and let M be the object of arrows,

V1
def
= M . Source, target and identity, M

s

⇒
t

0 and 0
i→ M respectively, are consequently trivial, ie. the

zero map. Composition M ×0 M
γ→ M on the other hand is given by the vector space addition + of M .

(In this example, the pullback M ×0 M is actually the direct product M ×M , which is also the direct
sum M ⊕M .) It follows readily that V is a 2-vector space in Vectk.

We can view V as a Lie 2-algebra with the trivial bracket functor [·, ·] : V × V → V . That is, [·, ·]
is just the trivial map on objects V0 and arrows V1. Notice the analogy between this example and the

well-known case of turning an arbitrary vector space into an abelian Lie algebra. Indeed, we can view any

2-vector space as a Lie 2-algebra with trivial bracket structure.

Example 2. Next, we train our sights on obtaining a Lie 2-algebra L from a Lie algebra g. Set

L0 = L1
def
= g. Define source, target, identity and composition to be the identity on g. (In this example,

the pullback L1 ×L0 L1 on which γ is defined is precisely g.) With this data, L is a 2-vector space, but
we can say more, for the existing Lie algebra structure on g endows L with further structure.

Given what we know of L, that L0 = L1 = g, there is a very natural candidate for a bracket functor
[·, ·] : L× L→ L. Namely, we define

[x, y]
def
= [x, y]g

for all pairs of objects x, y ∈ L0 and pairs of arrows x, y ∈ L1, where the bracket on the right-hand side
[·, ·]g is the original bracket on g. This bracket functor is clearly skew-symmetric (in the sense of Definition
22).

There is one last set of data and axioms to define and verify in order to show that L is a Lie 2-algebra,
and this involves the Jacobiator. For x, y, z ∈ L0, the Jacobiator is given by

L0 × L0 × L0
J−→ L1,

Jx,y,z
def
= [[x, y], z].

The Jacobiator identity holds immediately, and so it follows that L is a Lie 2-algebra.

Example 3. Let g
ϕ−→ gl(M) be a Lie algebra representation, M a vector space, and let ω ∈ Z3(g,M)

be a 3-cocycle. We shall construct Lie 2-algebras L given this data.

The underlying 2-vector space of L has L0
def
= g and L1

def
= g ⊕M . Source and target are given by

projecting onto g,

L1
s−→ L0 L1

t−→ L0

(x, v) 7→ x (y, w) 7→ y

while identity and composition are given by

L0
i−→ L1 L1 ×L0 L1

γ−→ L1

x 7→ (x, 0) (g, f) 7→ (x, v + w),

where f, g ∈ L1 with f = (x, v) and g = (x,w). A straight-forward calculation reveals L is a 2-vector
space.

As for the rest of the Lie 2-algebra structure, we define the bracket functor L ×L
[·,·]−→ L on objects

x, y ∈ L0 by

[x, y]
def
= [x, y]g,
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where the bracket on the right hand side is the original bracket on L0 = g. On morphisms f, g ∈ L1, the
bracket [f, g] is defined by

[f, g]
def
=

„
[x, y], ϕ(x)(w)− ϕ(y)(v)

«
,

where f = (x, v) and g = (y, w). Notice, with this last bracket, L1 is simply the semidirect product
g nϕ M of g and M with respect to the representation ϕ, M being viewed as an abelian Lie algebra. In
particular, L0 and L1 are Lie algebras themselves.

We would do well to define a Jacobiator by

Jx,y,z
def
=

„
[[x, y], z], 0

«
for all x, y, z ∈ L0. With this data, L is a Lie 2-algebra.

We can define another Jacobiator on L by

Jx,y,z
def
=

„
[[x, y], z], ω(x, y, z)

«
,

for all x, y, z ∈ L0, where ω ∈ Z3(g, V ) is our 3-cocycle. This also defines a Lie 2-algebra L , although it is
“different” from the L defined immediately above. (The “difference” comes from the different Jacobiators
which we have defined.) The next section is devoted to what it means for Lie 2-algebras to be different.

