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Definition (Extension). Let g and a be Lie algebras. An extension of g by
a is a short exact sequence

0→ a→ g̃→ g→ 0

of Lie algebras.
It is called abelian, if a is abelian, i.e. if [·, ·]a ≡ 0.
Two extensions of g by a are eqivalent, if there exists a Lie algebra homo-
morphism φ (which by the five lemma also is an isomorphism), such that
the following diagram commutes:

0 −−−−→ a −−−−→ g̃1 −−−−→ g −−−−→ 0∥∥∥ ∥∥∥ yφ ∥∥∥ ∥∥∥
0 −−−−→ a −−−−→ g̃2 −−−−→ g −−−−→ 0

Remark. • An extension 0→ a→ g̃→ g→ 0 is often denoted only by
a→ g̃→ g or even g̃→ g.

• Ext (g, a) denotes the set of eqivalence classes of extensions of g by a
vector space a.

Lemma. If g̃
q→ g is an abelian extension of g by a, there exists a g-module

structure on a.

Proof. Let σ : g→ g̃ be a linear map with σ ◦ q = idg. It exists, as one can
choose a basis on g and lift each basis vector to a vector in g̃. Set ρ : g×a→ a

as ρ (x) .a = [σ (x) , a]g̃ ∀x ∈ g, a ∈ a, where a is not distinguished from its
image in g̃. It remains to show:

• ρ is independent of the choice of σ:
Let x̃, ỹ ∈ g̃ with q (x̃) = q (ỹ). =⇒ x̃ − ỹ ∈ ker q ∼= a =⇒ [x̃, a]g̃ −
[ỹ, a]g̃ = [x̃− ỹ, a]g̃ = 0, as a is abelian.

• [x̃, a] ∈ ker q ∼= a:
This holds, as ker q is an ideal in g̃.

Corollary. Equivalent abelian extensions of g by a, g̃→ g lead to the same
module structure on a.
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Proof. The following diagram commutes:

a −−−−→ g̃1
q−−−−→ g∥∥∥ yφ ∥∥∥

a −−−−→ g̃2
q′−−−−→ g

Choose linear sections σ and σ′ of q and q′. Since φ is the identity on a, it
suffices to show:
φ ([σ (x) , a]) = [σ′ (x) , a] ∀a ∈ a, x ∈ g as elements of a.
This holds, because φ ([σ (x) , a]) = [φ (σ (x)) , φ (a)] = [φ (σ (x)) , a] as the
diagram commutes. As shown above, the module structure does not depend
on the choice of the section in a given extension, and φ ◦ σ defines another
section of g̃2 → g.

Definition (Chevalley-Eilenberg complex). Let g be an Lie algebra, Ug its
universal enveloping algebra and Λng the n-fold exterior product of g. Set
Bi = Ug⊗ Λig ∀i = 0, 1, 2 . . . with the g-module structure induced by action
on the first factor, and define d : Bn → Bn−1 by d (u⊗ g1 ∧ . . . ∧ gn) =∑n

i=1(−1)i+1ugi⊗ g1∧ . . .∧ ĝi∧ . . .∧ gn+
∑

i<j(−1)i+ju⊗ [gi, gj ]∧ g1∧ . . .∧
ĝi ∧ . . . ∧ ĝj ∧ . . . ∧ gn. This leads (as d2 = 0), to a complex, the Chevalley-
Eilenberg complex:

. . .
d−→ Bn

d−→ Bn−1
d−→ . . .

d−→ B0
d−→ k

Remark. The Chevalley-Eilenberg complex is a projective resolution of k.

Remark (Derived functor). As in a previous talk, one can apply the left
exact functor Homg (−,M) ∼= HomUg (−,M), for a g-module M to the
Chevalley-Eilenberg complex. This leads to a complex of Ug-linear maps on
the Bi. As f (u⊗ g1 ∧ . . . ∧ gi) = u.f (1⊗ g1 ∧ . . . ∧ gi) ∀f ∈ Homug (Bi,M),
these are uniquely determined by their values on 1⊗Λig and hence HomUg (Bi,M) ∼=
Homk

(
Λig,M

)
.

This construction leads to the following definition:

Definition (Standard complex). Let g be a Lie algebra and V a g-module.
Define Ck (g, V ) as the set of k-linear, alternating maps from gk to V and
C0 (g, V ) = V . Set d : Ck (g, V ) → Ck+1 (g, V ) as dω (g1, . . . , gk+1) =∑k+1

j=1(−1)jgj .ω (g1, . . . , ĝj , . . . , gk+1)+
∑

i<j(−1)i+jω ([gi, gj ] , g1, . . . , ĝi, . . . , ĝj , . . . , gk+1)
∀ω ∈ Ck (g, V ) , gi ∈ g. As d2 = 0, this defines a complex, the standard com-
plex.

Example. Let ω ∈ Z2 (g, V ). This is equivalent to dω (x, y, z) = x.ω (y, z)−
y.ω (x, z) + z.ω (x, y)− ω ([x, y] , z) + ω ([x, z] , y)− ω ([y, z] , x) = 0.
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Proposition. Let ω ∈ C2 (g, V ). Then ω leads to an abelian extension gω =
V⊕g with the Lie bracket [(v, g) , (v′, g′)] = (g.v′ − g′.v + ω (g, g′) , [g, g′]) ∀v, v′ ∈
V, g, g′ ∈ g of g by V if and only if ω ∈ Z2 (g, V ).

Proof. The Lie bracket is skew symmetric by definition, but the Jacobi iden-
tity should hold, too. Writing down the first term of the Jacobi identity one
gets, with v, v′, v′′ ∈ V and g, g′, g′′ ∈ g:[[

(v, g) ,
(
v′, g′

)]
,
(
v′′, g′′

)]
=
[(
g.v′ − g′.v + ω

(
g, g′

)
,
[
g, g′

])
,
(
v′′, g′′

)]
=
([
g, g′

]
.v′′ − g′′.

