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Chapter 1Introdu
tion.The purpose of these notes is to provide a rapid introdu
tion to von Neumannalgebras whi
h gets to the examples and a
tive topi
s with a minimum ofte
hni
al baggage. In this sense it is opposite in spirit from the treatises ofDixmier [℄, Takesaki[℄, Pedersen[℄, Kadison-Ringrose[℄, Stratila-Zsido[℄. Thephilosophy is to lavish attention on a few key results and examples, and weprefer to make simplifying assumptions rather than go for the most general
ase. Thus we do not hesitate to give several proofs of a single result, or repeatan argument with di�erent hypotheses. The notes are built around semester-long 
ourses given at UC Berkeley though they 
ontain more material than
ould be taught in a single semester.The notes are informal and the exer
ises are an integral part of the ex-position. These exer
ises are vital and mostly intended to be easy.
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Chapter 2Ba
kground and Prerequisites
2.1 Hilbert Spa
eA Hilbert Spa
e is a 
omplex ve
tor spa
eH with inner produ
t 〈, 〉 : HxH →
C whi
h is linear in the �rst variable, satis�es 〈ξ, η〉 = 〈η, ξ〉, is positivede�nite, i.e. 〈ξ, ξ〉 > 0 for ξ 6= 0, and is 
omplete for the norm de�ned by test
||ξ|| =

√

〈ξ, ξ〉.Exer
ise 2.1.1. Prove the parallelogram identity :
||ξ − η||2 + ||ξ + η||2 = 2(||ξ||2 + ||η||2)and the Cau
hy-S
hwartz inequality:

|〈ξ, η〉| ≤ ||ξ|| ||η||.Theorem 2.1.2. If C is a 
losed 
onvex subset of H and ξ is any ve
tor in
H, there is a unique η ∈ C whi
h minimizes the distan
e from ξ to C, i.e.
||ξ − η′|| ≤ ||ξ − η|| ∀η′ ∈ C.Proof. This is basi
ally a result in plane geometry.Uniqueness is 
lear�if two ve
tors η and η′ in C minimized the distan
eto ξ, then ξ, η and η′ lie in a (real) plane so any ve
tor on the line segmentbetween η and η′ would be stri
tly 
loser to ξ.To prove existen
e, let d be the distan
e from C to ξ and 
hoose a sequen
e
ηn ∈ C with ||ηn − ξ|| < d + 1/2n. For ea
h n, the ve
tors ξ, ηn and ηn+1de�ne a plane. Geometri
ally it is 
lear that, if ηn and ηn+1 were not 
lose,some point on the line segment between them would be 
loser than d to ξ.Formally, use the parallelogram identity:

||ξ − ηn + ηn+1

2
||2 = ||ξ − ηn

2
+
ξ − ηn+1

2
||25



= 2(||ξ − ηn
2

||2 + ||ξ − ηn+1

2
||2 − 1/8||ηn − ηn+1||2)

≤ (d+ 1/2n)2 − 1/4||ηn − ηn+1||2Thus there is a 
onstant K su
h that ||ηn−ηn+1||2 < K/2n or ||ξ− ηn+ηn+1

2
||2would be less than d2.Thus (ηn) is Cau
hy, its limit is in C and has distan
e d from ξ.Exer
ise 2.1.3. If φ ∈ H∗ (the Bana
h-spa
e dual of H 
onsisting of all
ontinuous linear fun
tionals from H to C), kerφ is a 
losed 
onvex subsetof H. Show how to 
hoose a ve
tor ξφ orthogonal to ker φ with φ(η) = 〈ξφ, η〉and so that φ 7→ ξφ is a 
onjugate-linear isomorphism from H∗ onto H.We will be espe
ially 
on
erned with separable Hilbert Spa
es where thereis an orthonormal basis, i.e. a sequen
e {ξ1, ξ2, ξ3, ...} of unit ve
tors with

〈ξi, ξj〉 = 0 for i 6= j and su
h that 0 is the only element of H orthogonal toall the ξi.Exer
ise 2.1.4. Show that an orthonormal basis always exists (e.g. Gram-S
hmidt) and that if {ξi} is an orthonormal basis for H then the linear spanof the {ξi} is dense in H.A linear map (operator) a : H → K is said to be bounded if there is anumber K with ||aξ|| ≤ K||ξ|| ∀ξ ∈ H. The in�mum of all su
h K is 
alledthe norm of a, written ||a||. The set of all bounded operators from H to Kis written B(H,K) and if H = K we use B(H). Boundedness of an operatoris equivalent to 
ontinuity.To every bounded operator a between Hilbert spa
esH and K, by exer
ise2.1.3 there is another, a∗, between K and H, 
alled the adjoint of a whi
h isde�ned by the formula 〈aξ, η〉 = 〈ξ, a∗η〉.Exer
ise 2.1.5. Prove that
||a|| =

sup

||ξ|| ≤ 1, ||η|| ≤ 1
|〈aξ, η〉|

= ||a∗|| = ||a∗a||1/2.Some de�nitions:The identity map on H is a bounded operator denoted 1.An operator a ∈ B(H) is 
alled self-adjoint if a = a∗.An operator p ∈ B(H) is 
alled a proje
tion if p = p2 = p∗.An operator a ∈ B(H) is 
alled positive if 〈aξ, ξ〉 ≥ 0 ∀ξ ∈ B(H). We say6



a ≥ b if a− b is positive.An operator u ∈ B(H) is 
alled an isometry if u∗u = 1.An operator v ∈ B(H) is 
alled a unitary if uu∗ = u∗u = 1.An operator u ∈ B(H) is 
alled a partial isometry if u∗u is a proje
tion.The last three de�nitions extend to bounded linear operators between dif-ferent Hilbert spa
es.If S ⊆ B(H) then the 
ommutant S ′ of S is {x ∈ B(H)|xa = ax ∀a ∈ S}.Also S ′′ = (S ′)′.Exer
ise 2.1.6. Show that every a ∈ B(H) is a linear 
ombination of twoself-adjoint operators.Exer
ise 2.1.7. A positive operator is self-adjoint.Exer
ise 2.1.8. Find an isometry from one Hilbert spa
e to itself that isnot unitary. (The unilateral shift on H = ℓ2(N) is a �ne example. There isan obvious orthonormal basis of H indexed by the natural numbers and theshift just sends the nth. basis element to the (n+ 1)th.)Exer
ise 2.1.9. If K is a 
losed subspa
e of H show that the map PK : H →
K whi
h assigns to any point in H the nearest point in K is linear and aproje
tion.Exer
ise 2.1.10. Show that the 
orresponden
e K → PK of the previousexer
ise is a bije
tion between 
losed subspa
es of H and proje
tions in B(H).If S is a subset of H, S⊥ is by de�nition {ξ ∈ H : 〈ξ, η〉 = 0 ∀η ∈ S}.Note that S⊥ is always a 
losed subspa
e.Exer
ise 2.1.11. If K is a 
losed subspa
e then K⊥⊥ = K and PK⊥ = 1−PK.Exer
ise 2.1.12. If u is a partial isometry then so is u∗. The subspa
e u∗His then 
losed and 
alled the initial domain of u, the subspa
e uH is also
losed and 
alled the �nal domain of u. Show that a partial isometry is the
omposition of the proje
tion onto its initial domain and a unitary betweenthe initial and �nal domains.The 
ommutator [a, b] of two elements of B(H) is the operator ab− ba.Exer
ise 2.1.13. If K is a 
losed subspa
e and a = a∗ then

aK ⊆ K iff [a, PK] = 0.In general (aK ⊆ K and a∗K ⊆ K) ⇐⇒ [a, PK] = 0.7



2.2 The Spe
tral TheoremThe spe
trum σ(a) of a ∈ B(H) is {λ ∈ C : a− λ1 is not invertible}.Exer
ise 2.2.1. (Look up proofs if ne
essary.) Show that σ(a) is a non-empty 
losed bounded subset of C and that if a = a∗, σ(a) ⊆ [−||a||, ||a|| ]with either ||a|| or −||a|| in σ(a).The spe
tral theorem takes a bit of getting used to and knowing howto prove it does not ne
essarily help mu
h. If one 
annot �see� the spe
tralde
omposition of an operator it may be extremely di�
ult to obtain�ex
eptin a small �nite number of dimensions where it is just diagonalisation. Butfortunately there is nothing like a 
ourse in operator algebras, either C∗ orvon Neumann, to help master the use of this theorem whi
h is the heart oflinear algebra on Hilbert spa
e. The book by Reed and Simon, �Methods ofmathemati
al physi
s� vol. 1, Fun
tional Analysis, 
ontains a treatment ofthe spe
tral theorem whi
h is perfe
t ba
kground for this 
ourse. We willmake no attempt to prove it here�just give a vague statement whi
h willestablish terminology.The spe
tral theorem asserts the existen
e of a proje
tion valued measurefrom the Borel subsets of σ(a) (when a = a∗ or more generally when a isnormal i.e. [a, a∗] = 0) to proje
tions in B(H), written symboli
ally λ →
E(λ), su
h that

a =

∫

λdE(λ).This integral may be interpreted as a limit of sums of operators (ne
essitatinga topology on B(H)), as a limit of sums of ve
tors: aξ =
∫

λdE(λ)ξ or simplyin terms of measurable fun
tions 〈ξ, aη〉 =
∫

λd〈ξ, E(λ)η〉. The proje
tions
E(B) are 
alled the spe
tral proje
tions of a and their images are 
alled thespe
tral subspa
es of a.Given any bounded Borel 
omplex-valued fun
tion f on σ(a) one mayform f(a) by f(a) =

∫

f(λ)dE(λ).Exer
ise 2.2.2. If µ is a sigma-�nite measure on X and f ∈ L∞(X,µ),the operator Mf : L2(X,µ) → L2(X,µ), (Mfg)(x) = f(x)g(x), is a bounded(normal) operator with ||Mf || = ess-supx∈X(|f(x)|). If f is real valued then
Mf is self adjoint. Find σ(f) and the proje
tion-valued measure E(λ).Exer
ise 2.2.3. If dim(H) < ∞ �nd the spe
trum and proje
tion-valuedmeasure for a (whi
h is a Hermitian matrix).8



The example of exer
ise 2.2.2 is generi
 in the sense that there is a versionof the spe
tral theorem whi
h asserts the following. If ξ ∈ H is any ve
torand a = a∗ ∈ B(H), let K be the 
losed linear span of the {anξ : n =
0, 1, 2, 3, ...}, then a de�nes a self-adjoint operator on K and there is a �nitemeasure µ on the spe
trum σ(a) su
h that (K, a) is isomorphi
 in the obvioussense to (L2(σ(a), µ), multipli
ation by x). Continuing su
h an argument byrestri
ting to K⊥ one obtains a full spe
tral theorem.Exer
ise 2.2.4. Show that a self-adjoint operator a is the di�eren
e a+−a−of two positive 
ommuting operators 
alled the positive and negative parts of
a, obtained as fun
tions of a as above.2.3 Polar de
ompositionExer
ise 2.3.1. Show that every positive operator a has a unique positivesquare root a1/2.Given an arbitrary a ∈ B(H) we de�ne |a| = (a∗a)1/2.Exer
ise 2.3.2. Show that there is a partial isometry u su
h that a = u|a|,and that u is unique subje
t to the 
ondition that its initial domain is ker(a)⊥.The �nal domain of this u is Im(a) = ker(a∗)⊥.2.4 Tensor produ
t of Hilbert Spa
es.If H and K are Hilbert spa
es one may form their algebrai
 tensor produ
t
H ⊗alg K (in the 
ategory of 
omplex ve
tor spa
es). On this ve
tor spa
eone de�nes the sesquilinear form 〈, 〉 by:

〈ξ ⊗ η, ξ′ ⊗ η′〉 = 〈ξ, ξ′〉〈η, η′〉and observes that this form is positive de�nite. The Hilbert spa
e tensorprodu
t H ⊗K is then the 
ompletion of H ⊗alg K. It is easy to see that if
a ∈ B(H), b ∈ B(K), there is a bounded operator a⊗ b on H⊗K de�ned by
a⊗ b(ξ ⊗ η) = aξ ⊗ bη.Exer
ise 2.4.1. Let L2(X,H, µ) be the Hilbert spa
e of measurable squareintegrable fun
tions (up to null sets) f : X → H, with H a separable Hilbertspa
e. For ea
h ξ ∈ H and f ∈ L2(X,µ) let fξ ∈ L2(X,H, µ) be de�nedby fξ(x) = f(x)ξ. Show that the map ξ ⊗ f 7→ fξ de�nes a unitary from
H⊗ L2(X,µ) onto L2(X,H, µ). 9
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Chapter 3The de�nition of a von Neumannalgebra.
3.1 Topologies on B(H)1. The norm or uniform topology is given by the norm ||a|| de�ned inthe previous 
hapter.2. The topology on B(H) of pointwise 
onvergen
e on H is 
alled thestrong operator topology. A basis of neighbourhoods of a ∈ B(H) isformed by the

N(a, ξ1, ξ2, ..., ξn, ǫ) = {b : ||(b− a)ξi|| < ǫ ∀i = 1, · · · , n}3. The weak operator topology is formed by the basi
 neighbourhoods
N(a, ξ1, ξ2, ..., ξn, η1, η2, .., ηn, ǫ) = {b : |〈(b−a)ξi, ηi〉| < ǫ ∀i = 1, · · · , n}Note that this weak topology is the topology of pointwise 
onvergen
e on Hin the �weak topology� on H de�ned in the obvious way by the inner produ
t.The unit ball of H is 
ompa
t in the weak topology and the unit ballof B(H) is 
ompa
t in the weak operator topology. These assertions followeasily from Ty
hono�'s theorem.Exer
ise 3.1.1. Show that we have the following ordering of the topologies(stri
t in in�nite dimensions).(weak operator topology) < (strong operator topology) < (norm topology)Note that a weaker topology has less open sets so that if a set is 
losed inthe weak topology it is ne
essarily 
losed in the strong and norm topologies.11



3.2 The bi
ommutant theorem.We will now prove the von Neumann �density� or �bi
ommutant� theoremwhi
h is the �rst result in the subje
t. We prove it �rst in the �nite dimen-sional 
ase where the proof is transparent then make the slight adjustmentsfor the general 
ase.Theorem 3.2.1. Let M be a self-adjoint subalgebra of B(H) 
ontaining 1,with dim(H) = n <∞. Then M = M ′′.Proof. It is tautologi
al that M ⊆ M ′′.So we must show that if y ∈M ′′ then y ∈M . To this end we will �amplify�the a
tion ofM onH to an a
tion onH⊗H de�ned by x(ξ⊗η) = xξ⊗η. If we
hoose an orthonormal basis {vi} of H then H⊗H = ⊕n
i=1H and in terms ofmatri
es we are 
onsidering the n x n matri
es over B(H) and embedding Min it as matri
es 
onstant down the diagonal. Clearly enough the 
ommutantofM on H⊗H is the algebra of all n xn matri
es with entries inM ′ and these
ond 
ommutant 
onsists of matri
es having a �xed element of M ′′ downthe diagonal.Let v be the ve
tor ⊕n

i=1vi ∈ ⊕n
i=1H and let V = Mv ⊆ H ⊗ H. Then

MV ⊆ V and sin
e M = M∗, PV ∈M ′ (on H⊗H) by exer
ise 2.1.13. So if
y ∈M ′′ (onH⊗H), then y 
ommutes with PV and yMv ⊆Mv. In parti
ular
y(1v) = xv for some x ∈M so that yvi = xvi for all i, and y = x ∈ M .Theorem 3.2.2. (von Neumann) Let M be a self-adjoint subalgebra of B(H)
ontaining 1. Then M ′′ = M (
losure in the strong operator topology).Proof. Commutants are always 
losed so M ⊆M ′′.So let a ∈ M ′′ and N(a, ξ1, ξ2, ..., ξn, ǫ) be a strong neighbourhood of
a. We want to �nd an x ∈ M in this neighbourhood. So let v ∈ ⊕n

i=1Hbe ⊕n
i=1ξi and let B(H) a
t diagonally on ⊕n

i=1H as in the previous theorem.Then the same observations as in the previous proof 
on
erning matrix formsof 
ommutants are true. Also M 
ommutes with PMv whi
h thus 
ommuteswith a (on ⊕n
i=1H). And sin
e 1 ∈ M , av = ⊕aξi is in the 
losure of Mv sothere is an x ∈M with ||xξi − aξi|| < ǫ for all i.Corollary 3.2.3. If M = M∗ is a subalgebra of B(H) with 1 ∈M , then thefollowing are equivalent:1. M = M ′′2. M is strongly 
losed.3. M is weakly 
losed. 12



De�nition 3.2.4. A subalgebra of B(H) satisfying the 
onditions of 
orollary3.2.3 is 
alled a von Neumann algebra.(A self-adjoint subalgebra of B(H) whi
h is 
losed in the norm topologyis 
alled a C∗-algebra.)3.3 Examples.Example 3.3.1. Any �nite dimensional *-subalgebra of B(H) 
ontaining 1.Example 3.3.2. B(H) itself.Exer
ise 3.3.3. Let (X,µ) be a �nite measure spa
e and 
onsider A =
L∞(X,µ) as a *-subalgebra of B(L2(X,µ)) (as multipli
ation operators asin exer
ise 2.2.2). Show that A = A′, i.e. A is maximal abelian and hen
e avon Neumann algebra. (Hint: if x ∈ A′ let f = x(1). Show that f ∈ L∞ andthat x = Mf .)Example 3.3.4. If S ⊆ B(H), we 
all (S ∪ S∗)′′ the von Neumann algebragenerated by S. It is, by theorem 3.2.2 the weak or strong 
losure of the*-algebra generated by 1 and S. Most 
onstru
tions of von Neumann algebrasbegin by 
onsidering some family of operators with desirable properties andthen taking the von Neumann algebra they generate. But is is quite hard,in general, to get mu
h 
ontrol over the operators added when taking theweak 
losure, and all the desirable properties of the generating algebra maybe lost. (For instan
e any positive self-adjoint operator a with ||a|| ≤ 1is a weak limit of proje
tions.) However, if the desirable properties 
anbe expressed in terms of matrix 
oe�
ients then these properties will bepreserved under weak limits sin
e the matrix 
oe�
ients of a are just spe
ialelements of the form 〈ξ, aη〉. We shall now treat an example of this kind ofproperty whi
h is at the heart of the subje
t and will provide us with a hugesupply of interesting von Neumann algebras quite di�erent from the �rst 3examples.Let Γ be a dis
rete group and let ℓ2(Γ) be the Hilbert spa
e of all fun
tions
f : Γ → C with∑

γ∈Γ

|f(γ)|2 <∞ and inner produ
t 〈f, g〉 =
∑

γ∈Γ

f(γ)g(γ). Anorthonormal basis of ℓ2(Γ) is given by the {εγ} where εγ(γ′) = δγ,γ′ so that
f =

∑

γ∈Γ

f(γ)εγ in the ℓ2 sense. For ea
h γ ∈ Γ de�ne the unitary operator uγby (uγf)(γ′) = f(γ−1γ′). Note that uγuρ = uγρ and that uγ(ερ) = εγρ. Thus
γ 7→ uγ is a unitary group representation 
alled the left regular representation.The uγ are linearly independent so the algebra they generate is isomorphi
13



to the group algebra CΓ. The von Neumann algebra generated by the uγgoes under various names, U(Γ), λ(Γ) and L(Γ) but we will 
all it vN(Γ) asit is the �group von Neumann algebra� of Γ.To see that one 
an 
ontrol weak limits of linear 
ombinations of the uγ,
onsider �rst the 
ase Γ = Z/nZ. With basis u0, u1, u2, · · · , un−1, the element
u1 is represented by the matrix:

















0 1 0 0 . .
0 0 1 0 0 .
0 . 0 1 0 0
0 . . 0 1 0
0 0 . . 0 1
1 0 0 . . 0















whi
h is a matrix 
onstant along the �diagonals�. Clearly all powers of u1 andall linear 
ombinations of them have this property also so that an arbitraryelement of the algebra they generate will have the matrix form (when n = 6):
















a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a















(Su
h matri
es are known as 
ir
ulant matri
es but to the best of our knowl-edge this term only applies when the group is 
y
li
.) If Z/nZ were repla
edby another �nite group the same sort of stru
ture would prevail ex
ept thatthe �diagonals� would be more 
ompli
ated, a

ording to the multipli
ationtable of the group.Now let Γ be an in�nite group. It is still true that the (γ, ρ) matrix entry ofa �nite linear 
ombination of the uγ's will depend only on γ−1ρ. As observedabove, the same must be true of weak limits of these linear 
ombinations,hen
e of any element of vN(Γ).We see that the elements of vN(Γ) have matri
es (w.r.t. the basis εγ)whi
h are 
onstant along the �diagonals� : {(γ, ρ) : γρ−1 is 
onstant}.Exer
ise 3.3.5. Che
k whether it should be γ−1ρ or γρ−1 or some othersimilar expression.....Using the number cγ on the diagonal indexed by γ we 
an write, formallyat least, any element of vN(Γ) as a sum ∑

γ∈Γ

cγuγ. It is not 
lear in what14



sense this sum 
onverges but 
ertainly∑
γ∈Γ

cγuγ must de�ne a bounded linearoperator. From this we dedu
e immediately the following:(i) The fun
tion γ 7→ cγ is in ℓ2. (Apply∑
γ∈Γ

cγuγ to εid.)(ii) (
∑

γ∈Γ

cγuγ)(
∑

γ∈Γ

dγuγ) =
∑

γ∈Γ

(
∑

ρ∈Γ

cρdρ−1γ)uγwhere the sum de�ning the 
oe�
ient of uγ on the right hand side 
on-verges sin
e ρ 7→ cρ and ρ 7→ dρ−1γ are in ℓ2.Exa
tly what fun
tions γ 7→ cγ de�ne elements of vN(Γ) is un
lear butan important spe
ial 
ase gives some intuition.Case 1. Γ = Z.It is well known that the map∑ cnεn →∑

cne
inθ de�nes a unitary V from

ℓ2(Γ) to L2(T). Moreover V unV −1(eikθ) = V un(εk) = V ε(k+n) = einθeikθ sothat V unV −1 is the multipli
ation operator Meinθ . Standard spe
tral theoryshows that Meinθ generates L∞(T) as a von Neumann algebra, and 
learlyif Mf ∈ L∞(T), V −1MfV =
∑

cnεn where ∑ cne
inθ is the Fourier seriesof f . We see that, in this 
ase, the fun
tions γ 7→ cγ whi
h de�ne elementsof vN(Z) are pre
isely the Fourier series of L∞ fun
tions. In 
ase we forgetto point it out later on when we are in a better position to prove it, oneway to 
hara
terise the fun
tions whi
h de�ne elements on vN(Γ) is as allfun
tions whi
h de�ne bounded operators on ℓ2(Γ). This is not parti
ularlyilluminating but 
an be useful at math parties.At the other extreme we 
onsider a highly non-
ommutative group, thefree group on n generators, n ≥ 2.Case 2. Γ = Fn.�Just for fun� let us 
ompute the 
entre Z(vN(Γ)) of vN(Fn), i.e. those

∑

cγuγ that 
ommute with all x ∈ vN(Γ). By weak limits of linear 
ombi-nations, for ∑ cγuγ to be in Z(vN(Γ)) it is ne
essary and su�
ient that it
ommute with every uγ. This 
learly is the same as saying cγργ−1 = cρ ∀γ, ρ,i.e. the fun
tion c is 
onstant on 
onjuga
y 
lasses. But in Fn all 
onjuga
y
lasses ex
ept that of the identity are in�nite. Now re
all that γ 7→ cγ is in
ℓ2. We 
on
lude that cγ = 0 ∀γ 6= 1, i.e. Z(vN(Γ)) = C1.Note that the only property we used of Fn to rea
h this 
on
lusion wasthat every non-trivial 
onjuga
y 
lass is in�nite (and in general it is 
learthat Z(vN(Γ)) is in the linear span of the uγ with γ in a �nite 
onjuga
y
lass.) Su
h groups are 
alled i.
.
. groups and they abound. Other examplesin
lude S∞ (the group of �nitely supported permutations of an in�nite set),
PSL(n,Z) and Q ⋊ Q∗.Unsolved problem in von Neumann algebras:15