The reason why the Jacobiator identities hold for both examples of L is as follows. The Jacobiator

identity is essentially a 3-cocycle identity. That is, the Jacobiator identity is describing exactly what

happens when a coboundary operator δ, of a cochain complex corresponding to Lie algebra cohomology,

acts on a 3-cocycle, say for instance like our ω ∈ Z3(g,M). So, asking the Jacobiator identity to hold

in L is tantamount to asking δω = 0, which is precisely the case by our choice of ω, ie. ω ∈ Z3(g,M).

Of course, zero is a perfectly good 3-cocycle as well, 0 ∈ Z3(g,M), which explains why the Jacobiator

identity holds for the first example of L . It also helps that the brackets on L0 and L1 satisfy the Jacobi

identity.
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3 Classification

There is a classification of semistrict Lie 2-algebras which involves the third cohomology groups
of Lie algebras g with values in vector spaces M . We introduce a few more definitions before
embarking on the classification.

Definition 4. Let V be a 2-vector space, say with data (V0, V1, i, s, t, γ). Then V is skeletal if
for all v ∈ V1, we have t(v) = s(v).

Definition 5. Let L,L′ be Lie 2-algebras. Then L and L′ are isomorphic if there exist Lie
2-algebra homomorphisms

L
F−→←−
G

L′

such that GF = I and FG = I, where I denotes the identity (linear) functors on L and L′

respectively. We say that L and L′ are equivalent as Lie 2-algebras if there exist Lie 2-algebra
homomorphisms

L
S−→←−
T

L′

such that TS ' I and ST ' I, where I denotes the identity (linear) functors on L and L′

respectively. Here, ' represents linear natural isomorphism.

There are similar notions of equivalence and isomorphism of 2-vector spaces; just replace
each instance of the term “Lie 2-algebra” (“Lie 2-algebra homomorphism”) with “2-vector space”
(“linear functor”) in Definition 5.

We are now in position to introduce

Theorem 1. There is a one-to-one correspondence between equivalence classes of Lie 2-algebras,
where equivalence is given by equivalence as Lie 2-algebras, and isomorphism classes of quadruples
consisting of a Lie algebra g, a vector space M , a representation ϕ : g→ gl(M) and ω ∈ H3(g,M),
an element of the third cohomology group of g with values in M :

L ←→ (g,M, ϕ, ω).

To prove this, we make use of the following

Lemma. Every Lie 2-algebra L is equivalent to a skeletal Lie 2-algebra L′. (Lie 2-algebras are
skeletal if the underlying 2-vector spaces are skeletal.)

Proof of lemma, sketch. It suffices to show that every 2-vector space V is equivalent to a skeletal
2-vector space. Once this is established, we can carry the result over to Lie 2-algebras L by finding
a skeletal 2-vector space L′ to which the underlying 2-vector space of L is equivalent; from there,
we transport the Lie 2-algebra structure of L onto the skeletal 2-vector space L′ and obtain the
desired equivalence.

Let V = (V0, V1, i, s, t, γ) be a 2-vector space. Let d : ker(s) → V0 be the linear map defined
by d = t|ker(s). Since V0 and V1 are vector spaces, we can find subspaces X ⊂ V0, Y ⊂ V1 such
that V0 = im(d)⊕X and V1 = ker(d)⊕ Y .

Using this, we define a 2-vector space W = (W0,W1, i
′, s′, t′, γ′) as follows. We have W0

def= X

while W1
def= X ⊕ ker(d). The identity i′ : W0 → W1 is defined by x 7→ (x, 0), while source and

target are given by s(x,w) = t(x,w) = x. Composition γ′ is given by

γ′
(

(x, v), (x,w)
)

def= (x, v + w)

for (x, v), (x,w) ∈W1. This collection of data defines a 2-vector space W .
What’s more, W is skeletal, and V is equivalent to it. (There are very natural choices of linear

functors between the two 2-vector spaces, and their compositions are naturally isomorphic to the
respective identity functors.)
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So much for the lemma.