(
g.v′ − g′.v + ω

(
g, g′

))
+ ω

([
g, g′

]
, g′′
)
,
[[
g, g′

]
, g′′
])

If one takes the sum over the permutations, as in the Jacobi identity, the
second component vanishes, as the Jacobi identity holds for the Lie bracket
in g. If one focuses at the first component, one gets:([

g, g′
]
.v′′ − g′′.

(
g.v′ − g′.v + ω

(
g, g′

))
+ ω

([
g, g′

]
, g′′
))

+
([
g′′, g

]
.v′ − g′.

(
g′′.v − g.v′′ + ω

(
g′′, g

))
+ ω

([
g′′, g

]
, g′
))

+
([
g′, g′′

]
.v − g.

(
g′.v′′ − g′′.v′ + ω

(
g′, g′′

))
+ ω

([
g′, g′′

]
, g
))

=
[
g, g′

]
.v′′ − g.g′.v′′ + g′.g.v′′ +

[
g′′, g

]
.v′ − g′′.g.v′ + g.g′′.v′

+
[
g′, g′′

]
.v − g′.g′′.v + g′′.g′.v

+ g.ω
(
g′, g′′

)
− g′.ω

(
g, g′′

)
+ g′′.ω

(
g, g′

)
− ω

([
g, g′

]
, g′′
)

+ ω
([
g, g′′

]
, g′
)
− ω

([
g′, g′′

]
, g
)

The first two rows of terms vanish by the definition of a Lie algebra action.
The third and fourth row of terms are exactly the equation one gets as
the derivative dω of ω ∈ C2 (g, V ). The Jacobi identity holds if and only if
it vanishes. This eqivalent to ω being a cocycle. Then gω → g defines an
extension of g by V .

Theorem. Let g be a Lie algebra and V an abelian Lie algebra. Then:

Ext (g, V ) ∼= H2 (g, V ) = Z2 (g, V ) /d
(
C1 (g, V )

)
Proof. ”⊇“ Let ω ∈ Z2 (g, V ). As shown above, this leads to an extension

of g by V . It remains to show, that equivalent cocycles ω, ω′ lead
to equivalent extensions. Therefore one wants to define a Lie algebra
homomorphism φ : gω → gω′ , which has to be of the form φ : (v, g) 7→(
v + φ̃ (g) , g

)
, as it has to be the identity on the second component,

and you get the first component by linearity and Lie brackets. One
computes by an similar calculation as above, that it commutes with
the Lie brackets if and only if ω = ω′ + dφ̃, that means, if ω and ω′

are in the same equivalence class. In this part of the proof, it is only
necessary to know, that equivalent cocycles are mapped to the same
equivalence class of extensions, but later also the other direction is
needed, i.e. if gω and gω′ are eqivalent, then ω and ω′ are so as well
via the equation between them above.
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”⊆“ Let V i→ g̃
q→ g be an abelian extension. One wants to show, that it is

equivalent to another abelian extension gω → g, where ω ∈ Z2 (g, V ).
Choose a section σ : g→ g̃, such that q ◦ σ = idg, as above.

Let ω (g, h) = [σ (g) , σ (h)] − σ ([g, h]) ∀g, h ∈ g. To make sure it is a
cocycle, one has to check:

– im (ω) ⊂ V ∼= i (V ), i.e. q (ω (g, h)) = 0:
q is a Lie algebra homomorphism, and therefore q (ω (g, h)) =
[q (σ (g)) , q (σ (h))]− q (σ ([g, h])) = 0

– ω ∈ Z2 (g, V ), i.e. dω = 0 (via computation, using skew symmetry
and Jacobi identity for the Lie brackets, and the definition of the
g-action on V )

Now we want to show, that gω → g is eqivalent to g̃→ g:
Set φ : gω ∼= V × g→ g̃, (v, g) 7→ i (v) + σ (g). φ is a bijective module-
homomorphism. φ is as well a Lie algebra homomorphism from gω to
g̃ as φ ([(v, g) , (v′, g′)]) = i (g.v′)− i (g′.v) + i ([σg, σg′])− i (σ [g, g′]) +
σ [g, g′] = [i (v) , σg′] + [σg, i (v′)] + [σg, σg′] (use again the definition of
the g-action on V )
ω only depends on the eqivalence class of the given extension: If two
eqivalent extensions lead to two different extensions gω and gω′ , these
are equivalent, too. Due to the remark in the first part of the proof,
then ω and ω′ are equivalent.

Example (Heisenberg algebra). Let H̃ =


0 a 0

0 0 b
0 0 0

∣∣∣∣a, b ∈ R

 ∼= R2

and A =


0 0 c

0 0 0
0 0 0

∣∣∣∣c ∈ R

 ∼= R. To determine H2
(
H̃, A

)
one has to

look for bilinear, antisymmetric maps from R2 to R. From linear algebra or
differential geometry it is known, that the determinant ω is the only such
map, up to scalar multiplication. Therefore the only eqivalence class of ex-
tensions (up to scalar multiplication) of H̃ by A can be constructed via ω,

where ω

0 a 0
0 0 b
0 0 0

 ,

0 c 0
0 0 d
0 0 0

 =

0 0 ad− cb
0 0 0
0 0 0

:

A→ H → H̃, where H = A× H̃ =


0 a c

0 0 b
0 0 0

∣∣∣∣a, b, c ∈ R3


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H is exactly the Heisenberg algebra, with induced Lie bracket ω (all other
components vanish). One also computes that the action of H̃ on A in this
case is trivial.
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