Is vN(Fn) ∼= vN(Fm) for n 6= m (for n and m ≥ 2)?Note that it is obvious that the group algebras CFn and CFm are not iso-morphi
. Just 
onsider algebra homomorphisms to C. But of 
ourse thesehomomorphisms will not extend to vN(Γ).De�nition 3.3.6. A von Neumann algebra whose 
entre is C1 is 
alled afa
tor.Exer
ise 3.3.7. Show that B(H) is a fa
tor.Exer
ise 3.3.8. Suppose H = K1 ⊗ K2 and let M = B(K1) ⊗ 1 Show that
M ′ = 1 ⊗ B(K2) so that M and M ′ are fa
tors.This exer
ise is supposed to explain the origin of the term �fa
tor� as inthis 
ase M and M ′ 
ome from a tensor produ
t fa
torisation of H. Thus ingeneral a fa
tor and its 
ommutant are supposed to 
orrespond to a bizarre"fa
torisation" of the Hilbert spa
e.The fa
tor we have 
onstru
ted as vN(Γ) is of an entirely di�erent naturefrom B(H). To see this 
onsider the fun
tion tr : vN(Γ) → C de�ned by
tr(a) = 〈aε1, ε1〉, or tr(∑ cγuγ) = c1. This map is 
learly linear, weakly
ontinuous, satis�es tr(ab) = tr(ba) and tr(x∗x) =

∑

γ |cγ |2 ≥ 0 (when
x =

∑

γ cγuγ). It is 
alled a tra
e on vN(Γ). If Γ = Z it obviously equals
1
2π

∫ 2π

0
f(θ)dθ under the isomorphism between vN(Z) and L∞(T).Exer
ise 3.3.9. (i)Suppose dimH < ∞. If tr : B(H) → C is a linear mapwith tr(ab) = tr(ba), show that there is a 
onstant K with tr(x) = Ktrace(x).(ii) There is no non-zero weakly 
ontinuous linear map tr : B(H) → Csatisfying tr(ab) = tr(ba) when dim(H) = ∞.(iii) There is no non-zero linear map tr : B(H) → C satisfying tr(ab) =

tr(ba) and tr(x∗x) ≥ 0 when dim(H) = ∞.(iv) (harder) There is no non-zero linear map tr : B(H) → C satisfying
tr(ab) = tr(ba) when dim(H) = ∞.Thus our fa
tors vN(Γ) when Γ is i.
.
. are in�nite dimensional but seemto have more in 
ommon with B(H) when dimH < ∞ than when dimH =
∞! They 
ertainly do not 
ome from honest tensor produ
t fa
torisations of
H. Let us make a 
ouple of observations about these fa
tors.1)They 
ontain no non-zero �nite rank operators, for su
h an operator
annot be 
onstant and non-zero down the diagonal. (Take x∗x if ne
essary.)2)They have the property that tr(a) = 0 ⇒ a = 0 for a positive element
a (a positive operator 
annot have only zeros down the diagonal).16



3)They have the property that uu∗ = 1 ⇒ u∗u = 1 (i.e. they 
ontain nonon-unitary isometries).Proof. If u∗u = 1, uu∗ is a proje
tion so 1 − uu∗ is too and tr(1 − uu∗) =
1 − tr(u∗u) = 0.Exer
ise 3.3.10. Show that in vN(Γ), ab = 1 ⇒ ba = 1. Show that if F isany �eld of 
hara
teristi
 0, ab = 1 ⇒ ba = 1 in FΓ.Hints: 1) You may use elementary property 8 of the next 
hapter.2) Only �nitely many elements of the �eld are involved in ab and ba in
FΓ .As far as I know this assertion is still open in non-zero 
hara
teristi
. Theabove exer
ise is a result of Kaplansky.The next observation is a remarkable property of the set of proje
tions.4) If Γ = Fn, {tr(p) : p a proje
tion in vN(Γ)} = [0, 1].Proof. It is 
lear that the tra
e of a proje
tion is between 0 and 1. To see thatone may obtain every real number in this interval, 
onsider the subgroup 〈a〉generated by a single non-zero element. By the 
oset de
omposition of Fn therepresentation of 〈a〉 on ℓ2(Fn) is the dire
t sum of 
ountably many 
opiesof the regular representation. The bi
ommutant of ua is then, by a matrixargument, vN(Z) a
ting in an �ampli�ed� way as blo
k diagonal matri
eswith 
onstant blo
ks so we may identify vN(Z) with a subalgebra of vN(Γ).Under this identi�
ation the tra
es on the two group algebras agree. But aswe have already observed, any element f ∈ L∞(0, 2π) de�nes an element of
vN(Z) whose integral is its tra
e. The 
hara
teristi
 fun
tion of an intervalis a proje
tion so by 
hoosing intervals of appropriate lengths we may realiseproje
tions of any tra
e.We used the bi
ommutant to identify vN(Z) with a subalgebra of vN(Γ).It is instru
tive to point out a problem that would have arisen had we triedto use the weak or strong topologies. A ve
tor in ℓ2(Γ) is a square summablesequen
e of ve
tors in ℓ2(Z) so that a basi
 strong neighbourhood of a on
ℓ2(Γ) would 
orrespond to a neighbourhood of the form {b :

∑∞
i=1 ||(a −

b)ξi||2 < ǫ} for a sequen
e (ξi) in ℓ2(Z) with ∑∞
i=1 ||ξi||2 < ∞. Thus strong
onvergen
e on ℓ2(Z) would not imply strong 
onvergen
e on ℓ2(Γ). Thisleads us naturally to de�ne two more topologies on B(H).De�nition 3.3.11. The topology de�ned by the basi
 neighbourhoods of a,

{b :
∑∞

i=1 ||(a − b)ξi||2 < ǫ} for any ǫ and any sequen
e (ξi) in ℓ2(H) with
∑∞

i=1 ||ξi||2 <∞, is 
alled the ultrastrong topology on B(H).17



The topology de�ned by the basi
 neighbourhoods
{b :

∞
∑

i=1

|〈(a− b)ξi, ηi〉| < ǫ}for any ǫ > 0 and any sequen
es (ξi), (ηi) in ℓ2(H) with
∞
∑

i=1

||ξi||2 + ||ηi||2 <∞is 
alled the ultraweak topology on B(H).Note that these topologies are pre
isely the topologies inherited on B(H)if it is ampli�ed in�nitely many times as B(H) ⊗ 1K with dimK = ∞.Exer
ise 3.3.12. Show that the ultrastrong and strong topologies 
oin
ideon a bounded subset of B(H) as do the weak and ultraweak topologies. Thatthey di�er will be shown in 5.1.4.Exer
ise 3.3.13. Repeat the argument of the von Neumann density theorem(3.2.2) with the ultrastrong topology repla
ing the strong topology.Here are some questions that the inquisitive mind might well ask at thisstage. All will be answered in su

eeding 
hapters.Question 1) If there is a weakly 
ontinuous tra
e on a fa
tor, is it unique(up to a s
alar multiple)?Question 2) If there is a tra
e on a fa
tor M is it true that {tr(p) :
p a proje
tion in M} = [0, 1]?Question 3) Is there a tra
e on any fa
tor not isomorphi
 to B(H)?Question 4) Are all (in�nite dimensional) fa
tors with tra
es isomorphi
?Question 5) If M is a fa
tor with a tra
e, is M ′ also one? (Observe thatthe 
ommutant of a fa
tor is obviously a fa
tor.)Question 6) Is vN(Γ)′ the von Neumann algebra generated by the rightregular representation?Question 7) If φ : M → N is a ∗-algebra isomorphism between vonNeumann algebras on Hilbert spa
es H and K is there a unitary u : H → Kso that φ(a) = uau∗ for a ∈M? 18



3.4 Elementary properties of von Neumann al-gebras.Throughout this 
hapter M will be a von Neumann algebra on a Hilbertspa
e H.EP1) If a = a∗ is an element of M , all the spe
tral proje
tions and allbounded Borel fun
tions of a are in M . Consequently M is generated by itsproje
tions.A

ording to one's proof of the spe
tral theorem, the spe
tral proje
tions
E(λ) of a are 
onstru
ted as strong limits of polynomials in a. Or the prop-erty that the spe
tral proje
tions of a are in the bi
ommutant of a may bean expli
it part of the theorem. Borel fun
tions will be in the bi
ommutant.EP2) Any element in M is a linear 
ombination of 4 unitaries in M .Proof. We have seen that any x is a linear 
ombination of 2 self-adjoints,and if a is self-adjoint, ||a|| ≤ 1, let u = a+ i

√
1 − a2. Then u is unitary and

a = u+u∗

2
.EP3) M is the 
ommutant of the unitary group of M ′ so that an alter-native de�nition of a von Neumann algebra is the 
ommutant of a unitarygroup representation.This follows from EP2)Exer
ise 3.4.1. Show that multipli
ation of operators is jointly strongly 
on-tinuous on bounded subsets but not on all of B(H).Show that ∗ : B(H) 7→ B(H) is weakly 
ontinuous but not strongly 
on-tinuous even on bounded sets.The following result is well known and sometimes 
alled Vigier's theorem.Theorem 3.4.2. If {aα} is a net of self-adjoint operators with aα ≤ aβfor α ≤ β and ||aα|| ≤ K for some K ∈ R, then there is a self-adjoint

a with a = limαaα, 
onvergen
e being in the strong topology. Furthermore
a = lub(aα) for the poset of self-adjoint operators.Proof. A 
andidate a for the limit 
an be found by weak 
ompa
tness ofthe unit ball. Then 〈aαξ, ξ〉 is in
reasing with limit 〈aξ, ξ〉 for all ξ ∈ H and
a ≥ aα ∀α. So limα

√
a− aα = 0 in the strong topology. Now multipli
ationis jointly strongly 
ontinuous on bounded sets so s−lim aα = a.19



Note that we have slipped in the notation s−lim for a limit in the strongtopology (and obviously w−lim for the weak topology).If a and (aα) are as in 3.4.2 we say the net (aα) is monotone 
onvergentto a.EP4) M is 
losed under monotone 
onvergen
e of self-adjoint operators.The proje
tions on B(H) form an ortholatti
e with the following proper-ties:
p ≤ q ⇐⇒ pH ⊆ qH

p ∧ q = orthogonal proje
tion onto pH ∩ qH
p⊥ = 1 − p

p ∨ q = (p⊥ ∧ q⊥)⊥ = orthogonal proje
tion onto pH + qH.Exer
ise 3.4.3. Show that p ∧ q = s−lim n→∞(pq)n.The latti
e of proje
tions in B(H) is 
omplete (i.e. 
losed under arbitrarysups and infs) sin
e the interse
tion of 
losed subspa
es is 
losed.EP5) The proje
tions in M generate M as a von Neumann algebra, andthey form a 
omplete sublatti
e of the proje
tion latti
e of B(H).Proof. If S is a set of proje
tions inM then �nite subsets of S are a dire
tedset and F →
W

p∈F p is a net in M satisfying the 
onditions of 3.4.2. Thus thestrong limit of this net exists and is inM . It is obvious that this strong limitis W

p∈Sp, the sup being in B(H).Easier proof. For ea
h proje
tion p ∈M , pH is invariant under ea
h elementof M ′. Thus the interse
tion of these subspa
es is also.EP6) Let A be a *-subalgebra of B(H). Let W be T

a∈Aker(a) and K =

W⊥. Then K is invariant under A and if we let B = {a|K : a ∈ A}, then 1K isin the strong 
losure of B, whi
h is thus a von Neumann algebra. Moreoveron K, B′′ is the strong (weak, ultrastrong, ultraweak) 
losure of B.Proof. By the above, if p and q are proje
tions p ∨ q = 1 − (1 − p) ∧ (1 − q)is in the strong 
losure of the algebra generated by p and q. By spe
traltheory, if a = a∗ the range proje
tion Pker(a)⊥ is in the strong 
losure of thealgebra generated by a so we may apply the argument of the proof of EP5)to 
on
lude that W

a∈APker(a)⊥ is in the strong 
losure of A. But this is 1K.20



Finally, on K, let C be the algebra generated by 1 and B. Clearly C ′ = B′and just as 
learly the strong 
losure of B is the same as the strong 
losureof C. So B′′ is the strong 
losure of B by the bi
ommutant theorem.Thus if we were to de�ne a von Neumann algebra as a weakly or strongly
losed subalgebra of B(H), it would be unital as an abstra
t algebra but itsidentity might not be that of B(H) so it would not be equal to its bi
ommu-tant. However on the orthogonal 
omplement of all the irrelevant ve
tors itwould be a von Neumann algebra in the usual sense.EP7) If M is a von Neumann algebra and p ∈M is a proje
tion, pMp =
(M ′p)′ and (pMp)′ = M ′p as algebras of operators on pH. Thus pMp and
M ′p are von Neumann algebras.Proof. Obviously pMp and M ′p 
ommute with ea
h other on pH. Nowsuppose x ∈ (M ′p)′ ⊆ B(pH) and de�ne x̃ = xp(= pxp) ∈ B(H). Then if
y ∈ M ′, yx̃ = yxp = ypxp = (xp)(yp) = xpy = x̃y, so x̃ ∈ M and x = px̃p.Thus (pM ′)′ = pMp whi
h is thus a von Neumann algebra.If we knew that M ′p were a von Neumann algebra on pH we would bedone but a dire
t attempt to prove it strongly or weakly 
losed fails as wewould have to try to extend the limit of a net in M ′p on pH to be in M ′.So instead we will show dire
tly that (pMp)′ ⊆M ′p by a 
lever extensionof its elements to H. By EP2 it su�
es to take a unitary u ∈ (pMp)′. Let
K ⊆ H be the 
losure of MpH and let q be proje
tion onto it. Then K is
learly invariant under M and M ′ so q ∈ Z(M). We �rst extend u to K by

ũ
∑

xiξi =
∑

xiuξifor xi ∈M and ξi ∈ pH. We 
laim that ũ is an isometry:
||ũ
∑

xiξi||2 =
∑

i,j

〈xiuξi, xjuξj〉

=
∑

i,j

〈px∗jxipuξi, uξj〉

=
∑

i,j

〈upx∗jxipξi, uξj〉

= ... = ||
∑

xiξi||2This 
al
ulation a
tually shows that ũ is well de�ned and extends to anisometry of K. By 
onstru
tion ũ 
ommutes with M on MpH,hen
e on K.So ũq ∈ M ′ and u = ũqp. Hen
e (pMp)′ = M ′p.21



Corollary 3.4.4. If M is a fa
tor, pMp is a fa
tor on pH, as is pM ′.Moreover the map x 7→ xp from M ′ to M ′p is a weakly 
ontinuous *-algebraisomorphism.Proof. As in the proof of the previous result, the proje
tion onto the 
losureof MpH is in the 
entre of M , hen
e it is 1 . So if xp = 0 for x ∈ M ′,
xmpξ = mxpξ = 0 for any m ∈ M , ξ ∈ H. Hen
e the map x 7→ px is aninje
tive ∗-algebra map and pM ′ is a fa
tor. So by the previous result (pMp)′is a fa
tor and so is pMp. Continuity and the is obvious.Corollary 3.4.5. If M is a fa
tor and a ∈ M and b ∈ M ′ then ab = 0implies either a = 0 or b = 0.Proof. Let p be the range proje
tion of b and apply the previous 
orollary.Exer
ise 3.4.6. Show that if M is a von Neumann algebra generated by theself-adjoint, multipli
atively 
losed subset S, then pSp generates pMp (if p isa proje
tion in M or M ′). Show further that the result fails if S is not 
losedunder multipli
ation.Exer
ise 3.4.7. Show that if M is a fa
tor and V and W are �nite dimen-sional subspa
es of M and M ′ respe
tively then the map a⊗ b 7→ ab de�nesa linear isomorphism between V ⊗W and the spa
e VW spanned by all vwwith v ∈ V and w ∈W .EP8) If a ∈ M and a = u|a| is the polar de
omposition of a then u ∈ Mand |a| ∈M .Proof. By the uniqueness of the polar de
omposition both |a| and u 
ommutewith every unitary in M ′.EP9) None of the topologies (ex
ept || ∗ ||) is metrizable on B(H) butthey all are on the unit ball (when H is separable) and B(H) is separable forall ex
ept the norm topology.Proof. First observe that a weakly 
onvergent sequen
e of operators is bounded.This follows from the uniform boundedness prin
iple and 2.1.5 whi
h showshow to get the norm from inner produ
ts.Here is the 
unning tri
k. Let {ηi, i = 1, · · ·∞} be an orthonormal basis of
H and let ei be proje
tion onto Cηi. Consider the family {em+men : m,n =
1, · · ·∞}. Let V a basi
 ultrastrong neighbourhood of 0 de�ned by ǫ and {ξi :
∑ ||ξi||2 < ∞} and let | − |V be the 
orresponding seminorm, then writing22



ξi =
∑

j ξ
i
jηj we have ∑i,j |ξij|2 <∞. Now 
hoose m so that∑i |ξim|2 < ǫ2/4and n so that ∑i |ξin|2 < ǫ2/4m2. Observing that ||en(ξi)||2 = |ξni |2 we have

|em +men|V ≤ |em|V +m|en|V

=

√

∑

i

||emξ||2 +m

√

∑

i

||enξ||2

≤ ǫ/2 + ǫ/2so that en +men ∈ V .On the other hand no subsequen
e of {em + men : m,n = 1, · · ·∞} 
antend even weakly to 0 sin
e it would have to be bounded in norm whi
h wouldfor
e some �xed m to o

ur in�nitely often in the sequen
e, preventing weak
onvergen
e! So by the freedom in 
hoosing m and n to for
e em + men tobe in V , there 
an be no 
ountable basis of zero for any of the topologies(ex
ept of 
ourse the norm).If we 
onsider the unit ball, however, we may 
hoose a dense sequen
e ξi ofunit ve
tors and de�ne d(a, b) = [
∑

i 2
−i||(a− b)ξi||2]1/2 whi
h is a metri
 onthe unit ball de�ning the strong topology. (Similarly for the weak topology.)We leave non-separability of B(H) in the norm topology as an exer
ise.EP10) An Abelian von Neumann algebra on a separable Hilbert spa
e isgenerated by a single self-adjoint operator.Proof. Let {e0, e1, e2, · · · } be a sequen
e of proje
tions that is strongly densein the set of all proje
tions in the Abelian von Neumann algebra A. Let

a =
∑∞

n=0
1
3n
en. The sum 
onverges in the norm topology so a ∈ A. Thenorm of the self-adjoint operator a1 =

∑∞
n=1

1
3n
en is obviously at most 1/2so that the spe
tral proje
tion for the interval [3/4, 2] for a is e0. Continuingin this way we see that all the e′ns are in {a}′′.This relegates the study of Abelian von Neumann algebras to the spe
traltheorem. One 
an show that any Abelian von Neumann algebra on a sepa-rable Hilbert spa
e is isomorphi
 to either ℓ∞({0, 1, · · · , n}) (where n = ∞is allowed) or L∞([0, 1], dx) or a dire
t sum of the two. This is up to ab-stra
t algebra isomorphism. To understand the a
tion on a Hilbert spa
e,multipli
ity must be taken into a

ount.
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Chapter 4Finite dimensional von Neumannalgebras and type I fa
tors.
4.1 De�nition of type I fa
tor.The �rst 
ru
ial result about fa
tors (remember a fa
tor is a von Neumannalgebra with trivial 
entre) will be the following �ergodi
� property.Theorem 4.1.1. If M is a fa
tor and p and q are non-zero proje
tions in
M there is an x ∈M with pxq 6= 0. Moreover x 
an be 
hosen to be unitary.Proof. Suppose that for any unitary u ∈ M , puq = 0. Then u∗puq = 0 and
( W

u∈M u
∗pu
)

q = 0. But 
learly W

u∈M u
∗pu 
ommutes with all unitaries u ∈Mso is the identity.The reason we have 
alled this an �ergodi
� property is be
ause of a per-vasive analogy with measure-theoreti
 dynami
al systems (and it will be
omemu
h more than an analogy). A transformation T : (X,µ) → (X,µ) pre-serving the measure µ is 
alled ergodi
 if T−1(A) ⊆ A implies µ(A) = 0 or

µ(X \ A) = 0 for a measurable A ⊆ X. If T is invertible one 
an then showthat there is, for any pair A ⊂ X and B ⊂ X of non-null sets, a power T nof T su
h that µ(T n(A) ∩B) 6= 0. Or, as operators on L2(X,µ), ATNB 6= 0where we identify A and B with the multipli
ation operators by their 
har-a
teristi
 fun
tions. The proof is the same�the union of all T n(A) is 
learlyinvariant, thus must di�er from all of X by a set of measure 0.Corollary 4.1.2. Let p and q be non-zero proje
tions in a fa
tor M . Thenthere is a partial isometry u (6= 0) in M with uu∗ ≤ p and u∗u ≤ q. p and q had been swappedaround in the proof, so weinter
hanged uu∗ and u∗uin the statement.25



Proof. Let u be the partial isometry of the polar de
omposition of pxq for xsu
h that pxq 6= 0.De�nition 4.1.3. If M is a von Neumann algebra, a non-zero proje
tion
p ∈M is 
alled minimal, or an atom, if (q ≤ p) ⇒ (q = 0 or q = p).Exer
ise 4.1.4. Show that p is minimal in M i� pMp = Cp.De�nition 4.1.5. A fa
tor with a minimal proje
tion is 
alled a type Ifa
tor.4.2 Classi�
ation of all type I fa
torsWe will 
lassify all type I fa
tors quite easily. We begin with the model,whi
h we have already seen.Let B(H)⊗1 be the 
onstant diagonal matri
es on H⊗K. Its 
ommutant
1⊗B(K) will be our model. It is the algebra of all matri
es de�ning boundedoperators with every matrix entry being a s
alar multiple of the identitymatrix on H. A matrix with a single 1 on the diagonal and zeros elsewhereis obviously a minimal proje
tion.Theorem 4.2.1. IfM is a type I fa
tor of a Hilbert spa
e L, there are Hilbertspa
es H and K and a unitary u : L → H⊗K with uMu∗ = B(H) ⊗ 1.Proof. Let {p1, p2, ...} be a maximal family of minimal proje
tions inM su
hthat pipj = 0 for i 6= j. (We assume for 
onvenien
e that L is separable.) Our�rst 
laim is that ∨i pi = 1 so that L = ⊕ipiL. For if 1−∨i pi were nonzero,by 
orollary 4.1.2 there would be a u 6= 0 with uu∗ ≤ p1 and u∗u ≤ 1−∨i pi.By minimality uu∗ is minimal and hen
e so is u∗u 
ontradi
ting maximality ofthe pi. Now for ea
h i 
hoose a non-zero partial isometry e1i with e1ie∗1i ≤ p1and e∗1ie1i ≤ pi. By minimality e1ie∗1i = p1 and e∗1ie1i = pi. Then M isgenerated by the e1i's, for if a ∈M we have a =

∑

i,j piapj the sum 
onvergingin the strong topology, and piapj = e∗1ie1iae
∗
1je1j ∈ p1Mp1 = Cp1. Thus thereare s
alars λij so that a =

∑

i,j λije
∗
1ie1j . (The details of the 
onvergen
e ofthe sum are unimportant�we just need that a be in the strong 
losure of�nite sums.)If n is the 
ardinality of {pi}, let X = {1, 2, ..., n} and de�ne the map

u : ℓ2(X, p1L) → L by
uf =

∑

i

e∗1if(i).Observe that u is unitary and u∗e1iu is a matrix on ℓ2(X, p1L) with an identityoperator in the (1, i) position and zeros elsewhere. The algebra generated bythese matri
es is B(ℓ2(X)) ⊗ 1 on ℓ2(X) ⊗ p1L and we are done.26