Proof of Theorem 1, sketch. By the lemma, every Lie 2-algebra is equivalent to a skeletal Lie 2-
algebra. The theorem will then follow if we can show the result for equivalence classes of skeletal
Lie 2-algebras.

The reader may have noticed that roughly one-half of the bijective correspondence of The-
orem 1 has already been calculated in Example 3. Actually, Example 3 features two Lie 2-
algebras which differ by their Jacobiators. Both Lie 2-algebras are skeletal. The quadruple
(g,M, ϕ, 0) corresponds to the first example of L —the one with Jacobiator given by Jx,y,z =(

[[x, y], z], 0
)

—while (g,M, ϕ, ω) corresponds to the second—the one with Jacobiator given by

Jx,y,z =
(

[[x, y], z], ω(x, y, z)
)

.

At this point, we should remark 0 and ω of Example 3 are only 3-cocycles, that is, elements of
Z3(g,M). However, it is not difficult to check that cohomologous cocycles yield equivalent skeletal
Lie 2-algebras, so there’s no real trouble here. That is, we can just pass to the cohomology classes
of 0 and ω in H3(g,M) to get our precise quadruples.

On the other hand, a given skeletal Lie 2-algebra L = (L0,L1, i, s, t, γ) yields a quadruple
(g,M, ϕ, ω) of our desired form. Simply take g

def= L0 and M def= ker(s). We define a representation
ϕ of g on M by ϕ(x)(m) def= [i(x),m] for x ∈ g and m ∈ M . Finally, we define ω : g⊗3 → M by
ω(x, y, z) def= Jx,y,z, the arrow part of the Jacobiator. Then ω is a 3-cocycle. (Seeing that ω, when
defined this way, is a 3-cocycle is the most difficult part of this proof. We take it for granted,
however.) Passing to the cohomology class of ω gives us our desired element in H3(g,M).

These assignments are inverse to each other, whence the result.
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4 Additional information

The terminology we use herein is based on the Gödel-Bernays set theory.

4.1 Categories

Definition 6. A category C consists of the following data:

1. a class obC , whose elements are called the objects of C ;

2. a set homC (A,B) for each ordered pair (A,B) of objects, whose elements are called the
morphisms or arrows from A to B;

3. for each ordered triple (A,B,C) of objects, a function called composition

homC (A,B)× homC (B,C) −→ homC (A,C),

denoted (f, g) 7→ gf ;

4. for every object A, a morphism 1A ∈ homC (A,A) called the identity on A.

These data are subject to the following axioms.

A1. The sets homC (A,B) and homC (C,D) are disjoint whenever (A,B) 6= (C,D).

A2. (Associativity) Given morphisms f ∈ homC (A,B), g ∈ homC (B,C) and h ∈ homC (C,D),
we have

(hg)f = h(gf).

A3. For every object A, we have

f1A = f and 1Ag = g

whenever f ∈ homC (A,B) and g ∈ homC (B,A).

Remark. The axiom A1 is somehow a matter of convention; it is possible to avoid stating A1 as
an axiom, but this would require slightly altering our definitions and notions. Still, the axiom is
meant to ensure that functions such as f : R → R, f(x) = x2, and g : R≥0 → R, g(x) = x2, are
not equal.

We denote the fact that f ∈ homC (A,B) either by f : A→ B or A
f→ B. For such an arrow

f , the object A is known as the domain of f while B is the codomain of f . For two arrows
f, g, their composition gf is defined if and only if the codomain of f equals the domain of g, the
domain of gf equals the domain of f and the codomain of gf equals the codomain of g.

Finally, the identity arrow 1A is unique for every A ∈ obC .