Remark 4.2.2. The importan
e of being spatial.We avoided all kinds of problems in the previous theorem by 
onstru
tingour isomorphism using a unitary between the underlying Hilbert spa
es. Ingeneral given von Neumann algebras M and N generated by S and T respe
-tively, to 
onstru
t an isomorphism between M and N it su�
es to 
onstru
t(if possible !!!) a unitary u between their Hilbert spa
es so that T is 
ontainedin uSu∗. To try to 
onstru
t an isomorphism dire
tly on S 
ould be arduousat best.4.3 Tensor produ
t of von Neumann algebras.If M is a von Neumann algebra on H and N is a von Neumann algebra on
K we de�ne M ⊗N to be the von Neumann algebra on H⊗K generated by when you use \h, make sureit's en
losed in $ signs{x⊗ y : x ∈M, y ∈ N}.Exer
ise 4.3.1. Show that M ⊗ N 
ontains the algebrai
 tensor produ
t
M ⊗alg N as a strongly dense *-subalgebra.De�nition 4.3.2. Let M be a von Neumann algebra. A system of matrixunits (s.m.u.) of size n in M is a family {eij : i, j = 1, 2, ..., n} (n = ∞allowed) su
h that(i) e∗ij = eji.(ii) eijekl = δj,keil(iii) ∑i eii = 1.Exer
ise 4.3.3. Show that if {eij; i, j = 1, ..., n} is an s.m.u. in a vonNeumann algebra M , then the eij generate a type I fa
tor isomorphi
 to
B(ℓ2({1, 2, ..., n})) and that M is isomorphi
 (unitarily equivalent to in thisinstan
e) to the von Neumann algebra e11Me11 ⊗ B(ℓ2({1, 2, ..., n})).4.4 Multipli
ity and �nite dimensional von Neu-mann algebras.Theorem 4.2.1 shows that type I fa
tors on Hilbert spa
e are 
ompletely
lassi�ed by two 
ardinalities (n1, n2) a

ording to:

n1 = rank of a minimal proje
tion in M , and
n2 = rank of a minimal proje
tion in M ′.We see that the isomorphism problem splits into �abstra
t isomorphism�(determined by n2 alone), and �spatial isomorphism�, i.e. unitary equivalen
e.27



A type In fa
tor is by de�nition one for whi
h n = n2. It is abstra
tlyisomorphi
 to B(H) with dimH = n. The integer n1 is often 
alled themultipli
ity of the type I fa
tor.We will now determine the stru
ture of all �nite dimensional von Neu-mann algebras quite easily. Note that in the following there is no requirementthat H be �nite dimensional.Theorem 4.4.1. Let M be a �nite dimensional von Neumann algebra onthe Hilbert spa
e H. Then M is abstra
tly isomorphi
 to ⊕k
i=1Mni(C) forsome positive integers k, n1, n2, ..., nk. (Mn(C) is the von Neumann algebraof all n × n matri
es on n-dimensional Hilbert spa
e.) Moreover there areHilbert spa
es Ki and a unitary u : ⊕iℓ

2(Xi,Ki) → H (with |Xi| = ni) with
u∗Mu = ⊕iB(ℓ2(Xi)) ⊗ 1.Proof. The 
entre Z(M) is a �nite dimensional abelian von Neumann al-gebra. If p is a minimal proje
tion in Z(M), pMp is a fa
tor on pH.The theorem follows immediately from theorem 4.2.1 and the simple fa
tsthat Z(M) = ⊕k

i=1piC where the pi are the minimal proje
tions in Z(M)(two distin
t minimal proje
tions p and q in Z(M) satisfy pq = 0), and
M = ⊕ipiMpi.The subje
t of �nite dimensional von Neumann algebras is thus rathersimple. It be
omes slightly more interesting if one 
onsiders subalgebras N ⊆
M . Let us deal �rst with the fa
tor 
ase of this. Let us point out that theidentity of M is the same as that of N .Theorem 4.4.2. If M is a type In fa
tor, its type Im fa
tors are all uniquelydetermined, up to 
onjugation by unitaries in M , by the integer (or ∞)
k > 0 su
h that pMp is a type Ik fa
tor, p being a minimal proje
tion inthe subfa
tor N and mk = n.Proof. Let N1 and N2 be type Im subfa
tors with generating s.m.u.'s {eij}and {fij} respe
tively. If k is the integer (in the statement of the theorem)for N1 then 1 =

∑m
1 eii and ea
h eii is the sum of k mutually orthogonalminimal proje
tions of M , hen
e n = mk. The same argument applies to

N2. Build a partial isometry u with uu∗ = e11 and u∗u = f11 by addingtogether partial isometries between maximal families of mutually orthogonalproje
tions less than e11 and f11 respe
tively. Then it is easy to 
he
k that
w =

∑

i ej1uf1j is a unitary with wfklw∗ = ekl. So wN2w
∗ = N1.Now we 
an do the general (non-fa
tor) 
ase. If N = ⊕n

i=1Mki(C) and
M = ⊕m

j=1Mrj (C) and N ⊆ M as von Neumann algebras, let pj be minimal28




entral proje
tions inM and qi be those of N . Then for ea
h (i, j), pjqiMqipjis a fa
tor and pjqiN is a subfa
tor so we may form the matrix Λ = (λij)where λij is the integer asso
iated with pjqiN ⊆ pjqiMqipj by theorem 4.4.2.Exer
ise 4.4.3. Show that the integer λij de�ned above is the following:if ei is a minimal proje
tion in the fa
tor qiN , λij = tra
e of the matrix
pjei ∈MrjC.Example 4.4.4. Let M = M5(C) ⊕M3(C) and N be the subalgebra of ma-tri
es of the form:

(

X 0 0
0 X 0
0 0 z

)

⊕ (X 0
0 z )where z ∈ C and X is a 2×2 matrix. Then N is isomorphi
 to M2(C)⊕Cand if p1 = 1 ⊕ 0, q1 = 1 ⊕ 0, et
., we have

Λ = ( 2 1
1 1 ) .The matrix Λ is often represented by a bipartite graph with the numberof edges between i and j being λij. The verti
es of the graph are labelled bythe size of the 
orresponding matrix algebras. Thus in the above examplethe pi
ture would be:This diagram is 
alled the Bratteli diagram for N ⊆ M .Exer
ise 4.4.5. Generalise the above example to show that there is an in-
lusion N ⊆ M 
orresponding to any Bratteli diagram with any set of di-mensions for the simple 
omponents of N .4.5 A digression on index.If N ⊆ M are type I fa
tors we have seen that there is an integer k (possibly

∞) su
h that M is the algebra of k × k matri
es over N . If k < ∞, M isthus a free left N-module of rank k2. It seems reasonable to 
all the number
k2 the index of N in M and write it [M : N ]. This is be
ause, if H < Gare groups and CH ⊆ CG their group algebras, the 
oset de
omposition of
G shows that CG is a free left CH-module of rank [G : H ].
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Chapter 5Kaplansky Density Theorem.
5.1 Some simple but telling results on linearfun
tionals.We begin with a result about linear fun
tionals of independent interest.Theorem 5.1.1. Let V be a subspa
e of B(H) and let φ : V → C be a linearfun
tional. The following are equivalent:(i) There are ve
tors in H, ξ1, ξ2, ..., ξn and η1, η2, ..., ηn with

φ(x) =
n
∑

i=1

〈xξi, ηi〉(ii) φ is weakly 
ontinuous.(iii) φ is strongly 
ontinuous.Proof. (i) ⇒ (ii) ⇒ (iii) are obvious, so suppose φ is strongly 
ontinuous.One may use the seminorms √∑n
i=1 ||aξi||2 as {ξ1, ξ2, ..., ξn} ranges over all�nite subsets of H to de�ne the strong topology. Srong 
ontinuity impliesthat there is an ǫ > 0 and {ξ1, ξ2, ..., ξn} su
h that√∑n

i=1 ||aξi||2 < ǫ implies
|φ(a)| ≤ 1. But then if√∑n

i=1 ||aξi||2 = 0 then multiplying a by large s
alarsimplies φ(a) = 0. Otherwise it is 
lear that |φ(a)| ≤ 1
ǫ

√
∑n

i=1 ||aξi||2.Now let ξ = ξ1 ⊕ ...ξn ∈ ⊕iH and let K = (V ⊗ 1)(ξ). Then de�ne
φ̃ on V ⊗ 1(ν) by φ̃(⊕ixξi) = φ(x). Observe that φ̃ is well-de�ned and
ontinuous so extends to K whi
h means there is a ve
tor η = ⊕ηi ∈ K with
φ(x) = φ̃(x⊗ 1)(η) = 〈(x⊗ 1)(ξ), η〉.Exer
ise 5.1.2. Repla
e weak and strong by ultraweak and ultrastrong, andthe �nite sequen
es of ve
tors by ℓ2-
onvergent ones in the previous theorem.31



Corollary 5.1.3. If C is a 
onvex subset of B(H), its weak and strong 
lo-sures 
oin
ide.Proof. Two lo
ally 
onvex ve
tor spa
es with the same 
ontinuous linearfun
tionals have the same 
losed 
onvex sets. This is a 
onsequen
e of theHahn-Bana
h theorem to be found in any text on fun
tional analysis.Corollary 5.1.4. If dimH = ∞ the strong and ultrastrong topologies di�eron B(H).Proof. Let (ξi) be an orthonormal basis of H and let ω(x) =
∑

i
1
n2 〈xξi, ξi〉.Then ω is ultraweakly 
ontinuous but not strongly 
ontinuous. For if it wereweakly 
ontinuous it would be of the form∑n

i=1〈xνi, ηi〉 and ω(p) = 0 where pis the proje
tion onto the orthogonal 
omplement of the ve
tor spa
e spannedby the νi. But by positivity ω(p) = 0 for
es p(ξi) = 0 for all i.5.2 The theoremIn our dis
ussion of vN(Γ) we already met the desirability of having a norm-bounded sequen
e of operators 
onverging to an element in the weak 
losureof a *-algebra of operators. This is not guaranteed by the von Neumanndensity theorem. The Kaplansky density theorem �lls this gap.Theorem 5.2.1. Let A be a *-subalgebra of B(H). Then the unit ball of Ais strongly dense in the unit ball of the weak 
losure M of A, and the self-adjoint part of the unit ball of A is strongly dense in the self-adjoint part ofthe unit ball of M .Proof. By EP6) we may assume 1 ∈ M and the worried reader may 
he
kthat we never in fa
t suppose 1 ∈ A. We may further suppose that A isnorm-
losed, i.e. a C∗-algebra. Consider the 
losure of Asa, the self-adjointpart of A. The * operation is weakly 
ontinuous so if xα is a net 
onvergingto the self-adjoint element x ∈ M , xα+x∗α
2


onverges to x so the weak 
losureof Asa is equal to Msa. Sin
e Asa is 
onvex, the strong 
losure is also equalto Msa by 5.1.3.Let us now prove the se
ond assertion of the theorem. Let x = x∗ ∈ M ,
||x|| < 1, and ξ1, ..., ξn, ǫ > 0 de�ne a strong neighbourhood of x. We must
ome up with a y ∈ Asa, ||y|| < 1, with ||(x−y)ξi|| < ǫ. The fun
tion t→ 2t

1+t2is a homeomorphism of [−1, 1] onto itself. So by the spe
tral theorem we may
hoose an X ∈Msa with ||X|| ≤ 1, so that 2X
1+X2 = x. Now by strong density
hoose Y ∈ Asa with

||Y xξi −Xxξi|| < ǫ, and || Y

1 +X2
ξi −

X

1 +X2
ξi|| < ǫ/4.32



Put y = 2Y
1+Y 2 and note that ||y|| ≤ 1.Now 
onsider the following equalities:

y − x =
2Y

1 + Y 2
− 2X

1 +X2

= 2(
1

1 + Y 2
(Y (1 +X2) − (1 + Y 2)X)

1

1 +X2
)

= 2(
1

1 + Y 2
(Y −X)

1

1 +X2
+

Y

1 + Y 2
(X − Y )

X

1 +X2
)

=
2

1 + Y 2
(Y −X)

1

1 +X2
+

1

2
y(X − Y )x.By the 
hoi
e of Y , we see that ||(y − x)ξi|| < ǫ. This proves density forthe self-adjoint part of the unit ball.Now 
onsider a general x ∈M with ||x|| ≤ 1. The tri
k is to form ( 0 x

x∗ 0 ) ∈
M ⊗ M2(C). Strong 
onvergen
e of a net ( aα bα

cα dα

) to ( a bc d ) is equivalent tostrong 
onvergen
e of the matrix entries so A⊗M2(C) is strongly dense inM⊗
M2(C). Moreover if ( aα bα

cα dα

)

→ ( 0 x
x∗ 0 ) strongly then bα tends strongly to x.And ||bα|| ≤ 1 follows from ||( aα bα

cα dα

)

|| ≤ 1 and 〈bαξ, η〉 = 〈
(

aα bα
cα dα

) (

0
ξ

)

, ( η0 )〉.Corollary 5.2.2. If M is a *-subalgebra of B(H) 
ontaining 1 then M is avon Neumann algebra i� the unit ball of M is weakly 
ompa
t.Proof. The unit ball of B(H) is weakly 
ompa
t, and M is weakly 
losed.Conversely, if the unit ball of M is weakly 
ompa
t, then it is weakly
losed. Let x be in the weak 
losure of M . We may suppose ||x|| = 1. ByKaplansky density there is a net xα weakly 
onverging to x with ||xα|| ≤ 1.Hen
e x ∈M .
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Chapter 6Comparison of Proje
tions andType II1 Fa
tors.6.1 Order on proje
tionsDe�nition 6.1.1. If p and q are proje
tions in a von Neumann algebra Mwe say that p � q if there is a partial isometry u ∈ M with uu∗ = p and
u∗u ≤ q. We say that p and q are equivalent, p ≈ q if there is a partialisometry u ∈M with uu∗ = p and u∗u = q.Observe that ≈ is an equivalen
e relation.Theorem 6.1.2. The relation � is a partial order on the equivalen
e 
lassesof proje
tions in a von Neumann algebra.Proof. Transitivity follows by 
omposing partial isometries. The issue is toshow that e � f and f � e imply e ≈ f . Compare this situation with setsand their 
ardinalities.Let u and v satisfy uu∗ = e, u∗u ≤ f and vv∗ = f, v∗v ≤ e. Note thepi
ture:We de�ne the two de
reasing sequen
es of proje
tions e0 = e, en+1 =
v∗fnv and f0 = f, fn+1 = u∗enu. The de
reasing property follows by indu
-tion sin
e p→ v∗pv gives an order preserving map from proje
tions inM lessthan f to proje
tions inM less than e and similarly inter
hanging the roles of
e and f , v and u. Let e∞ =

∞
∧

i=0

ei and f∞ =
∞
∧

i=0

fi. Note that v∗f∞v = e∞ and
f∞vv

∗f∞ = f∞ so that e∞ ≈ f∞. Also e = (e− e1)+ (e1 − e2)+ · · ·+ e∞ and
f = (f−f0)+(f1−f2)+· · ·+f∞ are sums of mutually orthogonal proje
tions.But for ea
h even i, u∗(ei−ei+1)u = fi+1−fi+2 so ei−ei+1 ≈ fi+1−fi+2, and35



v∗(fi − fi+1)v = ei+1 − ei+2 so one may add up, in the strong topology, allthe relevant partial isometries to obtain an equivalen
e between e and f .Note that if we had been dealing with vN(Γ) this argument would havebeen unne
essary as we 
ould have used the tra
e:
tr(v∗v) ≤ tr(e) = tr(uu∗) = tr(u∗u) ≤ tr(f) = tr(vv∗) = tr(v∗v)so that tr(e − v∗v) = 0 whi
h implies e = v∗v. However in general it is
ertainly possible to get a proje
tion equivalent to a proper subproje
tion ofitself. Just take the unilateral shift on B(ℓ2(N)) whi
h exhibits an equivalen
ebetween 1 and the proje
tion onto the orthogonal 
omplement of the �rstbasis ve
tor. This is analogous to the notion of an in�nite set�one whi
h isin bije
tion with a proper subset of itself.De�nition 6.1.3. A proje
tion p in a von Neumann algebra M is 
alledin�nite if p ≈ q for some q < p, p 6= q. Otherwise p is 
alled �nite. A vonNeumann algebra is 
alled �nite if its identity is �nite, and it is 
alled purelyin�nite if it has no �nite proje
tions other than 0. A fa
tor is 
alled in�niteif its identity is in�nite.We will show that purely in�nite von Neumann algebras exist though itwill not be easy.Remark 6.1.4. If dimH = ∞ then B(H) is in�nite.Remark 6.1.5. A fa
tor with a tra
e like vN(Γ) is �nite.Remark 6.1.6. Every proje
tion in a �nite von Neumann algebra is �nite.Or, more strongly, if p ≤ q and q is �nite then p is �nite.For if p ≈ p′, p′ < p, p 6= p′ then p+ (q − p) ≈ p′ + (q − p) 6= q.Remark 6.1.7. IfM is any von Neumann algebra, 1 is an in�nite proje
tionin M ⊗ B(H) if dimH = ∞.Theorem 6.1.8. If M is a fa
tor and p, q are proje
tions in M , either p � qor q � p.Proof. Consider the family of partial isometries u with uu∗ ≤ p, u∗u ≤ q.This set is partially ordered by u ≤ v if u∗u ≤ v∗v and v = u on the initialdomain u∗uH of u. This partially ordered set satis�es the requirements forZorn's lemma so let u be a maximal element in it. If u∗u = q or uu∗ = p weare done so suppose q − u∗u and p − uu∗ are both non-zero. Then by 4.1.1there is a v 6= 0 with v∗v ≤ q − u∗u and vv∗ ≤ p − uu∗. But then u + v islarger than u whi
h was supposed maximal.36



Exer
ise 6.1.9. Show that two equivalent proje
tions p and q in a �nitefa
tor M are unitarily equivalent, i.e. there is a unitary u ∈M with upu∗ =
q. We see that the equivalen
e 
lasses of proje
tions in a fa
tor form a totallyordered set. It is known that, on a separable Hilbert spa
e, the possibleisomorphism types for this set are:1) {0, 1, 2, ..., n} where n = ∞ is allowed. �type In�2) [0, 1] �type II1�3) [0,∞] �type II∞�4) {0,∞} �type III�Stri
tly speaking this is nonsense as type III is the same as type I1 andII1 is the same as II∞. We mean not only the order type but whether 1 isin�nite or not.Observe that the type II1 
ase 
ertainly exists. We saw that vN(F2) hasproje
tions of any tra
e between 0 and 1. By the previous theorem it is 
learthat the tra
e gives an isomorphism between the ordered set of equivalen
e
lasses of proje
tions and the unit interval. We will pro
eed to prove astatement generalising this 
onsiderably.De�nition 6.1.10. A type II1 fa
tor is an in�nite dimensional fa
tor M on
H admitting a non-zero linear fun
tion tr : M → C satisfying(i) tr(ab) = tr(ba)(ii) tr(a∗a) ≥ 0(iii) tr is ultraweakly 
ontinuous.The tra
e is said to be normalised if tr(1) = 1.De�nition 6.1.11. In general a linear fun
tional φ on a *-algebra A is 
alledpositive if φ(a∗a) ≥ 0 (and φ(a∗) = φ(a) though this is redundant if A is a
C∗-algebra), and faithful if φ(a∗a) = 0 ⇒ a = 0. A positive φ is 
alled astate if 1 ∈ A and φ(1) = 1. A linear fun
tional φ is 
alled tra
ial (or atra
e) if φ(ab) = φ(ba).It is our job now to show that a II1 fa
tor has a unique ultraweakly
ontinuous tra
ial state, whi
h is faithful. First a preliminary result on ideals.Theorem 6.1.12. Let M be an ultraweakly 
losed left ideal in a von Neu-mann algebra M . Then there is a unique proje
tion e ∈ M su
h that
M = Me. If M is 2-sided, e is in Z(M).Proof. M ∩ M∗ is an ultraweakly 
losed *-subalgebra so it has a largestproje
tion e. Sin
e e ∈ M, Me ⊆ M. On the other hand if x ∈ M let37



x = u|x| be its polar de
omposition. Sin
e u∗x = |x|, |x| ∈ M∩M∗. Hen
e
|x|e = |x| and x = u|x| = u|x|e ∈Me. So M = Me.Uniqueness follows easily sin
e f = xe ⇒ f ≤ e.Moreover if M is 2-sided, for any unitary u ∈ M , uM = M = uMu∗ =
Me = Mueu∗ so ueu∗ = e by uniqueness. Hen
e e ∈ Z(M).Corollary 6.1.13. An ultraweakly 
ontinuous positive non-zero tra
e Tr ona II1 fa
tor is faithful.Proof. Let M = {x ∈ M : Tr(x∗x) = 0}. Then sin
e x∗a∗ax ≤ ||a||2x∗x, Mis a left ideal and sin
e Tr(ab) = Tr(ba), M is a 2-sided ideal. Moreover bythe Cau
hy S
hwarz inequality Tr(x∗x) = 0 i� Tr(xy) = 0 ∀y ∈ M . Thus
M is ultraweakly 
losed, being the interse
tion of the kernels of ultraweakly
ontinuous fun
tionals. Thus M = Me for some 
entral proje
tion. And emust be zero sin
e M is a fa
tor.Corollary 6.1.14. If M is a type II1 fa
tor on H and p ∈ M is a non-zeroproje
tion, pMp is a type II1 fa
tor on pH.Proof. This is 
lear�a tra
e on M restri
ts to a tra
e on pMp whi
h isnon-zero by faithfulness and all the other properties are immediate. Sin
e aminimal proje
tion in pMp would be minimal in M , pMp is in�nite dimen-sional.The uniqueness of tr will follow easily on
e we have gathered some fa
tsabout proje
tions in a II1 fa
tor.Theorem 6.1.15. There are non-zero proje
tions in a type II1 fa
tor ofarbitrarily small tra
e.Proof. Let d = inf{tr(p) : p ∈ M, p2 = p∗ = p 6= 0}. Suppose d > 0. Let
p be a proje
tion with tr(p) − d < d. Then p is not minimal sin
e we haveseen that M is not isomorphi
 to B(H). So there is a non-zero proje
tion
q < p. But then we have tr(p− q) = tr(p)− tr(q) ≤ tr(p)− d < d. This is a
ontradi
tion. So d = 0.Theorem 6.1.16. Let M be a type II1 fa
tor with an ultraweakly 
ontinuouspositive non-zero tra
e tr. Then {tr(p) : p ∈ M, p2 = p∗ = p} = [0, tr(1)].Proof. For r ∈ [0, tr(1)] 
onsider S = {p : p a proje
tion in M and tr(p) ≤
r}. Then S is a partially ordered set and if pα is a 
hain in S, p =

∨

α pα ∈Mand p is in the strong 
losure of the pα so p is in S. So by Zorn, S has amaximal element, say q. If tr(q) were less than r, then by 6.1.8, q ≺ p. So
hoose q′ ∼= q, q′ < p. Applying 6.1.14 to p−q′ we �nd a proje
tion stri
tlybetween q′ and p. 38



Corollary 6.1.17. The map tr gives an isomorphism between the totallyordered set of equivalen
e 
lasses of proje
tions on a type II1 fa
tor and theinterval [0, tr(1)].Proof. By 6.1.16 it su�
es to show that the equivalen
e 
lass of a proje
tionis determined by its tra
e. This is immediate from 6.1.8.Exer
ise 6.1.18. Let M be a type II1 fa
tor. Then for ea
h n ∈ N there isa subfa
tor N ⊆ M with N ∼= Mn(C).Corollary 6.1.19. Any two non-zero ultraweakly 
ontinuous normalised tra
eson a type II1 fa
tor are equal.Proof. By the elementary fa
ts it su�
es to prove that two su
h tra
es Trand tr agree on proje
tions. We may assume one of them, say tr, is positive.By the previous exer
ise, 6.1.17, and the uniqueness of the tra
e on a matrixalgebra, tr and Tr are equal on proje
tions for whi
h tr is rational. Givena proje
tion for whi
h tr(p) is irrational build an in
reasing sequen
e ei ofsubproje
tions as follows:Suppose we have already 
onstru
ted ei with tr(ei) = Tr(ei) and tr(p)−
tr(ei) < 1/i. Then (p− ei)M(p− ei) is a type II1 fa
tor so tr and Tr agreeon proje
tions in it whose tr is arbitrarily 
lose to tr(p − ei). So 
hoose init a proje
tion ei+1 between ei and p, on whi
h tr and Tr agree and with
tr(p)− tr(ei+1) <