Definition 7. Let C be a category. An arrow A
f→ B in C is an isomorphism if there exists

an arrow B
g→ A in C such that

gf = 1A and fg = 1B .

Remark. If f is an isomorphism, then g is uniquely determined by f . So, we sometimes denote
g by f−1 and call it the inverse of f . Two objects A,B are isomorphic if there exists an
isomorphism f between them.
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Example 4. The category Set has sets as objects and functions as morphisms. The isomorphisms of

this category are the bijective functions.

Example 5. The category Grp has groups as objects and group homomorphisms as morphisms. Bijec-

tive group homomorphisms are the isomorphisms in this category.

Example 6. The category Ab has abelian groups as objects and group homomorphisms between such

groups as morphisms.

Example 7. The category Ring has (unital) rings as objects and ring homomorphisms (which map the

identity 1 of the domain to the identity 1′ of the codomain) as morphisms. Again, the isomorphisms are

precisely the bijective ring homomorphisms.

Example 8. The category Field has fields as objects and their respective homomorphisms as morphisms.

Example 9. Fix a ring R. The category R-mod has left R-modules as objects and left R-module maps

as morphisms. The bijective left R-module maps are the isomorphisms of this category, too.

Example 10. Fix a field F . The category VectF has vector spaces over F as objects and linear

transformations as morphisms.

Example 11. The category Top has topological spaces as objects and continuous functions as mor-

phisms. The isomorphisms of Top are not simply the bijective continuous maps; instead, the isomor-

phisms are given by the bijective continuous maps whose inverses (as function) are continuous themselves—

homeomorphisms.

Example 12. In any category C and for every A ∈ obC , the identity 1A is always an isomorphism from

A back onto A.

Example 13. Fix a topological space X. We can view X as a category X in the following way. The

objects of X are the open subsets U ⊆ X. The only morphisms are the inclusion maps; that is, for open

subsets U ,V of X, we require that hom(U ,V ) is empty if U * V .
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4.2 Functors

Definition 8. Let C ,D be categories. A (covariant) functor F from C to D consists of the
following data:

1. an assignment A 7→ FA of obC into obD ;

2. for every pair of objects (A,B) of C , an assignment f 7→ Ff of homC (A,B) into homD(FA,FB).

The following axioms are required to hold.

B1. F (gf) = (Fg)(Ff) whenever gf is defined in C .

B2. F1A = 1FA for every A ∈ obC .

Definition 9. Assume the notation from the previous definition. A contravariant functor
F from C to D consists of the same data and axioms as above, except with the following
modifications. For every pair of objects (A,B) in C , we have that F maps homC (A,B) into
homD(FB,FA), and F (gf) = (Ff)(Fg) whenever gf is defined in C .

Example 14. Let C be any category. Then the identity functor I from C to C sends objects A 7→ A

and arrows f 7→ f .

Example 15. We have a functor For from Grp to Set which sends a group G to its underlying set

G and homomorphisms ϕ to the underlying (set) function ϕ. This type of functor is called a forgetful

functor .

Example 16. For each positive integer n, we have a functor GLn from Field to Grp defined as follows.

Given a field F , the functor GLn assigns F to GLnF , the group of n × n invertible matrices over F .

Given a field homomorphism F
ϕ→ F ′, we have a group homomorphism GLnF

GLnϕ−→ GLnF
′ defined by

(aij) 7→ (ϕaij).

Example 17. We have another functor −× from Field to Grp defined as follows. The functor −×

sends a field F to its multiplicative group of units F×—ie. the set of nonzero elements of F . For a field

homomorphism F
f→ K, the morphism F×

f×→ K× is given by restricting f to F×.

Example 18. Fix a field F , and consider the category VectF . Let V ∗ denote the dual space of a

vector space V . Every linear map V
f→ W induces a linear map W ∗

f∗−→ V ∗. The map f∗ is defined
by f∗(ϕ)(v) := ϕ(f(v)), where ϕ ∈ W ∗ and v ∈ V . Iterating this process on f∗ yields a linear map

V ∗∗
f∗∗−→W ∗∗.