1
i+1

. Then tr and Tr agree on ∨i ei whi
h is equal to p bythe faithfulness of tr.We shall see that a positive tra
e on a type II1 fa
tor is norm-
ontinuousand a self-adjoint operator is a
tually a norm-limit of linear 
ombinationsof its spe
tral proje
tions so in fa
t an apparently weaker property thanultraweak 
ontinuity is all we used in the previous 
orollary�namely thatthe tra
e of the supremum of an in
reasing net of proje
tions is the supremumof the tra
es.Corollary 6.1.20. Let M be a von Neumann algebra with a positive ultra-weakly 
ontinuous faithful normalised tra
e tr. Then M is a type II1 fa
tori� Tr = tr for all ultraweakly 
ontinuous normalised tra
es Tr.Proof. We just have to show that Z(M) is trivial. But if it were not, 
hooseby faithfulness a proje
tion p ∈ Z(M) with 0 < tr(p) < 1. De�ne Tr(x) =
( 1
tr(p)

)tr(xp). Then Tr is an ultraweakly 
ontinuous normalized tra
e di�erentfrom tr on 1 − p.Exer
ise 6.1.21. Let a be a non-zero positive self adjoint operator. Showthat there is a bounded pie
ewise smooth fun
tion f : R+ → R+ su
h that
af(a) is a non-zero proje
tion. 39



Exer
ise 6.1.22. A type II1 fa
tor is algebrai
ally simple. (Hint�use theprevious exer
ise to show that a 2-sided ideal 
ontains a proje
tion, then addproje
tions to obtain the identity.)6.2 The GNS 
onstru
tionThus uniqueness of the tra
e implies fa
toriality. This suggests another in-teresting way to 
onstru
t a type II1 fa
tor. If A = M2(C), A is embeddedin A⊗A as diagonal matri
es: a →֒ a⊗ 1. Iterate this pro
edure to form anin
reasing sequen
e An of *-algebras with A1 = A and An+1 = An ⊗ A, and
onsider the *-algebra A∞ = ∪nAn whi
h 
ould also be 
alled ⊗∞
alg,n=1An. Ifwe normalise the matrix tra
e on all matrix algebras so that tr(1) = 1 then

tr(a ⊗ 1) = tr(a) so that tr de�nes a positive faithful normalised tra
e on
A∞. Elements of A∞ 
an be thought of as linear 
ombinations of tensorsof the form a1 ⊗ a2 ⊗ a3 ⊗ · · · ⊗ 1 ⊗ 1 ⊗ 1 ⊗ · · · , on whi
h the tra
e is justthe produ
t of the tra
es of the ai's. We now turn A∞ into a von Neumannalgebra.De�ne an inner produ
t on A∞ by 〈x, y〉 = tr(y∗x). Then A∞ is a pre-Hilbert spa
e and let H be its 
ompletion. Note that Mn(C) is a von Neu-mann algebra so tr(y∗x∗xy) ≤ ||x||2tr(y∗y). This means that the operator
Lx on A∞, Lx(y) = xy, satis�es ||Lx(ξ)|| ≤ ||x|| · ||ξ|| (where ||x|| is theoperator norm of the matrix x and ||ξ|| is the Hilbert spa
e norm of ξ) andso extends uniquely to a bounded operator also written Lx on H. One 
he
ksthat (Lx)

∗ = Lx∗ so x → Lx de�nes a faithful (=inje
tive) representation ofthe *-algebra A∞ on H . LetM be the von Neumann algebra onH generatedby the Lx and identify A∞ with a subalgebra of M .The tra
e on A∞ is de�ned by tr(a) = 〈aξ, ξ〉 where ξ is the element
1 ∈ A∞ 
onsidered as a ve
tor in H. So tr extends to a tra
e on M whi
h isultraweakly 
ontinuous, positive and normalised. It is also unique with theseproperties by the uniqueness of the tra
e on the ultraweakly dense subalgebra
A∞ ofM . If we 
an show that tr is faithful on M then it follows thatM is atype II1 fa
tor. It is important to note that this does not follow simply fromthe faithfulness of tr on A. In fa
t it is true but we need to do something toprove it.When we showed that Lx was bounded, the same 
al
ulation, with tr(ab) =
tr(ba), would have shown that Rx, right multipli
ation by x, is also bounded.Asso
iativity shows that Lx and Ry 
ommute on A∞, hen
e on H. Thus M
ommutes with Ry for ea
h y ∈ A∞. Now we 
an show faithfulness: if40



tr(x∗x) = 0 for x ∈M then for ea
h a ∈ A∞ we have
||x(a)||2 = ||xRa(ξ)||2 = ||Rax(ξ)||2 ≤ ||Ra||2||xξ||2 = ||Ra||2tr(x∗x) = 0.Sin
e A∞ is dense, this means x = 0. So tr is faithful on M whi
h is thus atype II1 fa
tor.Exer
ise 6.2.1. Let Fn be the Fibona

i numbers. Show that there is aunique (up to you to �gure out in what sense) unital embedding of MFn(C)⊕

MFn+1
(C) inside MFn+1

(C) ⊕MFn+2
(C) for n ≥ 3. Thus one may form the*-algebra

F∞ = ∪∞
n=1MFn(C) ⊕MFn+1

(C).Show that there is a unique C∗-norm and unique positive tra
e on F∞ so wemay repeat the pro
edure above to obtain another type II1 fa
tor.Many points are raised by this example. The easiest to deal with arethe properties of the ve
tor ξ whi
h played a prominent role. We used both
Mξ = H and M ′ξ = H.De�nition 6.2.2. LetM be a von Neumann algebra on H. A ve
tor ξ ∈ H is
alled 
y
li
 forM ifMξ = H and separating forM if (xξ = 0) ⇒ (x = 0)for all x ∈M .Proposition 6.2.3. With notation as above, ξ is 
y
li
 for M i� ξ is sepa-rating for M ′.Proof. (⇒) Exer
ise�in fa
t done in the dis
ussion of A∞ above.(⇐) Let p be the proje
tion onto the 
losure of Mξ. Then p ∈ M ′. But
(1 − p)ξ = 0 so p = 1.The 
onstru
tion of M from A∞ is a spe
ial 
ase of what is knownas the GNS 
onstru
tion (Gelfand-Naimark-Segal). Given a positive lin-ear fun
tional φ satisfying φ(a∗) = φ(a) on a *-algebra A we let Nφ be
{x ∈ A : φ(x∗x) = 0}. We also de�ne a sesquilinear form 〈, 〉φ on A by
〈x, y〉φ = φ(y∗x). This form is positive semide�nite but this is enough for theCau
hy-S
hwartz inequality to hold so that N is the same as {x : 〈x, y〉φ =
0 ∀y ∈ A} so that N is a subspa
e and 〈, 〉φ de�nes a pre-Hilbert spa
estru
ture on the quotient A/N . Under favourable 
ir
umstan
es, left mul-tipli
ation by x, Lx de�nes a bounded linear operator on it. Favourable
ir
umstan
es are provided by C∗-algebras.Exer
ise 6.2.4. If φ is a linear fun
tional on a C∗-algebra satisfying φ(a∗a) ≥
0 show that φ(a∗) = φ(a). Moreover if A is unital show that φ is norm-
ontinuous and in fa
t ||φ|| = φ(1). 41



Remark 6.2.5. It is a standard elementary fa
t in C∗-algebras that one mayalways adjoin an identity to a C∗-algebra.Proposition 6.2.6. If A is a unital C∗-algebra and φ : A→ C is a positivelinear fun
tional then
φ(y∗x∗xy) ≤ ||x||2φ(y∗y)Proof. Let φ̃(a) = φ(y∗ay). Then φ̃ is positive so by the exer
ise φ̃(x∗x) ≤

||x||2φ̃(1).It follows immediately that, given a positive linear fun
tional φ on a unital
C∗-algebra, ea
h x ∈ A determines a bounded linear operator πφ(x) on theHilbert spa
e Hφ of the GNS 
onstru
tion via left multipli
ation: πφ(x)(y) =
xy. Moreover ||πφ(x)|| ≤ ||x|| and πφ(x

∗) = πφ(x)
∗ sin
e 〈πφ(x)y, z〉 =

φ(z∗xy) = 〈y, πφ(x∗)z〉. Note that φ(x) = 〈πφ(x)1, 1〉.To sum up we have the following:De�nition 6.2.7. If A is a C∗-algebra and φ is a positive linear fun
tionalon A, the Hilbert spa
e of the GNS 
onstru
tion is written Hφ and the rep-resentation πφ by left multipli
ation is 
alled the GNS representation.Proposition 6.2.8. If A is a C∗-algebra on H and ξ ∈ H, de�ne ωξ(a) =
〈aξ, ξ〉. Then ωξ is a positive linear fun
tional and a 7→ aξ de�nes a unitary
u : Hωξ → Aξ su
h that uπωξ(a)u∗ = a.Proof. Obvious.If A is a
tually a von Neumann algebra, πφ(A) will not in general be oneon Hφ. This di�
ulty will be resolved in the next se
tion.

42



Chapter 7Normality, 
omplete additivity.
7.1 Normal states.In quantum me
hani
s if ξ is a unit ve
tor in a Hilbert spa
e it de�nes a"state" φ. In parti
ular this means that if an observable is given by theself-adjoint operator a then the average value of repeated observations of thesystem in the state φ is 〈aξ, ξ〉. For this reason one 
alls a positive linearfun
tional φ a �state" on a unital C∗-algebra provided φ(1) = 1.De�nition 7.1.1. If A is a C∗-algebra on H and φ is a state on A we say φ isa ve
tor state if there is a unit ve
tor ξ ∈ H with φ = ωξ, i.e. φ(a) = 〈aξ, ξ〉for all a ∈ A.Not all states are ve
tor states but our goal in this 
hapter is to showthat on von Neumann algebras there is a natural 
lass of states whi
h areautomati
ally ve
tor states provided one ampli�es the Hilbert spa
e.De�nition 7.1.2. (i) If M is a von Neumann algebra a positive linear fun
-tional φ is 
alled 
ompletely additive if

φ(
∨

α

pα) =
∑

α

φ(pα)whenever pα is a family of mutally orthogonal proje
tions.(ii) A positive linear map Φ : A → B between von Neumann algebras is
alled normal if
Φ(
∨

α

aα) =
∨

α

Φ(aα)for any in
reasing net (aα) of self-adjoint operators in A.Our goal in this 
hapter is to show the following:43



Theorem 7.1.3. If φ is state on a von Neumann algebra M on H the fol-lowing are equivalent:(1) φ is normal.(2) φ is 
ompletely additive(3) φ is a ve
tor state on H⊗ ℓ2(N)(4) φ is ultraweakly 
ontinuous.The only impli
ation that is not obvious from what we have done is
(2) =⇒ (3). To prove it we will put together some results. The �rst 
ouplea
tually establish (4) =⇒ (3) by 5.1.2.Lemma 7.1.4. Let A be a C∗-algebra on H 
ontaining 1. If ψ is a positivelinear fun
tional on A and ξ ∈ H is a ve
tor with ψ ≤ ωξ (i.e. ωξ − ψ ispositive), then there is a s ∈ A′ with ψ = ωsξ.Proof. De�ne a sesquilinear form (, ) on Aξ by (aξ, bξ) = ψ(b∗a). Cau
hy-S
hwarz and ψ ≤ φξ give that |(aξ, bξ)| ≤ ||aξ||||bξ|| so (, ) is well-de�nedand there is a bounded positive operator t on Aξ with 〈aξ, tbξ〉 = ψ(b∗a).But 〈aξ, tbcξ〉 = ψ(c∗b∗a) = 〈b∗aξ, tcξ〉 = 〈aξ, btcξ〉 so that t ∈ A′ on Aξ. If
p = pAξ, tp is a positive operator in A′ and if s =

√
t, ψ(a) = 〈aξ, tξ〉 =

〈asξ, sξ〉 = ωξ(a)..Corollary 7.1.5. If ξ and η are ve
tors su
h that ω(a) = 〈aξ, η〉 is positive(on a C∗-algebra A on H) then there is a ve
tor ν with ω = ων.Proof. For a ≥ 0,
〈aξ, η〉 = 1/4(〈a(ξ + η), ξ + η〉 − 〈a(ξ − η), ξ − η〉)

≤ 1/4ωξ+η(a).Now we begin to show that 
omplete additivity means that two states
annot disagree too errati
ally.Lemma 7.1.6. Let φ1 and φ2 be 
ompletely additive. Suppose p ∈ M is aproje
tion and φ1(p) < φ2(p) . Then there is a proje
tion q ≤ p, for whi
h
φ1(x) < φ2(x) ∀x ≥ 0 with qxq = x.Proof. Choose a maximal family of mutually orthogonal �bad" proje
tions
eα ≤ p for whi
h φ1(eα) ≥ φ2(eα). By 
omplete additivity ∨α eα is bad so let
q = p −∨α eα. By maximality φ1(f) < φ2(f) for all proje
tions f ≤ q andsin
e α is norm 
ontinuous, by the spe
tral theorem φ1(x) < φ2(x) ∀x ≥ 0with qxq = x. 44



Next we get ve
tor state behaviour for φ on some small proje
tion.Lemma 7.1.7. There exists p > 0 and ξ ∈ H for whi
h
φ(x) = 〈xξ, ξ〉 ∀x ∈ pMpProof. Choose ξ ∈ H with φ(1) = 1 < 〈ξ, ξ〉. Then by the previous lemmathere is a p > 0 for whi
h φ(x) ≤ 〈xξ, ξ〉 ∀x ∈ pMp. By 7.1.4 we aredone.Now we put together all the little parts and prove that (3) =⇒ (4) in7.1.3. So let φ be a 
ompletely additive state on a von Neumann algebra Ma
ting on H. Let pα be a maximal family of pairwise orthogonal proje
tionsadmitting a ve
tor ξα ∈ pαH with φ(x) = 〈xξα, ξα〉 on pαMpα. Then bythe previous lemma ∨α pα = 1. And obviously ||ξα||2 = φ(pα). Sin
e φ(pα)
an only be non-zero for 
ountably many α we 
an assume the set of α's is
ountable.By Cau
hy-S
hwarz, for any x ∈M ,

|φ(xpα)| ≤ φ(pαx
∗xpα)

1/2φ(pα)
1/2 = ||xξα||φ(pα)

1/2.Note(november 2010) There is a problem here - we thank Ulri
h Pennigfor pointing it out- whi
h we will �x in a future version of the notes. In themeantime see Dixmier's von Neumman algebras book for a 
orre
t proof.So the linear fun
tional xξα 7→ φ(xpα) is well-de�ned and bounded on
Mξα whi
h means there is a ve
tor ηα, ||ηα||2 = φ(pα), with

φ(xpα) = 〈xξα, ηα〉.Moreover, also by Cau
hy-S
hwarz, |φ(x) −∑α∈F φ(xpα)| 
an be madearbitrarily small by 
hoosing the �nite set F su�
iently large sin
e φ is
ompletely additive. We 
on
lude that there exist ξα, ηα, ea
h of norm ≤
φ(α)1/2 with

φ(x) =
∑

α

〈xξα, ηα〉whi
h is the same as saying that φ(x) = 〈(x⊗1)ξ, η〉 for some ξ, η ∈ ℓ2(N,H).By 
orollary 7.1.5 we have proved theorem 7.1.3.Corollary 7.1.8. If φ is a normal state on the von Neumann algebraM thenthe GNS representation πφ is ultraweakly 
ontinuous onto a von Neumannalgebra on Hφ. 45



Proof. We saw in the last theorem that φ(x) = 〈x ⊗ 1(ν), ν〉 on H ⊗ ℓ2(N).The map x 7→ x ⊗ 1 is ultraweakly 
ontinuous. By 6.2.8 we have that πφis ultraweakly 
ontinuous sin
e the redu
tion to M ⊗ 1(ν) is ultraweakly
ontinuous. So the kernel of πφ is an ultraweakly 
losed 2-sided ideal, hen
eof the formMe for some e in the 
entre ofM . It follows that πφ is inje
tive on
M(1−e) and sin
e the norm of an operator x is determined by the spe
trumof x∗x, the unit ball of the image of M is the image of the unit ball whi
h isweakly 
ompa
t so by 5.2.2 we are done.We re
ord a 
orollary that is used often without expli
it mention:Corollary 7.1.9. Let M be a von Neumann algebra and let A be a weaklydense *-subalgebra of M generated by some self-adjoint set X. Suppose φis a faithful normal state on M and N is another von Neumann algebrawith faithful normal state ψ. If θ : X → N is a fun
tion, multipli
ativelyextend θ to words w(x1, x2, · · ·xn). Then if ψ(w(θ(x1), θ(x2), · · · θ(xn)) =
φ(w(1, x2, · · ·xn)), θ extends uniquely to a von Neumann algebra isomorphismfrom M to θ(X)′′.Proof. Faithfulness of the states φ and ψ means that the extension of θ tolinear 
ombinations of words is a well-de�ned *-isomorphism from A to the*-subalgebra θ(A) of N whi
h sends φ to ψ. This further extends to a unitarybetween the GNS 
onstru
tions for φ and ψ|θ(A) whi
h intertwines the a
tionsof A and θ(A). We are done by 7.1.8.7.2 Isomorphisms are spatial.Re
all that an isomorphism Φ : M → N between von Neumann algebrason Hilbert spa
es H and K respe
tively is 
alled spatial if there is a unitary
u : H → K su
h that Φ(x) = uxu∗ for all x ∈ M . Though the title of thisse
tion is not literally true, it be
omes true on ampli�
ation as a result oftheorem 7.1.3:Theorem 7.2.1. Given an isomorphism Φ : M → N between von Neumannalgebras on Hilbert spa
es H and K respe
tively, there is a Hilbert spa
e Wand a unitary u : H⊗W → K⊗W with Φ(x)⊗1 = u(x⊗1)u∗ for all x ∈M .Proof. If ξ ∈ H de�nes the ve
tor state φ on M ,then sin
e normality (or
omplete additivity) is de�ned by algebra, the state φ ◦ Φ−1 is also a ve
torstate on K⊗ ℓ2(N) given by the ve
tor η. This means that there is a unitaryfrom the 
losure of Mξ to the 
losure of Nη intertwining the a
tions of
x and Φ(x) ⊗ 1. One may exhaust H in this way to obtain an isometry46



u : H → ⊕αK ⊗ ℓ2(N) intertwining the a
tions of M . For a big enough W,
⊕αK ⊗ ℓ2(N) is K ⊗ W and tensoring again by W we get an intertwiningisometry u : H⊗W → K⊗W. Now 
onsider the a
tion of M on
(H⊗W)⊕(K⊗W) de�ned in terms of matri
es by ( x⊗1 0

0 Φ(x)⊗1

). To say that
u intertwines the a
tions is pre
isely the same as saying that ( 0 0

u 0 ) is in M ′.So ( 1 0
0 0 ) � ( 0 0

0 1 ) inM ′. Applying this to Φ−1 as well we see by theorem 6.1.2that these two proje
tions are equivalent in M ′. But any partial isometrywitnessing their equivalen
e has the form ( 0 0
w 0 ) with w a unitary between Hand K intertwining the a
tions. (Note that we never assumed that M wasmore than a unital *-algebra on (H⊗W) ⊕ (K ⊗W)).7.3 Exer
ises on two proje
tions.Let p and q be proje
tions onto 
losed subspa
es H and K of the Hilbertspa
e U respe
tively. Let M = {p, q}′′.Exer
ise 7.3.1. Show that U = (H∩K)⊕(H⊥∩K⊥)⊕(H∩K⊥)⊕(H⊥∩K)⊕Wfor some W and this de
omposition is invariant under p and q.Exer
ise 7.3.2. Show that, on W, p and q are in �general position�, i.e.

p ∧ q = 0, p ∨ q = 1, (1 − p) ∧ q = 0 and (1 − p) ∨ q = 1.Exer
ise 7.3.3. Show that if a ∈ B(H), 0 ≤ a ≤ 1, ( a
√
a(1−a)√

a(1−a) 1−a

) is aproje
tion on H⊕H. When is it in general position with ( 1 0
0 0 )?Exer
ise 7.3.4. Let a = (p − q)2 and A = {a}′′. Show that a ∈ Z(M) andthat {a0+a1p+a2q+a3pq+a4qp : ai ∈ A} is a *-algebra (whi
h is ne
essarilyweakly dense in M).Exer
ise 7.3.5. Show that pMp is abelian, generated by pqp.>From now on suppose p and q are in general position.Exer
ise 7.3.6. Show that p ∼= q in M . (Hint: 
onsider the polar de
ompo-sition of pq.)Exer
ise 7.3.7. Show there is a 2×2 system of matrix units (eij) ∈M with

p = e11.Exer
ise 7.3.8. Show that M is spatially isomorphi
 to B ⊗ M2(C) forsome abelian von Neumann algebra B generated by b, 0 ≤ b ≤ 1, with p
orresponding to ( 1 0
0 0 ) and q 
orresponding to ( b

√
b(1−b)√

b(1−b) 1−b

)47



Now drop the hypothesis that p and q are in general position.Exer
ise 7.3.9. Show that p ∨ q − p ∼= q − p ∧ q in MExer
ise 7.3.10. Show that if p and q are �nite proje
tions in a fa
tor Mthen p ∨ q is also �nite. (In fa
t it's true for a non-fa
tor as well.)Alternative approa
h using group representations.Exer
ise 7.3.11. Show that (Z/2Z)∗(Z/2Z) ∼= Z⋊(Z/2Z) (in�nite dihedralgroup).Exer
ise 7.3.12. Classify all unitary representations of Z⋊(Z/2Z). (Hint�use the spe
tral theorem for unitaries.)Exer
ise 7.3.13. Observe that 2p− 1 and 2q − 1 are self-adjoint unitaries.Exer
ise 7.3.14. Obtain the stru
ture of 7.3.8 using the last 3 exer
ises.
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Chapter 8The PredualAn ultraweakly 
ontinuous linear fun
tional φ on a von Neumann algebraMis norm 
ontinuous so de�nes an element of M∗. Our goal in this 
hapter isto show that the set of all su
h φ is a 
losed subspa
e M∗ of M∗ and thatthe duality between M∗ and M makes M equal to the Bana
h spa
e dual of
M∗. We will �rst establish this in the spe
ial 
ase M = B(H).8.1 Tra
e 
lass and Hilbert S
hmidt operators.The material in this se
tion is standard so we will only prove results as itsuits us, otherwise referring any unproved assertions to Reed and Simon.Lemma 8.1.1. If a ∈ B(H) is positive and (ξi) and (ηi) are two orthonormalbases of H, then

∑

i

〈aξi, ξi〉 =
∑

i

〈aηi, ηi〉(where ∞ is a possible value for the sum).Proof. We have
∑

i

〈aξi, ξi〉 =
∑

i

||√aξi||2

=
∑

i

(
∑

j

|〈√aξi, ηj〉|2)

=
∑

j

(
∑

i

|〈√aηj, ξi〉|2)

=
∑

j

||√aηj ||249



=
∑

j

〈aηj, ηj〉where every number is positive so the order of the sum is immaterial.The number ∑i〈aξi, ξi〉 of the previous theorem is 
alled the tra
e of a,written Trace(a).De�nition 8.1.2. An element a ∈ B(H) is said to be of tra
e 
lass if
Trace(|a|) is �nite.If a is tra
e 
lass and (ξi) is an orthonormal basis, the sum