One can check that the assignments V 7→ V ∗∗ and f 7→ f∗∗ define a functor from VectF to VectF .

This is known as the double dual functor.

Example 19. Let C be any category, and fix an object N of C . We have a contravariant functor
homC (−, N) from C to Set defined as follows.

For an object M of C , we have M 7→ homC (M,N), which is a set by our axioms of a category. Given

a morphism M
ϕ−→ M ′, the function homC (−, N)(ϕ) : homC (M ′, N) −→ homC (M,N) is defined by

pre-composition by ϕ: for f ∈ homC (M ′, N), we have homC (−, N)(ϕ)(f) := f ϕ, which indeed defines

an arrow from M to N .
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4.3 Natural transformations

Definition 10. Let F,G be functors from a category C into D . A natural transformation η
from F to G is a function which assigns to each object A of C a morphism ηA : FA→ GA of D
such that for any objects A,B of C and any morphism f ∈ homC (A,B), the following rectangle
commutes:

FA GA

FB GB

ηA

Ff

ηB

Gf

A

B

f

Moreover, if every ηA is an isomorphism, then η is called a natural isomorphism. Two functors
F,G are naturally isomorphic if there exists a natural isomorphism between them.

Natural transformations abound. Consider for instance the following examples.

Example 20. Consider the functors GLn, −× from Field to Grp. For each field F , we have a group

homomorphism GLn(F )
detF−→ F× which assigns each matrix (aij) ∈ GLnF to its determinant detF (aij) ∈

F×. Because the determinant of a matrix is defined in the same way over any field (or any commutative
ring for that matter), the following diagram commutes for all homomorphisms f : F → K,

GLnF F×

GLnK K×

detF

GLnf

detK

f×

This tells us that there exists a natural transformation from the functor GLn to −×, which we may

appropriately call det. Note, this example can be generalised by considering GLn, −× as functors from

the category of commutative rings CRing into Grp.

Example 21. Recall from linear algebra the oft-quoted statement, “V is naturally isomorphic to V ∗∗,”
where V is a finite-dimensional vector space over a field F and V ∗∗ its double dual. While it is, technically
speaking, an abuse of language to say that V is naturally isomorphic to V ∗∗ (because V, V ∗∗ aren’t
functors), there is indeed a natural isomorphism between two functors lurking about in this statement.

First let us recall a few facts from linear algebra. If V is a vector space over F , then there is a
canonical way of embedding V into V ∗∗, namely v 7→ bv. Here, bv : V ∗ → F is defined by bv(ϕ) := ϕ(v)
for ϕ ∈ V ∗. This assignment is always linear and one-to-one; it is an isomorphism if and only if V is
finite-dimensional.

Now fix a field F . Let I be the identity functor on VectF , and let −∗∗ denote the double dual functor.

The assignment V
ηV−→ V ∗∗, v 7→ bv, allows the following diagram to commute whenever f : V → W is

linear:

V V ∗∗

W W∗∗

ηV

f

ηW

f∗∗

This means there is a natural transformation η from I to −∗∗. If we restrict our attention to FinVectF ,

the category of finite-dimensional vector spaces over F , each ηV is an isomorphism. In this case, η is a

natural isomorphism from I to −∗∗.

13



4.4 Equivalence of categories

Definition 11. Two categories C and D are said to be isomorphic if there exist functors

C
F−→←−
G

D

such that GF = IC and FG = ID , the identity functors on C and D respectively.

Example 22. Let L be a Lie algebra over a field k. Then the category of L-modules is isomorphic to

the category of left U(L)-modules, where U(L) denotes the universal enveloping algebra of L.

Isomorphisms of categories are not commonly observed in practice; requiring the composition
of functors F,G to equal the identity functor I turns out to be a stringent condition. This condition
may be relaxed in a suitable way to yield another valuable relation between categories, namely

Definition 12. Two categories C and D are said to be equivalent if there exist functors

C
F−→←−
G

D

such that GF ' IC and FG ' ID , where ' denotes natural isomorphism of functors.

Example 23. Isomorphic categories are always equivalent.

Example 24. Let R be a ring, and let MnR be the ring of n× n matrices with entries in R. Then the

category of right R-modules mod-R is equivalent to the category of right MnR-modules mod-MnR.

4.5 Terminal objects

Definition 13. An object T in a category C is terminal if for every object A in C there exists
one and only one arrow A→ T .

Remark. Terminal objects are unique up to (unique) isomorphism if they exist.

Example 25. In Set, every singleton {a} is a terminal object.

Example 26. The categories Grp, Ab and R-mod have terminal objects, namely the trivial group,

R-module, respectively.

Example 27. The trivial ring (0) is terminal in Ring.

Example 28. However, Field does not have terminal objects.

Example 29. Let X be a topological space. Recall the category X which we discussed in Example 13.

X is terminal in this category.

14



4.6 Products

Definition 14. Let C be a category, and let {Ai}i∈I be a family of objects of C . A product of
the Ai consists of an object A of C and a family of morphisms pi : A→ Ai such that the following
property holds: whenever we have a collection of morphisms fi : B → Ai, B an object of C , there
exists a unique morphism f : B → A such that the following diagram commutes for all i ∈ I,

B Ai

A

fi

f
pi

Remark. Using the notation from the definition, if a product of the Ai exists, then it is necessarily
unique (up to isomorphism). So it makes sense to say things such as “the product” of the Ai, etc.
Note, the product of the Ai is usually denoted

∏
i∈I Ai. The maps pi of the product

∏
i∈I Ai are

sometimes called the projections.

Example 30. In Set, the categorical product exists for any family of sets {Ai}i∈I . The cartesian productQ
i∈I Ai along with the usual projections πj :

Q
i∈I Ai → Aj do the trick.

Example 31. Let R be an arbitrary ring, and consider the category R-mod. Then the product exists
for any collection of R-modules {Mj}j∈J .

For consider the direct product of the Mj ,
Q
j∈JMj . Recall that this is just the cartesian product

of the Mj as a set; it is a left R-module when we consider the operations pointwise. What’s more, the

direct product satisfies the universal property of a categorical product as stated in definition 2.6. The

projections pi in this example are the standard projections πi :
Q
JMj → Mi. Note this holds for the

category of right R-modules mod-R as well.

Example 32. Consider Top. For any family of topological spaces {Xi}i∈I , the cartesian product of the

Xi, denoted
Q
i∈I Xi, is also a topological space when it is given the product topology. With this topology

and the usual projections πj :
Q
i∈I Xi → Xj ,

Q
i∈I Xi becomes the categorical product of the Xi in Top.

15



4.7 Pullbacks

Definition 15. Let C be a category. Let A,B,C be objects of C , and let f ∈ homC (A,C) and
g ∈ homC (B,C) be morphisms. A pullback of f, g is a pair of morphisms h1 : P → A and
h2 : P → B such that the following (pullback) diagram commutes:

P B

A C

h2

h1

f

g

Furthermore, if q1 : D → A and q2 : D → B are morphisms also allowing the square to commute,

D B

A C

q2

q1

f

g

then there exists a unique morphism ϕ : D → P such that

D

P B

A C

ϕ

q1

q2

h2

h1 g

f

commutes.

Remark. With the notation of definition 2.7, a pullback of f, g is defined to be a pair of morphisms
h1, h2. Sometimes the triple (P, h1, h2) is also known as a pullback; in fact P is also sometimes
called a pullback.