∑

i

〈aξi, ξi〉
onverges absolutely and is 
alled the tra
e, Trace(a), of a.Theorem 8.1.3. The tra
e 
lass operators on H form a self-adjoint idealof 
ompa
t operators, I1, in B(H). The fun
tion |a|1 de�ned by |a|1 =
Trace(|a|) de�nes a norm on I1 for whi
h it is 
omplete. Moreover ||a|| ≤
|a|1.Proof. The only thing not proved in Reed and Simon is 
ompleteness. Forthis observe that if an is a Cau
hy sequen
e in | − |1, it is Cau
hy in || − || sowhat we have to do is show that the norm limit of a | − |1-Cau
hy sequen
e
(an) is tra
e 
lass and that the sequen
e tends to that limit in | − |1. Sosuppose ǫ > 0 is given. Then for m and n large enough

∞
∑

i=1

〈|an − am|ξi, ξi〉 < ǫ.So for any N ,
N
∑

i=1

〈|an − am|ξi, ξi〉 < ǫ.Now if bn tends in norm to b, then |bn| tends in norm to |b| (obviously
b∗nbn → b∗b, and approximate the square root fun
tion by polynomials on aninterval) so for ea
h �xed i,

lim
n→∞

|an − am|ξi = |a− am|ξi.So∑N
i=1〈|a− am|ξi, ξi〉 < ǫ and letting N tend to ∞ we see that a ∈ I1 sin
e

I1 is a ve
tor spa
e, and also that an → a in | − |1.50



The tra
e is independent of the orthonormal basis and if a is tra
e 
lassand b ∈ B(H), Tr(ab) = Tr(ba).We see that ea
h h ∈ I1 determines a linear fun
tional φh on B(H) by
φh(x) = Trace(xh).De�nition 8.1.4. The tra
e-
lass matrix as above is 
alled the density matrixfor the state φh.Proposition 8.1.5. Ea
h φh is ultraweakly 
ontinuous and its norm as anelement of B(H)∗ is |h|1.Proof. Sin
e h is 
ompa
t, 
hoose an orthonormal basis (ξi) of eigenve
torsof |h| with eigenvalues λi and let h = u|h| be the polar de
omposition. Then

φh(x) =
∞
∑

i=1

〈xu|h|ξi, ξi〉so ultraweak 
ontinuity is apparent, and
φh(x) ≤

∞
∑

i=1

||x|| || |h|ξi||

= ||x||
∞
∑

i=1

λi

= ||x|| |h|1.Moreover evaluating φh on u∗ gives ||φh|| = |h|1.If H and K are Hilbert spa
es, a bounded operator x : H → K is 
alledHilbert-S
hmidt if x∗x is tra
e 
lass, i.e. ∑∞
i=1 ||xξi||2 < ∞ for some (hen
eany) orthonormal basis (ξi) of H. The set of all Hilbert-S
hmidt operatorsfrom H to K is written ℓ2(H,K) and if x is Hilbert-S
hmidt, so is x∗, and xis 
ompa
t.Theorem 8.1.6. If a ∈ B(H), b ∈ B(K) and x ∈ ℓ2(H,K) then bxa ∈

ℓ2(H,K). If x ∈ ℓ2(H,K) and y ∈ ℓ2(K,H) then yx is tra
e 
lass. With theinner produ
t 〈x, y〉 = Trace(y∗x), ℓ2(H,K) is a Hilbert spa
e in whi
h the�nite rank operators are dense.Proof. See Reed and Simon. 51



Exer
ise 8.1.7. Prove all the assertions made above about tra
e-
lass andHilbert-S
hmidt operators.Exer
ise 8.1.8. If H and K are Hilbert spa
es 
onstru
t a natural map from
K ⊗H∗ to ℓ2(H,K) and show that it is unitary.Let |x|2 be the Hilbert spa
e norm on Hilbert-S
hmidt operators.Lemma 8.1.9. If x ∈ ℓ2(H,K) and y ∈ ℓ2(K,H) then Trace(xy) = Trace(yx).Proof. First note that the result is true if we suppose that |x| is tra
e 
lass.For then let x = u|x| be the polar de
omposition, 
hoose an orthonormalbasis (ξi) of the �nal domain of u and extend it to an orthonormal basis of
K. Also extend (u∗ξi) to an orthonormal basis of H by ve
tors in ker(|x|).Then

Trace(xy) =
∑

i

〈u|x|yξi, ξi〉

=
∑

i

〈|x|yuu∗ξi, u∗ξi〉

= Trace(|x|(yu))
= Trace((yu)|x|)

= Trace(yx.)Now suppose only that x is Hilbert-S
hmidt. Let ǫ > 0 be given and 
hoose
x′ of �nite rank with |x− x′|2 < ǫ. Then

|Trace(xy) − Trace(yx)| = |Trace((x− x′)y) − Trace(y(x− x′))|whi
h by Cau
hy-S
hwartz is ≤ 2ǫ|y|2.Corollary 8.1.10. If ω is an ultraweakly 
ontinuous linear fun
tional on
B(H), there is a tra
e 
lass h so that ω = φh.Proof. By 5.1.2 there are (ξi) and (ηi) in ℓ2(N,H) so that ω(x) =

∑

i〈xξi, ηi〉.Then if we de�ne a and b from ℓ2(N) to H by a(f) =
∑

i f(i)ξi and b(f) =
∑

i f(i)ηi, a and b are Hilbert S
hmidt and ω(x) = Trace(b∗xa) whi
h is
Trace(xab∗) by the previous result.Putting everything together so far, we have identi�ed the image of theBana
h spa
e I1 under the map h 7→ φh with the 
losed subspa
e of B(H)∗
onsisting of ultraweakly 
ontinuous linear fun
tionals. To 
lose the loop weonly need to show that the Bana
h spa
e dual of I1 is B(H).52



Theorem 8.1.11. If α : I1 → C is linear and bounded for | − |1, there is an
x ∈ B(H) so that α(a) = φa(x), and ||α|| = ||x||.Proof. This is rather routine. Two ve
tors ξ and η de�ne an element x of I1by x(v) = 〈v, ξ〉η so one may de�ne a sesquilinear form onH by (ξ, η) = α(x).Boundedness of x follows from that of α so there is an appropriate x ∈ B(H).To show that the norm of x as an element of the dual of I1 is a
tually ||x||,suppose ||x|| = 1 and 
hoose a unit ve
tor ξ with ||xξ|| almost equal to 1.Then Tr(hx) is almost 1 if h is the partial isometry whi
h sends v ∈ H to
〈v, xξ〉 ξ

||xξ||.Exer
ise 8.1.12. Fill in the missing details in the previous proof.Now we pass to von Neumann algebras though in fa
t these results workfor any ultraweakly 
losed subspa
e of B(H).Theorem 8.1.13. If V is an ultraweakly 
losed subspa
e of B(H) then V =
V ⊥⊥ in the sense that if φ(x) = 0 for every ultraweakly 
ontinuous φ forwhi
h φ(V ) = 0 then x ∈ V .Proof. This is a simple appli
ation of the Hahn-Bana
h theorem�if x /∈ V
onstru
t an ultraweakly 
ontinuous fun
tional whi
h is zero on V and non-zero on x.`Exer
ise 8.1.14. Exhibit a non-zero tra
e 
lass operator on ℓ2(Γ) whi
h isorthogonal to vN(Γ).Theorem 8.1.15. If V is an ultraweakly 
losed subspa
e of B(H) then itis 
anoni
ally the dual Bana
h spa
e of V∗ whi
h is de�ned as the spa
eof ultraweakly 
ontinuous linear fun
tionals on V . Moreover the ultraweaktopology on V is the weak-* topology on V as the dual of V∗.Proof. If B is a Bana
h spa
e with dual B∗ and V is a weak-* 
losed subspa
eof B∗ then V is the dual of B/V ⊥ (surje
tivity of the natural map from V tothe dual of V/B⊥ is a result of the previous theorem), so V is a dual spa
e.So we just have to identify the Bana
h spa
e B/V ⊥ with the spa
e of weak-*
ontinuous (as elements of B∗∗) linear fun
tionals on V . This is a simpleexer
ise. Putting B = I1 we are done.Exer
ise 8.1.16. If V is an ultraweakly 
losed subspa
e of B(H), show that
V∗ is a separable Bana
h spa
e if H is a separable Hilbert spa
e.53



8.2 A te
hni
al lemma.Let us prove a lemma whi
h shows what the te
hniques developed so far 
anbe good for. It will be 
ru
ial in our treatment of Tomita-Takesaki theory.It is a �Radon-Nikodym� type theorem inspired by one due to Sakai([℄).�nd referen
e Lemma 8.2.1. Let λ ∈ R+ be given and let φ be a faithful ultraweakly
ontinuous state on a von Neumann algebra M . Let ψ ∈ M∗ be su
h that
|ψ(y∗x)| ≤

√

φ(x∗x)
√

φ(y∗y). Then there is an a ∈M1/2 (elements of norm
≤ 1/2) so that

ψ(x) = λφ(ax) + λ−1φ(xa).Proof. For a ∈ M let θa(x) = φ(λax+ λ−1xa). Then the map α : M → M∗,
α(a) = θa, is 
ontinuous for the topologies of duality between M and M∗.But we know that this topology on M is the ultraweak topology so that
α(M1) is a 
ompa
t 
onvex set. By 
ontradi
tion suppose that ψ is not in
α(M).Then by Hahn-Bana
h there is an h ∈ M with ℜ(ψ(h)) > D where
D = supa∈M1/2

ℜ(θa(h)). But if h = u|h| = |h∗|u is the polar de
ompositionof h, we have
θu∗/2(h) = 1/2(λφ(|h|) + λ−1φ(|h∗|))so that

2D ≥ λφ(|h|) +
1

λ
φ(|h∗|) ≥ 2

√

φ(|h|)
√

φ(|h∗|).But also D < |ψ(h)| = |ψ(u|h|1/2|h|1/2)| ≤
√

φ(|h|)
√

φ(u|h|u∗), a 
ontradi
-tion.
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Chapter 9Standard form of a II1 fa
tor andII∞ fa
tors.
9.1 Standard form.In this se
tion M will be a von Neumann algebra with an ultraweakly 
on-tinuous faithful normalized tra
e tr and L2(M, tr) will be abbreviated to
L2(M).In se
tion 6.2 we learned how to 
onstru
t a von Neumann algebra from a
C∗-algebra and a positive linear fun
tional on it. If we apply this 
onstru
tionto L∞(X,µ) (when µ(X) <∞) with tra
e given by ∫ fdµ, the Hilbert spa
ewould be L2(X, dµ). For this reason, if M is a type II1 fa
tor we write
L2(M, tr) for the GNS Hilbert spa
e obtained from the tra
e. In fa
t one
an de�ne Lp spa
es for 1 ≤ p ≤ ∞ using the Lp norm ||x||p = tr(|x|p)1/p.A non
ommutative version of the Holder inequality shows that || − ||p is anorm and Lp(M) is the 
ompletion. We set L∞(M) = M and we shall seethat L1(M) is the predual M∗.Let us �x on the notation Ω for the ve
tor in L2(M) whi
h is the identityof M .Proposition 9.1.1. If M is as above the || − ||-unit ball of M is a 
ompletemetri
 spa
e for || − ||2 and the topology de�ned by || − ||2 on the unit ball isthe same as the strong (and ultrastrong and *-strong) topology.Proof. If xn is Cau
hy in || − ||2 then for ea
h a ∈ M , xna is also sin
e
||xna||2 ≤ ||a|| ||xn||2. So we 
an de�ne x on the dense subspa
e MΩ of
L2(M) by x(aΩ) = limn→∞xnaΩ. Sin
e ||x|| ≤ 1, we have ||xξ|| ≤ ||ξ|| for
ξ ∈MΩ so x extends to a bounded operator on L2(M) whi
h is obviously in
M , and xΩ = x = limn→∞ xn in || − ||2.55



The strong topology is obviously no stronger than || − ||2 sin
e the sin-gle seminorm a 7→ ||aΩ|| de�nes the || − ||2 topology. Moreover ||xaΩ|| ≤
||x||2||a|| shows that || − ||2 
ontrols the strong topology on the unit ball.Finally note that in the statement of the theorem it does not matter whatrepresentation of M is used to de�ne the strong topology on the unit ball asthe ultrastrong topology does not 
hange under the manipulations that weused to get the GNS 
onstru
tion from a II1 fa
tor on an arbitrary Hilbertspa
e.The a
tion of M on L2(M, tr) is 
alled the standard form of M . Notethat vN(Γ) on ℓ2(Γ) is already in standard form. (We see that we 
ould haveobtained our �rst example of a II1 fa
tor by applying the GNS 
onstru
tionto the group algebra CΓ with the tra
e tr(∑γ cγuγ) = cid.)We now want to determine the 
ommutant M ′ when M is in standardform. It will be more 
onvenient to adopt the 
learly equivalent situationwhere M is a
ting on a Hilbert spa
e H and Ω is a 
y
li
 and separatingve
tor in H with 〈xΩ,Ω〉 = tr(x) for x ∈M .De�nition 9.1.2. Let J : H → H be the antilinear unitary involution whi
his the extension to H of the antiunitary isometry

J(xΩ) = x∗Ω.Lemma 9.1.3. For x, a in M , and ξ, η in H(i) 〈Jξ, Jη〉 = 〈η, ξ〉(ii) JxJ(aΩ) = ax∗ΩProof. (i) If ξ = aΩ and η = bΩ, 〈Jξ, Jη〉 = tr(ba∗) = 〈η, ξ〉.(ii) JxJ(aΩ) = J(xa∗Ω) = ax∗Ω.Corollary 9.1.4. For M on H, JMJ ⊆ M ′.Proof. Left and right multipli
ation 
ommute.Lemma 9.1.5. For M on H, if x ∈M ′, JxΩ = x∗Ω.Proof. Take a ∈M , then
〈JxΩ, aΩ〉 = 〈JaΩ, xΩ〉

= 〈a∗Ω, xΩ〉56



= 〈Ω, xaΩ〉
= 〈x∗Ω, aΩ〉.Theorem 9.1.6. For M on H, JMJ = M ′.Proof. We begin by showing that x 7→ 〈xΩ,Ω〉 is a tra
e on M ′:For x, y ∈M ′,

〈xyΩ,Ω〉 = 〈yΩ, x∗Ω〉
= 〈yΩ, JxΩ〉
= 〈xΩ, JyΩ〉
= 〈xΩ, y∗Ω〉
= 〈yxΩ,Ω〉.let us 
all Tr this tra
e on M ′. Then 
learly the (M ′, T r,Ω) satisfy thehypotheses we have been using so if K(xΩ) = x∗Ω is extended to H itsatis�es KM ′K ⊆ M ′′ = M . But by the previous lemma K 
oin
ides with

J on the dense subspa
e M ′Ω. Hen
e JM ′J ⊆ M and we are done.We see that the 
ommutant of the left regular representation of Γ on
ℓ2(Γ) is the von Neumann algebra generated by the right regular representa-tion sin
e JuγJεγ′ = εγ′γ−1 . And more generally the 
ommutant of the lefta
tion of M on L2(M) is the ∗-algebra of right multipli
ation operators. Inparti
ular the 
ommutant of a type II1 fa
tor M on L2(M) is also a typeII1 fa
tor. This is not the 
ase for M on an arbitrary Hilbert spa
e. For in-stan
e we 
ould 
onsider M ⊗ 1 on L2(M)⊗H for some in�nite dimensional
H. Then the 
ommutant ofM ⊗1 would be JMJ ⊗B(H)�in�nite matri
esover JMJ .De�nition 9.1.7. A II∞ fa
tor is a fa
tor of the form M ⊗B(H) with M atype II1 fa
tor and dimH = ∞.Proposition 9.1.8. Let M be an in�nite fa
tor with a proje
tion p ∈M sothat pMp is a type II1 fa
tor. Then M is a II∞ fa
tor.Proof. Choose a maximal family {pα} of mutually orthogonal proje
tionsin M with pα ∼= p ∀α. If it were the 
ase that 1 −∑α pα � p then we
ould 
ontradi
t the maximality of the family {pα}. So write 1 = q +

∑

α pαwith q � p. By 7.3.10 the set of indi
es {α} is in�nite so we may 
hoose abije
tion with itself minus α0 and write 1 = q +
∑

α pα � pα0
+
∑

α6=α0
pα �57



1. We 
on
lude that ∑α pα is equivalent to 1 so we may suppose it equalto 1. We may then 
onstru
t a system of matrix units by using partialisometries implementing the equivalen
es between the pα to obtain the resultfrom exer
ise 4.3.3.It 
ould 
on
eivably happen that, given a II∞ fa
torM , the type II1 fa
torof the form pMp depends on p (obviously only up to equivalen
e). We nowintrodu
e the tra
e on a II∞ fa
tor whi
h will make this issue more 
lear.If M is a type II1 fa
tor, de�ne the map tr from (M ⊗ B(H))+ (the setof positive elements of M ⊗ B(H)), to [0,∞] by
tr((xij)) =

∞
∑

i=1

tr(xii)where we have 
hosen a basis of the in�nite dimensional Hilbert spa
e H toidentify M ⊗ B(H) with 
ertain matri
es over M .Theorem 9.1.9. Let M be as above.(i) tr(λx) = λtr(x) for λ ≥ 0.(ii) tr(x+ y) = tr(x) + tr(y).(iii) If (aα) is an in
reasing net of positive operators with ∨α aα = a then
tr(
∨

α aα) = limα tr(aα).(iv) tr(x∗x) = tr(xx∗) ∀x ∈M ⊗ B(H).(v) tr(uxu∗) = tr(x) for any unitary u ∈ M ⊗ B(H) and any x ≥ 0 in
M ⊗ B(H).(vi) If p is a proje
tion in M ⊗ B(H) then p is �nite i� tr(p) <∞.(vii) If p and q are proje
tions with p �nite then p � q i� tr(p) ≤ tr(q).(viii) p(M ⊗ B(H))p is a type II1 fa
tor for any �nite proje
tion p.Proof. The �rst two assertions are immediate. For (iii), note that the diago-nal entries of positive matri
es are ordered as the matri
es, and all numbersare positive in the sums. (iv) Is obvious using matrix multipli
ation. (v)follows from (iv) via uxu∗ = (u

√
x)(

√
xu∗). For (vi), if tr(p) < ∞ but p isin�nite, there is a proper subproje
tion of p having the same tra
e as p. Thedi�eren
e would be a proje
tion of tra
e zero whi
h is 
learly impossible. If

tr(p) = ∞ then if q is a proje
tion of �nite tra
e, q � p and if q ≤ p then
tr(p − q) = ∞ so one may 
onstru
t an in�nite sequen
e of mutually or-thogonal equivalent proje
tions less than p. Using a bije
tion with a propersubsequen
e, p dominates an in�nite proje
tion so is in�nite itself. (vii) fol-lows easily as in the 
ase of a type II1 fa
tor. For (viii) simply observe that58



tr(p) < ∞ means that p � q for some q whose matrix is zero ex
ept for�nitely many 1's on the diagonal. And obviously qMq is a type II1 fa
tor forsu
h a q.Corollary 9.1.10. Let M be a II∞ fa
tor on a separable Hilbert spa
e and
tr be the tra
e supplied by a de
omposition II1 ⊗ B(H). Then tr de�nes anisomorphism of the totally ordered set of equivalen
e 
lasses of proje
tions in
M to the interval [0,∞].Proof. Given the previous theorem, we only have to prove that any in�niteproje
tion is equivalent to the identity. But if p is in�nite 
hoose u with
uu∗ = p and u∗u stri
tly less than p. Then (u∗)nun are a stri
tly de
reasingsequen
e of equivalent proje
tions so we may write p as an orthogonal sum
p = p∞+

∑∞
i=1 pi with all the pi equivalent for i ≥ 1. Now write the identity asa 
ountable orthogonal sum of proje
tions all � p1 (using the de
ompositionII1 ⊗ B(H) if ne
essary). We see that 1 � p.Unlike the II1 
ase, or for that matter the B(H) 
ase, the tra
e 
annot benormalised (by tr(1) = 1 in the type II1 fa
tor 
ase or the tra
e of a minimalproje
tion being 1 in the B(H) 
ase). This allows for the possibility of anautomorphism α of M with tr(α(x)) = λtr(x) for x ≥ 0 and λ > 0, λ 6= 1.Exer
ise 9.1.11. Show that the tra
e on a II∞ fa
tor is unique with prop-erties (i) to (vi), up to a s
alar.Exer
ise 9.1.12. If α : M → N is a *-homomorphism from a type II1 fa
toronto another, then α is an isomorphism, strongly 
ontinuous on the unit ball.