Just as we mentioned earlier for products, pullbacks are unique if they exist; if (P ′, h′1, h
′
2)

is another pullback of f, g, then there exists an isomorphism ϕ : P → P ′ such that h′1ϕ = h1

and h′2ϕ = h2. Because of this, we do not hesitate to say things such as the pullback, nor do we
hesitate to denote the pullback of f, g definitively by A×C B.

Example 33. Consider the category of groups Grp. Let G,G′, H be groups, and let f1 : G → H and
f2 : G′ → H be homomorphisms. Then the pullback of f1, f2 exists.

Indeed, consider the direct product G×G′. Let P = {(g, g′) ∈ G×G′ | f1(g) = f2(g′)}. Then P is a

subgroup of G × G′. Now, let P
p1−→ G be the restriction of the canonical projection G × G′ → G to P ,

and define P
p2−→ G′ similarly. A moment’s thought will reveal that (P, p1, p2) is a pullback of f1, f2.

16



4.8 Internal categories

Definition 16. Let C be a category with pullbacks. An internal category or category in C
consists of the following data:

1. O, A ∈ obC respectively called the object of objects and object of arrows (morphisms);

2. i ∈ homC (O,A ) called identity;

3. s, t ∈ homC (A ,O) called source (domain) and target (codomain) respectively;

4. A ×O A
γ−→ A called composition, where γ is defined on the pullback

A ×O A A

A O

p2

p1

s

t

The data are subject to the following axioms. (The following diagrams are required to commute.)

A1. si = ti = 1 ∈ homC (O,O).

A2.
A A ×O A A

O A O

p1 p2

t s

t γ s

A3.

O ×O A A ×O A A ×O O

A

i× 1 1× i

p2
γ

p1

A4.

A ×O A ×O A A ×O A

A ×O A A

γ × 1

1× γ γ

γ

We sometimes denote an internal category in C by K = (O,A , i, s, t, γ).
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Remark. The basic notion of an internal category only requires the ambient category C to have
pullbacks. One may ask for C to have more special properties, namely that C be finitely complete.
This means C has a terminal object in addition to having pullbacks—in which case all finite
products exist in C . Familiar categories such as Grp, VectF , LieAlgebraF , etc. are finitely
complete.

Definition 17. Let C,K be categories in C . Let C consist of the data (O,A , i, s, t, γ), and sim-
ilarly, let K = (O′,A ′, i′, s′, t′, γ′). An internal functor F from C to K is a pair of morphisms
O F0−→ O′ and A

F1−→ A ′ which allow the following diagrams commute:

A ×O A A ′ ×O′ A ′

A A ′

F1 × F1

γ γ′

F1

A O A

A ′ O A ′

s

t

F1 F0

s′

t′

i

i′

F1

Definition 18. Let C,K be categories in C , and let F,G be internal functors from C to K.
An internal natural transformation η from F to G is a morphism O η−→ A ′ for which the
following diagrams commute:

O O′

A ′

F0

η s′

O O′

A ′

G0

η t′

A A ′ ×O′ A ′

A ′ ×O′ A ′ A ′

∆(ηs×G)

∆(F × ηt) γ′

γ′

18



4.9 2-vector spaces

Definition 19. Let Vectk denote the category of vector spaces over k and the linear maps between
them. A 2-vector space is defined to be an internal category in Vectk.

Let V be a 2-vector space. This means V consists of six pieces of data V = (V0, V1, i, s, t, γ)
subject to a few axioms (cf. Definition 16). V0 and V1 are vector spaces over k, while i, s, t, γ are

k-linear maps. In greater detail, we have that V0
i→ V1, V1

s
⇒
t
V0 and V1 ×V0 V1

γ−→ V1.

The 2-vector space V can be interpreted as a category living inside Vectk. This doesn’t mean
V is a subcategory of Vectk; the notion of subcategory is different and unrelated to the subject
at hand. Instead, V is actually a category where the objects of V are the elements x in V0, x ∈ V0,
and the hom-sets between objects x, y ∈ V0 are precisely the collection of those f ∈ V1 such that
s(f) = x and t(f) = y. In other words, we think of such an element f ∈ V1, with s(f) = x and
t(f) = y, as a morphism from x to y in our category V .