59



60



Chapter 10The Coupling ConstantWe want to 
ompare a
tions of a given II1 fa
tor on (separable) Hilbertspa
es. We will show that they are parameterized by a single number in
[0,∞].De�nition 10.0.13. If M is a type II1 fa
tor, by M-module we will mean aHilbert spa
eH together with an ultraweakly 
ontinuous unital *-homomorphismfrom M to a type II1 fa
tor a
ting on H. Thus M a
ts on H and we willwrite that a
tion simply as xξ for x ∈M and ξ in H.In fa
t the ultraweak 
ontinuity 
ondition is super�uous. The identitymap makes the Hilbert spa
e on whi
h M is de�ned into an M-module.Given M on H and another Hilbert spa
e K, x 7→ x⊗ id makes H⊗K intoan M-module. The GNS representation makes L2(M) into an M-module.(The notion ofM−M bimodule is de�ned similarly as two 
ommuting a
tionsof M on some Hilbert spa
e, L2(M) being the �rst example.) There is anobvious notion of dire
t sum of M-modules. We will 
ompare a given M-module H with L2(M) by forming the dire
t sum of it H and in�nitely many
opies of L2(M).10.1 De�nition of dimM HTheorem 10.1.1. Let M be a type II1 fa
tor and H a separable M-module.Then there is an isometry u : H → L2(M) ⊗ ℓ2(N) su
h that ux = (x⊗ 1)u(i.e. u is M-linear).Proof. Form the M-module K = H⊕L2(M)⊗ ℓ2(N). Let p = id⊕ 0 ∈ B(K)be the proje
tion ontoH and q = 0⊕id be the proje
tion onto L2(M)⊗ℓ2(N).Both p and q are inM ′ (on K) whi
h is a II∞ fa
tor sin
e q is 
learly in�nite in61



M ′ and if e is a rank one proje
tion in B(ℓ2(N)) then (0⊕(1⊗e))M(0⊕(1⊗e))is a type II1 fa
tor, being the 
ommutant of M on L2(M).Sin
e q is an in�nite proje
tion inM ′, by 9.1.10 there is a partial isometryin M ′ with u∗u = p and uu∗ ≤ q. Using the obvious matrix notation foroperators on K, let u be represented by
( a bc d ) .Then 
al
ulating u∗u = p and uu∗ ≤ q gives b∗b+d∗d = 0 and aa∗+bb∗ = 0so that

u = ( 0 0
w 0 )for some isometry w : H → L2(M) ⊗ ℓ2(N).Moreover the fa
t that u 
ommutes with M̃ is equivalent to wx = (x⊗ 1)w

∀x ∈M .Corollary 10.1.2. The 
ommutant of a type II1 fa
tor is either a type II1fa
tor or a type II∞ fa
tor.Proof. We leave the proof as an exer
ise.Proposition 10.1.3. If u : H → L2(M) ⊗ ℓ2(N) is an M-linear isometrythen uu∗ ∈ M ′ on L2(M) ⊗ ℓ2(N) and tr(uu∗) is independent of u.Proof. If v were another M-linear isometry then uu∗ = uv∗vu∗ so by 9.1.9
tr(uu∗) = tr((vu∗)(uv∗)) = tr(vv∗).Observe that if M were repla
ed by C in the above 
onstru
tion thenumber tr(uu∗) would be the dimension of H.De�nition 10.1.4. For a type II1 fa
tor (or the n×n matri
es) and an M-module H, the number tr(u∗u) de�ned by the two previous results is 
alled
dimM H, or the 
oupling 
onstant or the M-dimension of H.Put another way, any a
tion ofM onH is unitarily equivalent to p(L2(M)⊗
ℓ2(N)) for some p ∈ (M ⊗ 1)′. dimM(H) is then the tra
e in (M ⊗ 1)′ wherethe tra
e is normalised so that tr(1 ⊗ q) = 1 for a rank one proje
tion in
B(ℓ2(N)).Simply by redu
ing by proje
tions in (M ⊗1)′ one obtains Hilbert spa
eswhose M-dimension is any number in [0,∞].Trivial examples(i) dimM L2(M) = 1.(ii) dimM(L2(M) ⊗ ℓ2(N)) = ∞ 62



10.2 Elementary properties of dimM HTheorem 10.2.1. With notation as above,(i) dimM(H) <∞ i� M ′ is a type II1 fa
tor.(ii) dimM(H) = dimM(K) i� M on H and M on K are unitarily equivalent(= spatially isomorphi
).(iii) If Hi are (
ountably many) M-modules,
dimM(⊕iHi) =

∑

i

dimM Hi.(iv) dimM(L2(M)q) = tr(q) for any proje
tion q ∈M .(v) If p is a proje
tion in M , dimpMp(pH) = trM (p)−1 dimM(H).For the next two properties we supposeM ′ is �nite, hen
e a type II1 fa
torwith tra
e trM ′.(vi) If p is a proje
tion in M ′, dimMp(pH) = trM ′(p) dimM H.(vii) (dimM H)(dimM ′ H) = 1.Proof. Using an M-linear isometry u we see that M on H is unitarily equiv-alent to M on uu∗L2(M) ⊗ ℓ2(N). This makes (i) and (ii) obvious.To see (iii), 
hoose M-linear isometries ui from Hi to L2(M)⊗ ℓ2(N) and
ompose them with isometries so that their ranges are all orthogonal. Addingwe get an M-linear isometry u with uu∗ =
∑

uiu
∗
i . Taking the tra
e we aredone.For (iv), 
hoose a unit ve
tor ξ ∈ ℓ2(N) and de�ne u(v) = v ⊗ ξ. Then

uu∗ is JqJ ⊗ e where e is a rank one proje
tion.(v) Let us �rst prove the relation in the 
ase H = L2(M)q where q is aproje
tion in M with q ≤ p.Then pxpΩ 7→ p(xΩ)p is a unitary from L2(pMp) to pL2(M)p whi
h inter-twines the left an right a
tions of pMp. Hen
e pMp on pL2(M)q is unitarilyequivalent to pMp on L2(pMp)q. So by (iv), dimpMp(pH) = trpMp(q) =
trM(p)−1trM (q) = trM (p)−1 dimM H.Now if H is arbitrary, it is of the form e(L2(M)⊗ ℓ2(N)) for e ∈ (M ⊗1)′.But e is the orthogonal sum of proje
tions all equivalent to ones as in (iv)with q ≤ p.(vi) We may suppose H = e(L2(M)⊗ℓ2(N)) soM ′ = e(JMJ⊗B(ℓ2(N))eand p de�nes the isometry in the de�nition of dimM(pH). But p is a proje
-tion less than e in a II∞ fa
tor so by uniqueness of the tra
e, dimM(pH) =
tr(M⊗1)′(p) = tr(M⊗1)′(p)/tr(M⊗1)′(e) dimM(H) = trM ′(p) dimM(H).63



(vii) Observe that, on L2(M), dimM(H) dimM ′(H) = 1 so by (v) and(vi) the result is true for M-modules of the form L2(M)p. Also if one forms
K = ⊕k

i=1H then dimM⊗1(K) = k dimH and dim(M⊗1)′ K = k−1 dimM ′ by(v). But any H 
an be obtained from L2(M) as ⊕k
i=1L

2(M)p for suitable kand p.Example 10.2.2. If Γ0 < Γ are i

 groups, vN(Γ0) a
ts on ℓ2(Γ). And if γ ∈
Γ the unitary ρ(γ) of the right regular representation gives a vN(Γ0)-linearunitary between ℓ2(Γ0) and ℓ2(Γ0γ

−1). Hen
e by the 
oset de
omposition,
dimvN(Γ0)(ℓ

2(Γ)) = [Γ : Γ0].Example 10.2.3. (Due to Atiyah and S
hmidt.)Dis
rete series representations of lo
ally 
ompa
t groups.Redu
tion by a �nite proje
tion in the 
ommutant of a type II1 fa
toro

urs in the representation theory of lo
ally 
ompa
t groups. If a dis
reteseries representation is restri
ted to an i

 latti
e it generates a type II1fa
tor. The 
oupling 
onstant is given by the ratio of the �formal dimension�and the 
ovolume of the latti
e.We illustrate in the 
ase of PSL(2,R) whi
h is the group of transforma-tions of the upper half plane H = {z ∈ C : Im(z) > 0}, z 7→ az + b

cz + d
de�nedby invertible real 2×2 matri
es ( a bc d ). It is well known that there is a funda-mental domain D for the a
tion of the subgroup Γ = PSL(2,Z) illustratedbelow:DO FIGUREThe set D and all its translates under PSL(2,Z) 
over H and are disjointapart from boundaries whi
h are of Lebesgue measure 0. Thus if µ is aninvariant measure equivalent to Lebesgue measure, L2(H, dµ) gives a unitaryrepresentation of Γ whi
h is unitarily equivalent to the left regular repre-sentation tensored with the identity on L2(D, dµ), making L2(H, dµ) into a

vN(Γ)-module whose vN(Γ) dimension is in�nite.The measure dxdy

y2
is Γ-invariant but we want to vary this pro
edureslightly. For ea
h n ∈ N 
onsider dxdy

y2−n . This measure is not invariant butwe 
an make the a
tion of PSL(2,R) unitary on L2(H,
dxdy

y2−n ) by the formula
( a bc d ) f(z) =

1

(cz + d)n
f(
az + b

cz + d
)(with perhaps an inverse matrix...�exer
ise as usual). This 
hanges noth-ing as far as how the representation looks to PSL(2,Z) so we obtain (unitarily64



equivalent) vN(Γ)-modules Hn = L2(H,
dxdy

y2−n ) for ea
h n.The 
ommutant of vN(Γ) on Hn is a II∞ fa
tor. But as is well known,holomorphi
 fun
tions form a 
losed subspa
e of L2 fun
tions whi
h is mani-festly invariant under PSL2(R). The ensuing unitary representation is knownto be irredu
ible and in the dis
rete series of PSL2(R). It 
an be shown to bea �nite proje
tion in Γ′. Thus we have a 
on
rete example of a vN(Γ)-modulewith �nite vN(Γ)-dimension or 
oupling 
onstant.In general, if G is a lo
ally 
ompa
t group with Haar measure dg, thedis
rete series representations are pre
isely those irredu
ible unitary repre-sentations π that are dire
t summands of the left regular representation on
L2(G, dg). So if Γ is a dis
rete subgroup with a fundamental domain D sothat G is 
overed by the γ(D) whi
h are disjoint up to measure zero sets,we may apply the same analysis as above to obtain a vN(Γ) module. Theobvious question is to 
al
ulate its 
oupling 
onstant. This turns out to bequite simple be
ause of a key property of dis
rete series representations.See [ref robert℄ for the proof that ifH is a Hilbert spa
e a�ording a dis
reteseries representation π of G, then the fun
tions g 7→ 〈πgξ, η〉, the so-
alled
oe�
ients of π are in L2(G, dg). We may then imitate the usual pro
edurefor �nite or 
ompa
t groups embedding H in L2(G, dg). And the usual S
hurorthogonality of the 
oe�
ients of a representation yields a number dπ su
hthat

dπ

∫

G

〈πgξ, η〉〈η′, πgξ′〉dg = 〈ξ, ξ′〉〈η′, η〉.If G is 
ompa
t and Haar measure is normalized so that G has measure 1, dπis the dimension of the ve
tor spa
e H. In general dπ depends on the 
hoi
eof Haar measure but obviously the produ
t of dπ with the 
ovolume ∫
D
dgdoes not. The 
oe�
ients give an expli
it embedding of H in L2(G, dg) anda straightforward 
al
ulation of the tra
e of the proje
tion onto the image of

H in vN(Γ)′ yields immediately the formula
dimvN(Γ)(H) = dπ covolume(Γ).The detailed 
al
ulation from this point of view 
an be found in [1℄ pp. 142-148.Proposition 10.2.4. If M is a type II1 fa
tor on H then(a) M has a separating ve
tor if dimM(H) ≥ 1.(b) M has a 
y
li
 ve
tor if dimM(H) ≤ 1.Proof. Both assertions follow immediately by 
omparing H to L2(M)p or adire
t sum of 
opies of it. 65



In fa
t both 
onditions in the last proposition are i�. For that one needsto 
ontrol arbitrary ve
tors in L2(M). In fa
t the original de�nition of the
oupling 
onstant by Murray and von Neumann was as follows. Let M on Hbe a type II1 fa
tor whose 
ommutant is a type II1 fa
tor. Choose any nonzerove
tor ξ ∈ H and let p and q be proje
tions onto the 
losures of Mξ and
M ′ξ respe
tively. Then p ∈ M ′ and q ∈ M and using the normalised tra
esthe 
oupling 
onstant was de�ned as the ratio trM(q)

tr′M(p)
, the hard part beingto show that this ratio is independent of ξ. Assuming this last statementit is trivial to identify the Murray-von Neumann 
oupling 
onstant with our

dimM(H) but at this stage we have nothing to o�er in the way of a simpli�edproof of why this number does not depend on ξ.Example 10.2.5. (due to M. Rie�el) If (X,µ) is a measure spa
e and Γ isa 
ountable group a
ting by measure preserving transformations on (X,µ)so that Γ a
ts by unitaries uγ on L2(X,µ) in the obvious way. We say thata measurable subset D ⊆ X is a fundamental domain for Γ if X = ∪γγ(D)and µ(Dγ(D)) = 0 for all γ ∈ Γ, γ 6= id. (One may 
learly suppose the
γ(D) are disjoint by removing a set of measure zero.) In this situation theabelian von Neumann algebra L∞(X)Γ of Γ-invariant L∞ fun
tions may beidenti�ed with the spa
e L∞(D).Now suppose Γ and Λ are two groups a
ting on X as above with funda-mental domains D and E respe
tively. We may 
onsider the von Neumannalgebra MΓ,Λ on L2(X,µ) de�ned as {{uγ : γ ∈ Γ} ∪ L∞(X)Λ}′′.
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Chapter 11The Crossed Produ
t
onstru
tion.Perhaps the most useful way of produ
ing von Neumann algebras from othersis the 
rossed produ
t. In pure algebra, if G is a group a
ting by automor-phisms on an algebra A we form the ve
tor spa
e of �nite formal sums
∑

g∈G
agugwith the ag ∈ A. We multiply the sums with the rules uguh = ugh (and

u1 = 1) and ugau−1
g = g(a) reminis
ent of the semidire
t produ
t of groups-we use the notation A⋊G for this algebra, 
alled the "
rossed produ
t". Itis obviously universal for "
ovariant representations", i.e. whenever A a
tson a ve
tor spa
e V and g → vg is a representation of G on V with vgavg−1then the a
tion of A extends to one of A⋊G with ug a
ting via vg.From our experien
e with group algebras we expe
t the von Neumannalgebra version to be neither so simple nor universal (for an i

 group, almostno group representations extend to the von Neumann algebra).We begin by de�ning a very general notion of von Neumann algebrai

rossed produ
t about whi
h there is not a lot to say, but then examine it
arefully in spe
ial 
ases.11.1 Group a
tions.Let M be a von Neumann algebra and G a group. An a
tion of G on Mis a homomorphism g 7→ αg from G to the automorphism group AutM of

M (where automorphisms may be assumed ultraweakly 
ontinuous if ne
es-sary). The algebra of �xed points for the a
tion is denoted MG and is a von67



Neumann algebra. A spe
ial 
ase of some importan
e is when the a
tion is aunitary group representation g 7→ ug with ugMu∗g = M ∀g ∈ G. In that 
asesetting αg(x) = ugxu
∗
g de�nes an a
tion of G on M (and M ′). We say thatthe a
tion α is implemented by the unitary representation ug. If the ug area
tually in M , we say that the a
tion is inner as an inner automorphism of

M is by de�nition one of the form Ad u(x) = uxu∗ for u a unitary in M . Anautomorphism is 
alled outer if it is not inner.A
tions are not always implementable though the notion depends on theHilbert spa
e on whi
h M a
ts.Exer
ise 11.1.1. If (X,µ) is a measure spa
e and T is a bije
tion of Xwhi
h preserves the measure 
lass of µ (i.e. µ(A) = 0 ⇔ µ(T−1(A)) = 0.)show how T de�nes an automorphism αT of L∞(X,µ). Show further thatthis automorphism is implemented by a unitary u on L2(X,µ).A bije
tion T as above is 
alled ergodi
 if T (A) = A for a measurablesubset A ⊆ X implies either µ(A) = 0 or µ(X \ A) = 0.Proposition 11.1.2. With notation as above T is ergodi
 i� the only �xedpoints for αT are 
onstant fun
tions.Proof. (⇒) Let f ∈ L∞ and αT (f) = f . After throwing away a null set wemay assume that f(x) = f(T (x)) for all x ∈ X. Then for every ǫ > 0, bythe de�nition of the essential supremum, µ({x : ||f || − |f(x)| < ǫ} 6= 0. Butthis set is invariant under T so it is equal to X up to a set of measure 0.Letting ǫ tend to 0 we see that µ({x : |f(x)| 6= ||f ||}) = 0. So we may assume
f(x) = eig(x) for some measurable g taking values in [0, 2π). Repeating theargument for g gives f 
onstant almost everywhere.(⇐) If A is a measurable invariant set then its 
hara
teristi
 fun
tion is�xed by α in L∞ i� A is invariant.Exer
ise 11.1.3. Let σx = ( 0 1

1 0 ), σy = ( 0 −i
i 0 ) and σz = ( 1 0

0 −1 ) be the Paulispin matri
es. Show that Ad ux, Ad uy and Ad uz de�ne an a
tion of thegroup Z/2Z ⊕ Z/2Z on the two by two matri
es whi
h is not implementablefor M2(C) on C2.Exer
ise 11.1.4. Show that any group a
tion is implementable for a typeII1 fa
tor in standard form and more generally any automorphism group pre-serving a faithful normal state is implementable in the GNS representation.Exer
ise 11.1.5. Show that every automorphism of B(H) is inner.Exer
ise 11.1.6. Show that the automorphism of vN(F2) 
oming from thegroup automorphism whi
h ex
hanges the 2 generators is outer.68



If G is a topologi
al group there are many possible notions of 
ontinuity.The most useful is that of pointwise *-strong 
onvergen
e, i.e. we assume thatthe map g 7→ α(g)(x) is *-strong 
ontinuous for any x ∈M . Typi
ally manyother notions of 
ontinuity will be equivalent to that and even a measurabilityassumption 
an be enough to ensure this 
ontinuity.We will always assume pointwise *-strong 
ontinuity when referring to ana
tion of a topologi
al group.Exer
ise 11.1.7. Is the a
tion by translation of R on L∞(R) pointwise norm
ontinuous? pointwise strongly 
ontinuous? pointwise *-strong 
ontinuous?A
tions of a given group on von Neumann algebras are easy to 
onstru
tbut a
tions of a group on a given von Neumann algebra may be hard to 
omeby.De�nition 11.1.8. An a
tion of G on M is said to be ergodi
 if MG = Cid.Exer
ise 11.1.9. Show that if G a
ts preserving µ on (X,µ) then the re-sulting a
tion of G on L∞(X,µ) is ergodi
 i� the only measurable subsets
A ⊆ X whi
h satisfy µ(g(A)∆A) = 0 ∀g ∈ G satisfy either µ(A) = 0 or
µ(X \ A) = 0.(Here A∆B means A \B ∪B \ A.)The following question is an intriguing open problem:Does SU(3) have any ergodi
 a
tion on a type II1 fa
tor?It is shown in [℄ that SU(2) has no su
h a
tion and it is shown in [℄ thatif a 
ompa
t group a
ts ergodi
ally on a von Neumann algebra then that vonNeumann algebra has a faithful normal tra
e.11.2 The 
rossed produ
tSuppose α is an a
tion of the lo
ally 
ompa
t group G with Haar measure
dg on the von Neumann algebra M with Hilbert spa
e H. Form the Hilbertspa
e K = L2(G,H) = L2(G) ⊗ H and let G a
t on K by ug = λg ⊗ 1, λbeing the left regular representation. Further, let M a
t on K by

(x̃f)(g) = αg−1(f(g)).Exer
ise 11.2.1. Show that x 7→ x̃ is an ultraweakly 
ontinuous *-isomorphismof M onto a von Neumann subalgebra of B(K).69



Exer
ise 11.2.2. Show that ugx̃u∗g = α̃g(x).Note that this gives another way of making a group a
tion implementable,at least when it is lo
ally 
ompa
t.De�nition 11.2.3. If M , H, G and α are as above, the 
rossed produ
t
M ⋊α G is the von Neumann algebra on K generated by {ug : g ∈ G} and
{x̃ : x ∈M}.>From now on we will drop the ˜ and identify M with M̃ . Note that�nite linear 
ombinations ∑g xgug form a dense *-subalgebra of M ⋊α G.Moreover the ug are linearly independent overM in the sense that∑g xgug =
0 ⇒ xg = 0 for ea
h g in the sum. This dense subalgebra 
ould be 
alled thealgebrai
 
rossed produ
t.There is a well-developed theory ofM⋊αG when G is 
ompa
t or abelian,but we shall be mostly interested in the 
ase where G is dis
rete as then wemay replay the matrix element game that we played for vN(Γ) to gain 
ontrolof weak limits of elements in the algebrai
 
rossed produ
t. (In fa
t of 
ourse
vN(Γ) is the spe
ial 
ase of the 
rossed produ
t when M = C and the a
tionis trivial.) Indeed we see immediately as in 3.3.4 that if G is dis
rete, anyelement ofM⋊αG de�nes a fun
tion g 7→ xg so that the sum∑g xgug standsfor a 
ertain matrix of operators on K = H⊗ ℓ2(G). Moreover any matrix ofthis form whi
h de�nes a bounded operator onK is inM⋊αG. This is be
ausethe sum 
onverges pointwise at least on the dense set of fun
tions of �nitesupport from G to H. In the 
ase where the 
rossed produ
t is a II1 fa
torwe know that the 
ommutant 
onsists of right multipli
ation by elements of
M ⋊α G so a weakly dense subalgebra of (M ⋊α G)′ preserves this densesubspa
e of ve
tors and on that subspa
e ∑g xgug and right multipli
ationby ug and x ∈M 
ommute. We will return to the general 
ase later on.Moreover the formulae

(
∑

xgug)
∗ =

∑

αg(xg−1)ugand
(
∑

xgug)(
∑

ygug) =
∑

g

{
∑

h

xhαh(yh−1g)}ugare justi�ed by matrix multipli
ation.We shall now provide some su�
ient 
onditions for M ⋊α G to be afa
tor�always assuming G is dis
rete.De�nition 11.2.4. An a
tion α of G on M is 
alled outer if the only g in
G for whi
h αg is inner is the identity.70



Proposition 11.2.5. If G is a dis
rete group and α is an outer a
tion of Gon the fa
tor M then M ⋊α G is a fa
tor with M ′ ∩M ⋊α G = C1.Proof. If x =
∑

xgug ∈ Z(M) then equating 
oe�
ients in the expressionthat x 
ommutes with M gives us yxg = xgαg(y) ∀y ∈ M ,g ∈ G. By thenext lemma this implies xg = 0 for any g 6= 1. Thus x ∈ M . Sin
e M is afa
tor we are done.Lemma 11.2.6. Let α ∈ AutM for a fa
tor M . Suppose there is an x ∈M ,
x 6= 0, with

yx = xα(y) ∀ y ∈M.Then α is inner.Proof. If x were unitary this would be obvious. So take the adjoint of therelation to obtain x∗y = α(y)x∗ ∀y ∈ M . Thus yxx∗ = xα(y)x∗ = xx∗yand xx∗ ∈ Z(M). Similarly x∗x ∈ Z(M). But xx∗ and x∗x always havethe same spe
trum so sin
e M is a fa
tor both xx∗ and x∗x are equal to thesame positive number λ. Dividing by √
λ 
onverts x into a unitary and weare done.These two results prompt the following de�nition.De�nition 11.2.7. An automorphism α of a von Neumann algebra M is
alled free if

yx = xα(y) ∀ y ∈M ⇒ x = 0.An a
tion α is 
alled free if αg is free for every g 6= id.The argument of proposition 11.2.5 shows in fa
t that if α is a free a
tionon a von Neumann algebraM then Z(M⋊αG) ⊆M , in fa
t thatM ′∩M ⋊α

G ⊆M .Theorem 11.2.8. If α is a free ergodi
 a
tion of G on a von Neumannalgebra M , then M ⋊α G is a fa
tor.Proof. This follows immediately from the pre
eding remark.To understand the meaning of freeness for automorphisms of the form
αT we need to make a hypothesis on (X,µ) as otherwise one 
ould envisagea T whi
h is non-trivial on X but for whi
h αT is the identity. So we willsuppose from now on that (X,µ) is 
ountably separated. This means thereis a sequen
e Bn of measurable sets with µ(Bn) > 0 for whi
h, if x 6= y, thereis an n with x ∈ Bn but y /∈ Bn. Obviously Rn is 
ountably separated.Exer
ise 11.2.9. Show that αT = id means that Tx = x almost everywhere.71



Hint-look at the proof of the next result.Proposition 11.2.10. If T is a transformation of (X,µ) then αT is free i�
µ({x : T (x) = x}) = 0.Proof. (⇒)If A is any measurable set on whi
h T = id then χAf = αT (f)χAfor all f ∈ L∞.(⇐) First throw away any �xed points of T . Then suppose f1αT (f2) =
f2f1 ∀ f2 ∈ L∞. Let A be the support of f1. Then sin
e T has no �xedpoints, A = ∪n(A ∩ Bn \ T−1(Bn)). If f1 were non-zero in L∞, we 
ouldthus 
hoose an n for whi
h µ(A ∩ Bn \ T−1(Bn)) > 0. Set f2 = χBn . Thenfor any x ∈ A ∩ Bn \ T−1(Bn) we have f1(x)f2(x) 6= 0 but f1(x)f2(Tx) =
f1(x)χBn(Tx) = 0 sin
e x /∈ T−1(Bn). Thus f1αT (f2) 6= f2f1 in L∞. So themeasure of A must be zero.We 
on
lude that if Γ is a 
ountable group a
ting freely and ergodi
allyon a measure spa
e (X,µ), preserving the 
lass of µ, then the 
rossed produ
t
L∞(X,µ) ⋊ Γ is a fa
tor.Note that if Γ is abelian, ergodi
 implies free.Exer
ise 11.2.11. Show that freeness of the a
tion a
tually proves that
L∞(X,µ) is maximal abelian in the 
rossed produ
t.The 
rossed produ
t M ⋊ Γ when M is abelian and Γ is dis
rete is 
alledthe group measure spa
e 
onstru
tion. Here are several examples.Example 11.2.12. X = Z, Γ = Z a
ting by translation, µ = 
ountingmeasure.The a
tion is free and ergodi
 and L∞(X,µ) ⋊ Γ = B(ℓ2(Z)).Example 11.2.13. The irrational rotation algebra-von Neumann algebraversion.

(X,µ) = (T1, dθ), Γ = Z generated by the transformation T where T (z) =
eiαz and α/2π is irrational.Exer
ise 11.2.14. Use Fourier series to show that this T is ergodi
.Example 11.2.15. Let H be a �nite abelian group and Γ =

⊕

n∈N
H bethe 
ountable group of sequen
es (hn) with hn eventually the identity. Put

X = G =
∏

n∈N
H (the set of all sequen
es) with the produ
t topology.Then G is a 
ompa
t group so has a Haar measure µ. Γ a
ts on X by lefttranslation. The a
tion is 
learly free and ergodi
 as we shall now argue.There is a parti
ularly von Neumann algebrai
 way to view this examplewithout even 
onstru
ting the spa
e (X,µ) !72



Let A = L∞(H) = CĤ be the group algebra of the dual group Ĥ, with itsusual tra
e. As in se
tion 6.2, form the algebrai
 tensor produ
t ⊗alg,n∈NAwith produ
t tra
e tr. Then perform the GNS 
onstru
tion with respe
t to
tr to obtain an abelian von Neumann algebra. It may be identi�ed with
L∞(G, µ) so the Hilbert spa
e H of the GNS 
onstru
tion is L2(X,µ). But itis 
lear that an orthornormal basis of H is given by �nite sequen
es (χn) ofelements of Ĥ whi
h de�ne elements χ1⊗χ2⊗· · ·⊗1⊗1⊗1 · · · in ⊗alg,n∈NA.The point is that these basis ve
tors are eigenve
tors for the a
tion of Γ on
L2(X,µ):

(hn)(χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · ) = (
∏

n

χn(hn)) χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · .Ergodi
ity follows easily sin
e the only basis element whi
h is �xed by all the
(hn) is the one with all χn equal to 1.Exer
ise 11.2.16. Show that if H = Z/2Z in this example then the sub-algebra of the 
rossed produ
t generated by ⊗alg,n∈NA and Γ is the algebrai
in�nite tensor produ
t of M2(C).Both of the last two examples are spe
ial 
ases of a more general one:
X is a 
ompa
t group with its Haar measure and Γ is a 
ountable densesubgroup a
ting (freely) by left translation. The Peter Weyl theorem showsthat this a
tion is ergodi
.Example 11.2.17. Bernoulli shift.If Γ is any in�nite group and A = Z/2Z we may form the tensor produ
tindexed by Γ of a 
opy of A for ea
h γ ∈ Γ. The von Neumann algebra thusobtained is on
e again the L∞ spa
e of the in�nite produ
t measure spa
e,this time with the set indexing the produ
t being Γ. As in the previousexample we 
an obtain a basis of L2 indexed by fun
tions from Γ to the set
{0, 1} whi
h are almost always 0. These fun
tions are the same as �nitesubsets of Γ and the a
tion of Γ on the Hilbert spa
e is by permuting thebasis in the obvious way. Ergodi
ity follows from the fa
t that the orbit ofany non-empty subset is in�nite.One 
ould also 
hose another tra
e than the usual one and modify theorthonormal basis of A a

ordingly. The measures are the obvious ones unlessspe
i�ed.We give a few more examples of free ergodi
 a
tions without supplyingproofs of ergodi
ity.Example 11.2.18. SL(2,Z) a
ts on T2 = R2/Z2 via the linear a
tion on
R2. 73



Example 11.2.19. PSL(2,Z) a
ts on R ∪ {∞} by linear fra
tional trans-formations.Example 11.2.20. SL(2,Z) a
ts on R2 by linear transformations.Example 11.2.21. Q a
ts on R by translation.There are two fairly easy ways to see that this a
tion is ergodi
. The �rstis to redu
e it to a dense subgroup of a 
ompa
t group by observing that an
L∞ fun
tion on R whi
h is invariant under translation by Z de�nes an L∞fun
tion on the quotient T. Then use Fourier series.The se
ond way is a dire
t atta
k whi
h should generalise to show thatbullshit translation by any 
ountable dense subgroup of a lo
ally 
ompa
t group isergodi
. If f ∈ L∞(R) is invariant under Q, set things up so that there aresets A and B both of nonzero measure, so that g(A) ∩ g(B) = ∅. Cover Aand B with intervals of the same width with rational endpoints. Some ofthese must interse
t A and B in non-nul sets. But all these intervals are alltranslates of ea
h other so g 
annot be invariant up to sets of measure zero.Example 11.2.22. The �ax+ b� group Q ⋊ Q∗ a
ts on RExample 11.2.23. Same as example 11.2.13 with H = Z/2Z but using anormalised tra
e on CH whi
h is di�erent from the usual one. Su
h a tra
e isspe
i�ed by its values on the minimal proje
tions of CH whi
h we 
ould 
all
p and 1 − p for 0 < p < 1. The produ
t measure is not absolutely 
ontinouswith respe
t to Haar measure, and it is not preserved by group translationso this example is perhaps most easily approa
hed by the von Neumannalgebra 
onstru
tion where one 
an implement the a
tion of⊕n∈N

Z/2Z byunitaries. These unitaries 
ome from ones on L2(H) whi
h ex
hange twopoints of unequal weight so they must be 
orre
tly s
aled.Exer
ise 11.2.24. Work out the details of example 11.2.23In the examples we see four di�erent kinds of free ergodi
 a
tions:Type I : Γ a
ts transitively.11.2.12Type II1 : Γ preserves a �nite measure. 11.2.13,11.2.15,11.2.17,11.2.18Type II∞ : Γ preserves an in�nite measure.11.2.20,11.2.21Type III : Γ preserves no measure equivalent to µ.11.2.19,11.2.22,11.2.2311.3 The type of the 
rossed produ
t.We adopt the notations and 
onventions of the previous se
tion. The map
Em : M ⋊αΓ →M whi
h assigns aid to the element∑γ∈Γ is destined to play74



a big role in the theory. It is 
alled the 
onditional expe
tation onto M andobviously satis�es the following 
ontitions:(i) E2
M = EM .(ii) EM(x)∗ = EM(x∗), EM(1) = 1, EM(x∗x) = 0iffx = 0.(iii) EM(x∗x) ≥ EM(x∗)EM(x), ||E(x)|| ≤ ||x||.(iv) EM(axb) = aEM(x)b for a, b ∈ M .(v) EM is ultraweakly 
ontinuous.So EM is a proje
tion of norm one in the Bana
h spa
e sense. The
ondition (iv) says that EM is an M −M-bimodule map.Theorem 11.3.1. If Γ a
ts non-transitively, freely and ergodi
ally, preserv-ing the �nite measure µ then L∞(X,µ)⋊Γ is a II1 fa
tor. If Γ preserves thein�nite σ-�nite measure µ then L∞(X,µ) ⋊ Γ is a II∞ fa
tor unless Γ a
tstransitively in whi
h 
ase L∞(X,µ) ⋊ Γ is type I.Proof. (i) It is 
learer to prove a more general statement (in the 
ase where

Γ preserves µ and µ(X) = 1). So suppose Γ preserves the faithful positiveultraweakly 
ontinuous tra
e tr on the von Neumann algebra A and that itsa
tion is free and ergodi
. Then we 
laim M = A ⋊ Γ is a type II1 fa
tor(or a �nite dimensional fa
tor). By previous results we need only show thatit has an ultraweakly 
ontinous positive tra
e. So de�ne Tr = tr ◦ EA on
M . Ultraweak 
ontinuity and positivity are obvious so by 
ontinuity andlinearity it su�
es to prove Tr(auγbuη) = Tr(buηauγ). For either side ofthe equation to be non-zero means η = γ−1 amd then the left hand side is
tr(aαγ(b)) = tr(α−1

γ (aαγ(b))) = tr(bα−1(a)) whi
h is equal to Tr(buηauγ).(ii) If µ is in�nite and Γ does not a
t transitively then there are noatoms hen
e there are subsets Y of X of arbitrary positive measure. Let
Y have �nite non-zero measure and let ξ be the fun
tion ξ(γ) = δγ,id χY .Then 〈auγξ, ξ〉 = ωξ(auγ) = δid,γ

∫

Y
a(x)dµ(x). One easily 
he
ks that

ωξ((pauγp)(pbuηp)) = ωξ((pbuηp)(pauγp)) so by 3.4.6 ωξ de�nes a positiveultraweakly 
ontinuous tra
e on p(A ⋊ Γ)p whi
h is a type II1 fa
tor. But
A ⋊ Γ is not itself a type II1 fa
tor sin
e A 
ontains an in�nite family ofequivalent mutually orthogonal proje
tions. By 9.1.8 we are done.(iii) If Γ a
ts transitively then (X,µ) = (Γ, 
ounting measure) and the
hara
teristi
 fun
tion of a set with one element is a minimal proje
tion in
L∞(X,µ) ⋊ Γ.Exer
ise 11.3.2. If Γ a
ts ergodi
ally on (X,µ) preserving the σ-�nite mea-sure µ then any other invariant equivalent measure is proportional to µ.We now want to show that there are fa
tors that are neither of type I nortype II. Suppose thatM = L∞(X,µ)⋊Γ is a type I or II fa
tor. Then it has75



a tra
e tr : M+ → [0,∞]. We would like to de�ne an invariant measure on X,absolutely 
ontinous with respe
t to µ, by reversing the pro
edure of theorem11.3.1 and de�ning the measure σ(A) to be tr(ξA) (ξA ∈ L∞(X,µ) ⊆ M).Invarian
e of the measure σ is no problem. The snag is that tr(χA) 
ould bein�nite for every non-null set A. We will show that this is not the 
ase. Tothis end the 
on
ept of lower semi
ontinuity will be useful.De�nition 11.3.3. If X is a topologi
al spa
e we say that f : X → R islower semi
ontinous if for every x ∈ X and ǫ > 0 there is an open set U ⊆ Xsu
h that f(u) > f(x) − ǫ for all u ∈ U .Exer
ise 11.3.4. Prove that if f is lower semi
ontinous then(a)f−1((−∞, K])) is 
losed for every K ∈ R.(b)f attains its minimum on any 
ompa
t subset of X.Exer
ise 11.3.5. If H is a Hilbert spa
e and ξ ∈ H, the fun
tion a 7→ ||aξ||from B(H) to R is weakly lower semi
ontinuous.Exer
ise 11.3.6. If fα are lower semi
ontinous then ∨αfα is lower semi-
ontinous if it exists.Lemma 11.3.7. Let M be a type I or II fa
tor and tr : M+ → [0,∞] be
Trace in type I, as in 9.1.9 in type II∞ and the tra
e in type II1. Then forea
h K ≥ 0, M1,K = {x : tr(x∗x) ≤ K} is weakly 
ompa
t.Proof. Clear in the II1 
ase. In a de
omposition M ∼= N ⊗ B(ℓ2(N)) on Hwith N a type II1 fa
tor or C we may assume by 10.2.4 that there is a ve
tor
ξ ∈ e11H with ωξ a tra
e on e11Me11. So if ξi = ei1ξ we have, up to a s
alar,that

tr(x) =
∞
∑

i=1

〈xξi, ξi〉.By the previous exer
ises and weak 
ompa
tness of the unit ball, we aredone.Proposition 11.3.8. With notation as above, for x ∈M1,K let W (x) be theweak 
losure of the 
onvex set of �nite sums {∑i λiuixu
∗
i :
∑

i λi = 1, λi >
0, ui unitary in L∞(X,µ)}. Then W (x) ⊆ M1,K and if φ(y) = tr(y∗y) for
y ∈W (x) then φ attains its minimum at a unique point E(x) of W (x).Proof. Note �rst that {z ∈ M : tr(z∗z) < ∞} is a ve
tor spa
e on whi
h
||z|| = tr(z∗z) de�nes a prehilbert spa
e stru
ture. (Sin
e (a + b)∗(a + b) ≤
2(a∗a+b∗b) as operators, and the parallelogram identity passes to the poten-tially in�nite sum de�ning tr.) Moreover W (x) is a weakly 
ompa
t subsetof M so by lower semi
ontinuity φ attains its minimum at a point whi
h isunique by two dimensional Eu
lidean geometry as in 2.1.2.76



Proposition 11.3.9. Suppose that M = L∞(X,µ)⋊Γ is a type I or II fa
torfor a free ergodi
 a
tion of Γ on L∞(X,µ). Let tr be as above and p be aproje
tion in M with tr(p) <∞. Then
E(p) = EL∞(X,µ)(p)and 0 < tr(E(p)2) ≤ tr(p).Proof. Let E = EL∞(X,µ). By the uniqueness of E(p) it 
ommutes with everyunitary in L∞ so it is in L∞ by 11.2.11. On the other hand E(y) = E(p)for all y ∈ W (p) by the bimodule linearity of the 
onditional expe
tationand its ultraweak 
ontinuity. So E(E(p)) = E(p) = E(p). But φ(E(p) ≤

φ(p) = tr(p)∞. Finally E(p) = E(p2) whi
h is a positive non-zero self-adjoint operator and hen
e has non-zero tra
e.Theorem 11.3.10. Let Γ a
t freely and ergodi
ally on the 
ountably sepa-rated σ-�nite measure spa
e (X,µ) so that there is no σ-�nite Γ-invariantmeasure on X absolutely 
ontinuous with respe
t to µ. Then L∞(X,µ) ⋊ Γis a fa
tor not of type I or II.Proof. If the 
rossed produ
t were of type I or II, de�ne the measure ρ on
X by ρ(A) = tr(χA). By the previous result ρ(A) would have to be �niteand non-zero for some A sin
e the L∞ fun
tionf = E(p)2 must dominate amultiple of χA for some A (e.g. let A be those x with f(x) su�
iently 
loseto ||f ||). But then by ergodi
ity X = ∪γ∈Γγ(A) (up to null sets) so that ρis σ-�nite. It is automati
ally absolutely 
ontinuous wrt µ. Invarian
e of ρunder Γ follows from tr(uγxu

−1
γ ) = tr(x) for x ≥ 0.De�nition 11.3.11. A fa
tor not of type I or II is 
alled a type III fa
tor.Example 11.2.22 provides a type III fa
tor sin
e the subgroup Q a
tsergodi
ally so the only possible invariant measure is a multiple of dx byexer
ise 11.3.2 and this is not invariant under multipli
ation!Note that the above te
hnique works in somewhat greater generality thana
tions of groups on measure spa
es.Exer
ise 11.3.12. Adapt the proofs of the results just obtained to show that

M ⋊α Z is a type III fa
tor if the a
tion α is generated by a single automor-phism of the II∞ fa
tor s
aling the tra
e by a fa
tor λ 6= 1.11.4 A wrinkle: 2-
ohomology.In a purely algebrai
 setting it is possible to "twist" the 
rossed produ
t
onstru
tion with a 2-
o
y
le. So suppose G (with identity 1) a
ts on the77



unital algebra A. Call C the abelian group of 
entral invertible elements of
A and let µ : G×G→ Cbe a fun
tion satisifying11.4.1.

µ(g, h)µ(gh, k) = αg(µ(h, k))µ(g, hk)Then one may de�ne the algebra A⋊α,µ of formal (�nite) sums as for the
rossed produ
t but with multipli
ation de�ned by (aug)(buh) = aαg(b)µ(g, h)ugh.Then the 
o
y
le 
ondition ensures that this multipli
ation is asso
iative.(The same twisiting is possible for the semidire
t produ
t of groups.) Inorder for u1 to be the identity for this algebra we need the normalisation
ondition µ(1, g) = 1 = µ(g, 1) ∀g ∈ G. It also helps things along if weassume further that µ(g, g−1) = 1.Note immediately that su
h a 
o
y
le 
an dramati
ally alter the 
rossedprodu
t. The simplest 
ase of this is for a �nite abelian group G with thealgebra M just being C. Then if µ : G × G → T1 is antisymmetri
 andbilinear (thinking additviely), it satis�es the 
o
y
le 
ondition 11.4.1 withtrivial a
tion.Exer
ise 11.4.2. Find a bilinear µ as above on G = Z/nZ×Z/nZ for whi
h
C ⋊µ G is isomorphi
 to Mn(C).This makes the µ-twisted 
rossed produ
t quite di�erent from the un-twisted one, whi
h is abelian.A trivial way to obtain 2-
o
yles is to de�ne µ(g, h) = ν(g)αg(ν(h)) forsome fun
tion ν : G → C. Su
h a 
o
y
le is 
alled a 
oboundary and thetwisted 
rossed produ
t by a 
oboundary 
an be untwisted by multiplying the
ug's by ν(g)−1 to obtain an isomorphism with the untwisted 
rossed produ
t.The 2-
o
y
les form a group under pointwise multipli
ation and the 
obound-aries are a subgroup. The quotient is 
alled the se
ond 
ohomology group
H2(G,C).To make sense of this in the von Neumann algebra setting one begins withthe data for the usual 
rossed produ
t, namely a von Neumann algebra M on
H with an a
tion α of the dis
rete group G onM . The 2-
o
y
le will then bea fun
tion µ from G×G to the unitary group of Z(M) satisfying 11.4.1 andnormalisation 
onditions. One then lets M a
t on ℓ2(G,H) as for the usual
rossed produ
t but one de�nes unitaries (ugf)(h) = µ(g, h)f(g−1h) insteadof the left regular representation.Exer
ise 11.4.3. Find out the 
orre
t version of this formula so that the
o
y
le 
ondition implies uguh = µ(g, h)ugh.De�nition 11.4.4. The twisted 
rossed produ
t M⋊α,µ is the von Neumannalgebra on ℓ2(G,H) generated by M and the ug de�ned above.78



One may also 
onsider twistings by non-
entral elements but then one isled into a
tions modulo inner automorphisms and the 
o
y
les do not forma group.11.5 More on the group-measure spa
e 
onstru
-tion A⋊G, A = L∞(X,µ).If G is a 
ountable dis
rete group a
ting freely on the probability spa
e
(X,µ) preserving µ we may identify the Hilbert spa
e of the 
rossed produ
t,
ℓ2(G,L2(X,µ)) in the obvious way with H = L2(X × G) (with the produ
tof 
ounting measure and µ).The operators a ∈ L∞(X,µ) and ug de�ning the 
rossed produ
t thena
t on L2(X ×G) as follows:

(af)(x, h) = a(hx)f(x, h), and (ugf)(x, h) = f(x, g−1h)The fun
tion 1(h, x) = δh,e is a 
y
li
 and separating tra
e ve
tor for
A⋊G whi
h is thus embedded in H as follows:If a =

∑

g

agug then (a1)(x, h) = ah(hx).So if b =
∑

g bgug we have, using this embedding,11.5.1.
(ab)(x, h) =

∑

g

ag(hx)bg−1h(g
−1hx)Moreover sin
e the a
tion is free we may identify G × X with a subset,ne
essarily measurable, of X×X via (x, g) 7→ (x, gx). This subset is nothingbut the graph Γ(∼) of the equivalen
e relation on X de�ned by the orbitsof G : x ∼ y i� y = gx for some (unique) g ∈ G.. Thus ea
h element

a =
∑

g agug ∈ A ⋊ g de�nes a fun
tion on Γ(∼) by a(x, y) = ah(hx) for
y = hx. This all sounds like abstra
t nonsense until one observes that themultipli
ation 11.5.1 be
omes11.5.2.

(ab)(x, y) =
∑

z∼x
a(x, z)b(z, y)from whi
h the group a
tion has disappeared and been repla
ed entirelyby the orbits it de�nes! In parti
ular if G1 and G2 are 
ountable dis
rete79



groups a
ting freely on (X1, µ1) and (X2, µ2) respe
tively then any measur-able isomorphism fromX1 toX2 whi
h sends the orbits forG1 to the orbits for
G2 will de�ne an isomorphism between L∞(X1, µ1)⋊G1 and L∞(X2, µ2)⋊G2.The graphs of these equivalen
e relations 
an be interesting subsets of
X×X. Here is a pi
ture giving �ve points in the equivalen
e 
lass [x] for all
x in the 
ase of the irrational rotation by τ on the 
ir
le (whi
h is identi�edwith the interval [0, 2π]:

τ

{

{

τ

τ

τ

{{ {

τHere the horizontal dotted lines just denote the identi�
ation of one pointwith another mod 2π. Clearly if one 
ontinued one would see that the graphof ∼ is dense in X ×X.This led to the development of the now obvious notion of orbit equiva-len
e of a
tions of groups whi
h is outside von Neumann algebras. The �rstmajor result was that of Dye [℄ whi
h states that two ergodi
 measure pre-serving a
tions of Z are orbit equivalent. This was extended to a
tions ofamenable groups in [℄ and to non measure-preserving a
tions in [℄. Perhapsnot surprisingly, the IIIλ 
lassi�
ation of Connes is reprodu
ed.Another development whose motivation is 
lear from the above is thatof the study of measurable equivalen
e relations with 
ountable orbits. The80



de�nitive treatment is that of Feldman and Moore ([℄,[℄). They 
onstru
t avon Neumann algebra from a suitably measurable equivalen
e relation ∼ on
(X,µ) with the property that the equivalen
e 
lasses are all 
ountable. Theygive Γ(∼) the measure 
oming from 
ounting measure verti
ally and µ hori-zontally and 
onsider the Hilbert spa
e L2(Γ(∼)). Fun
tions on Γ(∼) whi
hhave �nite verti
al support for ea
h x ∈ X form a *-algebra under the mul-tipli
ation 11.5.2. This algebra a
ts on L2(Γ(∼)) and the "
rossed produ
t"is the von Neumann algebra generated by this algebra. Everything is donein great generality so the type III 
ase is also 
overed. There are notions ofmeasure-
lass preserving, measure-preserving and ergodi
 for equivalen
e re-lations, and even a notion of 2-
ohomology whi
h allows one to do a twistedversion.Te
hni
ally, everything depends on being able to show that the graphof the equivalen
e relation admits measurable lo
al se
tions so that it lookssomewhat like our pi
ture for the irrational rotation. In parti
ular Feldmanand Moore show that any of their equivalen
e relations is in fa
t the orbitspa
e for a group. It was open for a long time as to whether that group 
ouldbe assumed to a
t freely but a 
ounterexample was found in [℄. (Note thatequivalen
e relations behave well with respe
t to restri
ting to subsets whi
hgives them an advantage over group a
tions.)In [℄, Connes vastly extended the equivalen
e relation 
onstru
tion sothat it works in the 
ontext of "measured groupoids" where the equivalen
e
lasses are not ne
essarily dis
rete and the ordered pair (x, y) is generalisedto a morphism from the obje
t x to the obje
t y. As his main new example,Connes used smooth foliations where the morphisms are holonomy 
lasses ofsmooth paths joining two points in a leaf. The leaves in a foliation (su
has the �ow lines of a ve
tor �eld) 
an exhibit ergodi
 properties whi
h makeConnes' von Neumann algebra into a fa
tor.11.6 The normaliser-the full group.How mu
h of G and its a
tion on M 
an be re
overed from M inside M ⋊Gfor a free a
tion? One thing that is 
anoni
ally de�ned is the normaliser
N (M) = {u unitary in M ⋊ G|uMu∗ = M} This group obviously 
ontainsthe unitary group U(M) as a normal subgroup. There are two extreme
ases.(i) If M is a fa
tor. Suppose u =

∑

g agug is in N (M), then there is anautomorphism β of M so that ux = β(x)u ∀x ∈ M . That is
∑

g

agαg(x)ug =
∑

g

β(x)agug ∀x ∈M81



. So for ea
h g ∈ G we have agαgβ−1(x) = xag. By 11.2.6 there 
an be onlyone g for whi
h ag is di�erent from 0 and for that g, ag is unitary. We seethat the quotient N (M)/U(M) is in fa
t G itself. So we re
over G and itsa
tion (up to inner automorphisms) on M .(ii) If M = L∞(X,µ) the situation is di�erent and somewhat ri
her. Asbefore, if ∑g agαg(x)ug ∈ N (M) there is a β su
h that
∑

g

agαg(x)ug =
∑

g

β(x)agug ∀x ∈M.But now freeness is less strong. For a given g we have agαg(x) = β(x)ag forall x as before. Thus on the support of ag αg(x) = β(x) for all L∞ fun
tions
x. So if the support of ag and ah interse
t in a set of non-zero measurethen, arguing as in 11.2.10 the transformations de�ned by g and h wouldagree on that set whi
h is not allowed by freeness. After throwing awaysets of measure zero we may thus 
on
lude that the supports of the ag's aredisjoint ! Moreover sin
e ∑g agαg(x)ug is unitary, ∑g aga

∗
g = 1 so that the

ag are all 
hara
teristi
 fun
tions of subsets Sg whi
h form a partition of X.And on Sg, the transformation determined by β agrees with αg.We thus have the remarkable stru
ture of the transformations of X de-termined by N (L∞(X)):there is a partition of X into measurable subsets, on ea
h of whi
h thetransformation agrees with some element of G. It is just as 
lear from theabove 
al
ulation that su
h a transformation is implemented by a unitary in
N (L∞(X)). Playing freely and easily with sets of measure zero we de�ne:De�nition 11.6.1. If G is a dis
rete group of automorphisms of L∞(X,µ),the full group of G is the group of all automorphisms T for whi
h there is apartition X =

⋃

g∈G Cg into disjoint sets with T = g on Cg.It is perhaps not immediately obvious that the full group 
ontains anyelements besides G itself. But ifG a
ts ergodi
ally then every subset is spreadall over the pla
e so a maximality argument shows that one 
an extend anypartially de�ned element to an isomorphism. Note that the elements of thefull group preserve orbits under G. It 
an be shown that any orbit-preservingisomorphism of G is in the full group.
82



Chapter 12Unbounded Operators andSpe
tral TheoryThere are many naturally arising examples of unbounded operators, someof the most fundamental being multipli
ation by x and di�erentiation, theposition and momentum operators of quantum me
hani
s. Our immediatemotivation for studying unbounded operators here is to fa
ilitate the studyof arbitrary von Neumann algebras a
ting on GNS Hilbert spa
es. Here weestablish the ne
essary preliminaries on unbounded operators. The material
losely follows Reed and Simon [2℄.12.1 Unbounded OperatorsDe�nition 12.1.1. An operator T on a Hilbert spa
e H 
onsists of a linearsubspa
e D(T ), the domain of T , and a linear map from D(T ) to H.Example 12.1.2.(i) Mx, multipli
ation by x on L2(R).
D(Mx) =

{

f ∈ L2(R) :

∫

R

x2|f(x)|2d x <∞
}

.(ii) T = d
dx

on L2([0, 1]). D(T ) = C1[0, 1].In order to do some analysis we want to restri
t our attention a little soas not to 
onsider 
ompletely arbitrary linear maps.De�nition 12.1.3. Let T be an operator on H. The graph of T is
Γ(T ) = {(ξ, T ξ) : ξ ∈ D(T )} ⊂ H ⊕H.