We think of the element i(x) ∈ V1 as the “identity morphism of the object x”—that is,
i(x) = 1x.

Let f, g ∈ V1 such that
s(f) = x,

t(f) = y = s(g),

t(g) = z;

in other words, f is an arrow from the object x to y and g is an arrow from y to z. Then the
composition of the arrows g, f is h = γ(g, f) ∈ V1. So h is an arrow from x to z—that is, s(h) = x
and t(h) = z.

This is all just an explicit explanation of what it means to be a 2-vector space, ie. an internal
category in Vectk.

Baez and Crans mention some “categorified linear algebra” in their paper. Here is some of
that material; the proofs to the propositions follow immediately from the hypotheses.

Proposition 2. Let V = (V0, V1, i, s, t, γ) and V ′ = (V ′0 , V
′
1 , i
′, s′, t′, γ′) be 2-vector spaces. Then

there exists a 2-vector space V ⊕ V ′ which has

1. V0 ⊕ V ′0 as its vector space of objects;

2. V1 ⊕ V ′1 as its vector space of arrows;

3. i⊕ i′ as its identity map;

4. s⊕ s′, t⊕ t′ as its source, target maps, respectively;

5. γ ⊕ γ′ as its composition.

Proposition 3. Let V = (V0, V1, i, s, t, γ) and V ′ = (V ′0 , V
′
1 , i
′, s′, t′, γ′) be 2-vector spaces. Then

there exists a 2-vector space V ⊗ V ′ which has

1. V0 ⊗ V ′0 as its vector space of objects;

2. V1 ⊗ V ′1 as its vector space of arrows;

3. i⊗ i′ as its identity map;

4. s⊗ s′, t⊕ t′ as its source, target maps, respectively;

5. γ ⊗ γ′ as its composition.

We remark the usual universal properties of ⊕ and ⊗ for vector spaces hold for 2-vector spaces
as well; those properties are defined in the obvious ways.

Just as categories have functors between them which preserve their category structures, there
are also notions of “functors” between 2-vector spaces which preserve the 2-vector space structures.
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Definition 20. Given 2-vector spaces V and W in Vectk, a linear functor F : V → W is an
internal functor in Vectk from V to W .

The following definitions are basic for the material on Lie 2-algebras.

Definition 21. Let V, V ′ and W be 2-vector spaces. A bilinear functor F : V × V ′ → W is a
functor such that the underlying map on objects

F0 : V0 × V ′0 →W0

and the underlying map on morphisms

F1 : V1 × V ′1 →W1

are bilinear.

Definition 22. Let V,W be 2-vector spaces. A bilinear functor F : V × V → W is skew-
symmetric if F (x, y) = −F (y, x) whenever (x, y) is an object or morphism of V × V .

Definition 23. Given two linear functors F,G between 2-vector spaces, say from V to W , a
linear natural transformation η from F to G is an internal natural transformation in Vectk.

Definition 24. Let V,W be 2-vector spaces. A functor F : V n →W is n-linear if F (x1, . . . , xn)
is linear in each argument, where (x1, . . . , xn) is an object or morphism of V n.

Definition 25. Let V,W be 2-vector spaces. Given n-linear functors F,G : V n → W , a natural
transformation τ from F to G is n-linear if τx1,...,xn depends linearly on each object xi.

Definition 26. Let V be a 2-vector space, say V = (V0, V1, i, s, t, γ). Let f ∈ V1. The arrow

part of f is defined to be f
def
= f − is(f). Notice f ∈ V1.

Definition 27. Let V,W be 2-vector spaces; let F,G : V n →W be n-linear functors; and let τ be
an n-linear natural transformation from F to G. Then τ is completely antisymmetric if the
arrow part of τx1,...,xn is completely antisymmetric under permutations of the objects.
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