T is 
losed if Γ(T ) is 
losed in H⊕H.83



Remark 12.1.4. Note that if T is 
losed and D(T ) = H then T is boundedby the Closed Graph Theorem.Lemma 12.1.5. A linear subspa
e Γ ⊂ H ⊕ H is the graph of an operatori� (0, η) ∈ Γ implies η = 0.Proof. Straightforward.Many operators are not 
losed, but 
an be extended to a 
losed operator.De�nition 12.1.6. Let S, T be operators on H. T is an extension of S,denoted S ⊂ T , if Γ(S) ⊂ Γ(T ). Equivalently D(S) ⊂ D(T ) and T |D(S) = S.De�nition 12.1.7. An operator T is pre
losed (or 
losable) if it has a 
losedextension.Lemma 12.1.8. Suppose T is pre
losed. Then T has a smallest 
losed ex-tension T . Γ(T ) = Γ(T ).Proof. Take a 
losed extension A of T . Γ(A) is 
losed and 
ontains Γ(T ) so
Γ(T ) ⊂ Γ(A). Γ(T ) is the graph of an operator (
all it T ) be
ause:

(0, η) ∈ Γ(T ) ⊂ Γ(A) ⇒ η = A(0) = 0.

T is the smallest 
losed extension be
ause for all 
losed extensions A, Γ(T ) =
Γ(T ) ⊂ Γ(A).De�nition 12.1.9. T is 
alled the 
losure of T .Remark 12.1.10. We thus obtain two equivalent de�nitions of a pre
losedoperator:(i) (0, η) ∈ Γ(T ) ⇒ η = 0.(ii) (ξn ∈ D(T ), ξn → 0 and Tξn 
onverges) ⇒ Tξn → 0.Exer
ise 12.1.11.(i) De�ne S on L2(R) by D(S) = C∞

0 (R) (in�nitely di�erentiable fun
tionswith 
ompa
t support), Sf = f ′. Show that S is pre
losed.(ii) De�ne T from L2(R) to C by D(T ) = L1(R) ∩ L2(R), T (f) =
∫

R
f .Show that T is not pre
losed.De�nition 12.1.12. Suppose T is a 
losed operator. A 
ore for T is a linearsubspa
e D0 ⊂ D(T ) su
h that T |D0

= T .84



We 
an perform basi
 arithmeti
 operations with (unbounded) operatorsas follows: S+T is the operator with domain D(S+T ) = D(S)∩D(T ) and
(S + T )ξ = Sξ + Tξ. ST is the operator with domain D(ST ) = {ξ ∈ D(T ) :
Tξ ∈ D(S)} and (ST )ξ = S(Tξ). Of parti
ular importan
e is the adjoint.De�nition 12.1.13. Let T be a densely de�ned operator on H. Let

D(T ∗) = {η ∈ H : ∃σ ∈ H su
h that 〈Tξ, η〉 = 〈ξ, σ〉∀ξ ∈ D(T )}
= {η ∈ H : ∃C > 0 su
h that |〈Tξ, η〉| ≤ C||ξ|| ∀ξ ∈ D(T )}.For ξ ∈ D(T ∗) note that the element σ is unique (by the density of D(T ))and de�ne T ∗ξ = η.Remark 12.1.14. Note that if S ⊂ T then T ∗ ⊂ S∗.Exer
ise 12.1.15. Give an example to show that the domain of the adjointneed not be dense. [In fa
t it 
an be {0}℄.Proposition 12.1.16. Let T be a densely de�ned operator. Then1. T ∗ is 
losed.2. D(T ∗) is dense i� T is pre
losed. In that 
ase T = T ∗∗.3. If T is pre
losed then (T )∗ = T ∗.Proof. Note that (η, σ) ∈ Γ(T ∗) i� < Tξ, η >=< ξ, σ > for all ξ ∈ D(T )i� < (−Tξ, ξ), (η, σ) >= 0. Hen
e

Γ(T ∗) = {(−Tξ, ξ) : ξ ∈ D(T )}⊥ = (uΓ(T ))⊥ = uΓ(T )⊥,where u : H⊕H → H⊕H is the unitary operator u(ξ, η) = (−η, ξ). Now:1. Orthogonal 
omplements are 
losed, hen
e Γ(T ∗) is 
losed.2. Γ(T ) = (Γ(T )⊥)⊥ = u∗Γ(T ∗)⊥, so
(0, ξ) ∈ Γ(T ) ⇔ (−ξ, 0) ∈ Γ(T ∗)⊥

⇔ 0 =< (−ξ, 0), (η, T ∗η) >= − < ξ, η > for all η ∈ D(T ∗)

⇔ ξ ∈ D(T ∗)⊥.Hen
e T is pre
losed i� D(T ∗)⊥ = {0} i� D(T ∗) is dense.In that 
ase Γ(T ∗∗) = uΓ(T ∗)⊥ = u2Γ(T )⊥⊥ = −Γ(T ) = Γ(T ), so
T ∗∗ = T .3. T ∗ = T ∗ = T ∗∗∗ = (T )∗.De�nition 12.1.17. An operator T is symmetri
 if T ⊂ T ∗. Equivalently

< Tξ, η >=< ξ, Tη > for all ξ, η ∈ D(T ). T is self-adjoint if T = T ∗. Aself-adjoint operator T is positive if < Tξ, ξ >≥ 0 for all ξ ∈ D(T ).85



12.2 Spe
tral Theory for Unbounded Opera-torsDe�nition 12.2.1. Let T be a 
losed operator on H. The resolvent of T is
ρ(T ) = {λ|λ1 − T : D(T ) → H is a bije
tion}.The spe
trum of T is σ(T ) = C\ρ(T ).Remark 12.2.2. Note that if λ1 − T : D(T ) → H is a bije
tion then

(λ1 − T )−1 is bounded by the Closed Graph Theorem.Exer
ise 12.2.3. The spe
trum is highly dependent on the domain. Let
AC[0, 1] denote the set of absolutely 
ontinuous fun
tions on [0, 1]. Let T1 =
d
dx
, T2 = d

dx
, with
D(T1) = {f ∈ AC[0, 1] : f ′ ∈ L2([0, 1])}
D(T2) = {f ∈ AC[0, 1] : f ′ ∈ L2([0, 1]), f(0) = 0}.Show that T1 and T2 are 
losed. Show that σ(T1) = C while σ(T2) = ∅.Proposition 12.2.4. Let (X,µ) be a �nite measure spa
e and F a measure-able, real-valued, a.e. �nite fun
tion on X. Let D(Mf ) = {g ∈ L2(X,µ) :

fg ∈ L2(X,µ)} and let Mfg = fg. Then Mf is self-adjoint and σ(Mf ) =
ess.range(f) = {λ ∈ C : µ({x : |λ− f(x)| < ǫ}) > 0 ∀ǫ > 0}.Exer
ise 12.2.5. Prove Prop 12.2.4.Theorem 12.2.6 (Spe
tral Theorem - Multiplier Form). Let A be a self-adfoint operator on H with dense domain. Then there exists a �nite measurespa
e (X,µ), a real-valued a.e. �nite fun
tion f on X and a unitary operator
u : H → L2(X,µ) su
h that uAu∗ = MfProof. See [2℄.Remark 12.2.7 (Borel Fun
tional Cal
ulus). Note that the Spe
tral Theo-rem allows us to de�ne a Borel fun
tional 
al
ulus for self adjoint operators.Given a Borel fun
tion h on the spe
trum of A, de�ne h(A) = u∗Mh◦fu.12.3 Polar De
ompositionTheorem 12.3.1. Let A : H → K be a 
losed, densely de�ned operator.Then: 86



(i) A∗A and AA∗ are positive self-adjoint operators (hen
e (A∗A)1/2 and
(AA∗)1/2 exist).(ii) There exists a partial isometry with initial spa
e Range(A∗A)1/2 and�nal spa
e Range(A) and

A = v(A∗A)1/2.(iii) If A = uB for some positive B and partial isometry v with initial spa
e
Range(B) then u = v and B = (A∗A)1/2.(iv) In addition A = (AA∗)1/2v.Proof. (i) Sin
e Γ(A) is 
losed, it is a Hilbert spa
e. Let P : Γ(A) → H beproje
tion onto the �rst 
omponent. Sin
e A is an operator Ker(P ) =
{0} and hen
e Range(P ∗) is dense in Γ(A) (so PP ∗H is a 
ore for A).Let ξ ∈ H, P ∗ξ = (η, Aη). Then, for all σ ∈ D(A),

< ξ, σ >=< P ∗ξ, (σ,Aσ) >=< η, σ > + < Aη,Aσ >

⇒ < ξ − η, σ >=< Aη,Aσ >

⇒ Aη ∈ D(A∗) and A∗Aη = ξ − η.Thus D(A∗A) ⊃ PP ∗H whi
h is a 
ore for A. In addition Range(A∗A+
1) = H.It is easy to see that A∗A is symmetri
, so A∗A + 1 ⊂ (A∗A + 1)∗.Let ξ ∈ D((A∗A + 1)∗). Sin
e Range(A∗A + 1) = H there exists
ξ̃ ∈ D(A∗A + 1) with (A∗A + 1)∗ξ = (A∗A + 1)ξ̃(= (A∗A + 1)∗ξ̃).
Ker((A∗A + 1)∗) = {0} be
ause Range(A∗A + 1) = H, and hen
e
ξ = ξ̃ ∈ D(A∗A+1). Thus (A∗A+1)∗ = A∗A+1 and so (A∗A)∗ = A∗A.Finally, for ξ ∈ D(A∗A), < A∗Aξ, ξ >=< Aξ,Aξ >≥ 0 so A∗A ispositive, i.e. σ(A∗A) ⊂ [0,∞) (just use the Spe
tral Theorem).(ii) As we noted above, D(A∗A) is a 
ore for A. D(A∗A) is also a 
ore for
|A| = (A∗A)1/2 (use spe
tral theory). Thus AD(A∗A) = RangeA and
|A|D(A∗A) = Range|A|. Note that for ξ ∈ D(A∗A),

|||A|ξ||2 =< A∗Aξ, ξ >=< Aξ,Aξ >= ||Aξ||2,so that the map v : |A|ξ 7→ Aξ, ξ ∈ D(A∗A), extends to a partialisometry with initial spa
e |A|D(A∗A) = Range|A| and �nal spa
e
AD(A∗A) = RangeA. 87



For ξ ∈ D(|A|) take ξn ∈ D(A∗A) with (ξn, |A|ξn) → (ξ, |A|ξ). Then
Aξn = v|A|ξn → v|A|ξ and, as A is 
losed, ξ ∈ D(A) and Aξ = v|A|ξ.For ξ ∈ D(A) take ξn ∈ D(A∗A) with (ξn, Aξn) → (ξ, Aξ). Then

|A|ξn = v∗v|A|ξn = v∗Aξn → v∗Aξ.Sin
e |A| is 
losed, ξ ∈ D(|A|).Hen
e D(A) = D(|A|) and A = v|A|.(iii) If A = uB then A∗ = B∗u∗ = Bu∗. A∗A = Bu∗uB = B2 sin
e u∗u isproje
tion onto Range(B). By uniqueness of the positive square rootof a positive operator (Exer
ise 12.3.3), (A∗A)1/2 = B. Thus the initialspa
e of u is Range(|A|) and u|A| = A = v|A| so u = v.(iv) A = v(A∗A)1/2 so A∗ = (A∗A)1/2v∗ and hen
e AA∗ = v(A∗A)1/2(A∗A)1/2v∗ =
v(A∗A)v∗ (Exer
ise 12.3.3). Thus v implements the unitary equivalen
eof AA∗|Range(A) and A∗A|Range(A∗). Hen
e (AA∗)1/2 = v(A∗A)1/2v∗ andthen A = v(A∗A)1/2 = (AA∗)1/2v.Remark 12.3.2. Note that it was very important in (i) to establish that

D(A∗A) 
ontained a 
ore for A and hen
e was dense. It was not 
lear apriori that D(A∗A) 
ontained any elements other than 0.Exer
ise 12.3.3. (i) Let T be a positive operator. Show that T 1/2T 1/2 = T .(ii) Show that a positive operator has a unique positive square-root.12.4 Unbounded operators a�liated with a vonNeumann algebra.If M is a von Neumann algebra on H, an element a ∈ B(H) is in M i�
au = ua for every unitary in M ′. This inspires the following.De�nition 12.4.1. If T : D(T ) → H is a linear operator on the Hilbertspa
e H and M is a von Neumann algebra on H we say that T is a�liatedwith M , written TηM if, for any unitary u ∈M ′,

uD(T ) = D(T ) and
uTξ = Tuξ ∀ξ ∈ D(T ).88



Lemma 12.4.2. If T is pre
losed with 
losure T then TηM if TηM .Proof. It is 
lear that TηM i� uΓ(T ) = Γ(T ) for all unitaries in M ′. Butthis property passes to the 
losure of the graph.Lemma 12.4.3. If T is a 
losed operator a�liated with M then1. The proje
tion onto Γ(T ) is a 2 × 2 matrix of operators in M .2. If T = u|T | is the polar de
omposition of T then u ∈M and f(|T |) ∈Mfor any bounded Borel fun
tion of |T |.Proof. 1. is obvious from the 
hara
terisation of a�liation given in theproof of the previous lemma.2. follows from uniqueness of the polar de
omposition and the bi
ommutanttheorem.
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Chapter 13Tomita-Takesaki theory.In 
hapter 9 we showed that the GNS 
onstru
tion on M using a faithfulnormal tra
e produ
es a perfe
tly symmetri
 Hilbert spa
e Htr with respe
tto M and its 
ommutant. This is be
ause the map J , whi
h is the extensionto Htr of the * operation on M , is an isometry. So x 7→ JxJ is the extensionto Htr of right multipli
ation by x∗. Unfortunately if we use a (normal)non-tra
ial state φ the * operation is no longer an isometry and there isno reason to expe
t either it or right multipli
ation by elements of M tohave bounded extensions to Hφ. But as we shall see, the * operation isa
tually pre
losed in the sense of unbounded operators and if S = J∆1/2is the polar de
omposition of its 
losure S, we will show that JMJ = M ′.Quite remarkably, the operator ∆1/2 will satisfy ∆itM∆−it = M so thata state a
tually gives rise to a dynami
s � a one parameter automorphismgroup of M (and M ′).We will prove these results using a method of van Daele for whi
h wehave followed some notes of Haagerup ([℄,[℄). But before getting started onthis di�
ult theory it is essential to do some elementary 
al
ulations to seehow it all works out in the 2 × 2 matri
es.Exer
ise 13.0.4. Let M be M2(C). Show that any state φ on M is of theform φ(x) = Trace(hx) for some positive h of tra
e 1. And that φ is faithfuli� h is invertible. Thus with respe
t to the right basis,
φ(x) = Trace(x

(

1
1+λ

0

0 λ
1+λ

)

)for some λ, 0 ≤ λ ≤ 1.Exer
ise 13.0.5. With notation as in the previous exer
ise, suppose φ isfaithful and let S be the * operation on the GNS Hilbert spa
e Hφ. Cal
ulate91



the polar de
omposition S = J∆1/2 and show that SMS = JMJ = M ′.Show that ∆zM∆−z = M for z ∈ C so that σφz (x) = ∆zx∆−z = M de�nes arepresentation of C as automorphisms of M whi
h are ∗-automorphisms i�
z ∈ iR.Exer
ise 13.0.6. Generalize the above to the n×n matri
es and in fa
t any�nite dimensional von Neumann algebra.13.1 S,F and their graphs.Throughout this se
tion M will be a von Neumann algebra on H and Ω ∈ Ha 
y
li
 and separating ve
tor for M and hen
e M ′. (The same data as afaithful normal state.) Let S0 and F0 be the 
onjugate linear operators withdomains MΩ and M ′Ω de�ned by S0(xΩ) = x∗Ω and F0(xΩ) = x∗Ω for
x ∈M and M ′ respe
tively.Lemma 13.1.1. In the sense of unbounded operators F0 ⊆ S∗

0 and S0 ⊆ F ∗
0so that S0 and F0 have densely de�ned adjoints and hen
e are pre
losed.Proof. To show S∗

0(a
′Ω) is de�ned if 〈S0(aΩ), a′Ω〉 extends to a bounded
onjugate linear map on all of H. But 〈S0(aΩ), a′Ω〉 = 〈(a′)∗Ω, aΩ〉 whi
his bounded as a fun
tion of aΩ by Cau
hy-S
hwartz. Hen
e a′Ω is in thedomain of S∗

0 and S∗
0(a

′Ω) = (a′)∗Ω = F0(a
′Ω). Inter
hanging S0 and F0 weget the other in
lusion.De�nition 13.1.2. Let S and F be the 
losures of S0 and F0 respe
tively.Let S = J∆1/2 be the polar de
omposition of S.Observe that S0 = S−1

0 so S is inje
tive and S2 = 1 in the sense ofunbounded operators. Thus ∆1/2 has zero kernel, J2 = 1 and J∆1/2J =
∆−1/2. The same goes for F and its polar de
omposition, but we shall nowsee that F = S∗.Theorem 13.1.3. (Takesaki,[℄.) S∗ = F , F ∗ = S and the graph of S is theset of all (cΩ, c∗Ω) where c is a 
losed densely de�ned operator a�liated with
M and Ω ∈ D(c) ∩D(c∗).Proof. Let (ξ, F ∗ξ) be in the graph of F ∗. By the de�nition of F we knowthat 〈ξ, (a′)∗Ω〉 = 〈a′Ω, F ∗ξ〉. Now de�ne operators a and b with domain
M ′Ω by ax′Ω = x′ξ and bx′Ω = x′F ∗ξ. Then a and b are 
losable for if x′and y′ are in M ′ we have

〈a(x′Ω), y′Ω〉 = 〈x′ξ, y′Ω〉 = 〈ξ, (x′)∗y′Ω〉92



= 〈(y′)∗x′Ω, F ∗ξ〉 = 〈x′Ω, y′F ∗ξ〉 = 〈x′Ω, b(y′Ω)〉so that as before a ⊆ b∗ and b ⊆ a∗.Let c be the 
losure of a. Then cΩ = aΩ = ξ and c∗ = a∗ ⊇ b so
c∗Ω = F ∗ξ. Now by 
onstru
tion the domain of a is invariant under theunitary group of M ′ and on it a 
ommutes with the unitaries in M ′. Thismeans that c is a�liated withM . At this stage we have shown that the graphof F ∗ 
onsists of all (cΩ, c∗Ω) where c is a 
losed densely de�ned operatora�liated with M and Ω ∈ D(c) ∩D(c∗).We now want to show that the graph of F ∗ is 
ontained in the graph of S.This is not hard. Let c be as above and c =

√
c∗c be its polar de
omposition.Then if fn(t) = t for 0 ≤ t ≤ n and fn(t) = 0 for t > n we have that

fn(
√
c∗c) →

√
c∗c on any ve
tor in the domain of c, and sin
e c is a�liatedwith M , fn(√c∗c) ∈M so that ufn(√c∗c)Ω is in the domain of S and tendsto ξ. Moreover fn(√c∗c)u∗Ω tends to c∗Ω = F ∗ξ so (ξ, F ∗ξ) is in the graphof S.Thus F ∗ ⊆ S and we have already observed that S ⊆ F ∗. Hen
e S = F ∗and S∗ = F .Corollary 13.1.4. The polar de
omposition of F is J∆−1/2.We now prove a 
ru
ial result 
onne
ting M and M ′.Lemma 13.1.5. Let λ ∈ R+ be given. Then for a′ ∈ M ′ there is an a ∈ Mwith aΩ in the domain of F and a′Ω = (λS + λ−1F )aΩ.Proof. Assuming ||a′|| ≤ 1 we may apply theorem 8.2.1 to the ψ de�ned by

ψ(x) = 〈xΩ, a′Ω〉 and φ(x) = 〈xΩ,Ω〉 to obtain the existen
e of an a ∈ Mwith
〈xΩ, a′Ω〉 = λ〈axΩ,Ω〉 + λ−1〈xaΩ,Ω〉

= λ〈xΩ, a∗Ω〉 + λ−1〈aΩ, x∗Ω〉.Provided aΩ is in the domain of F this equation reads a′Ω = (λS+λ−1F )aΩ.On the other hand rearranging the equation gives
〈aΩ, x∗Ω〉 = λ〈xΩ, a′Ω − λa∗Ω〉so by Cau
hy S
hwartz aΩ is in the domain of F = S∗.Corollary 13.1.6. For ea
h ξ ∈ D(∆1/2) ∩ D(∆−1/2) there is a sequen
e

an ∈M with anΩ → ξ, ∆1/2anΩ → ∆1/2ξ and ∆−1/2anΩ → ∆−1/2ξ.93



Proof. Set η = (S + F )ξ and 
hoose a sequen
e a′n ∈ M ′ with a′n → η. Bythe previous lemma there are an ∈ M with (S + F )anΩ = a′nΩ. But S +
F = J(∆1/2 + ∆−1/2) has bounded inverse (in the usual sense of unboundedoperators) so put ξn = (S + F )−1(a′nΩ). So anΩ = (S + F )−1a′nΩ → ξ.Moreover

∆1/2anΩ = ∆1/2(∆1/2 + ∆−1/2)−1Ja′nΩand ∆1/2(∆1/2 + ∆−1/2)−1 is bounded by spe
tral theory. So ∆1/2anΩ →
∆1/2(S + F )−1(S + F )ξ = ∆1/2ξ. In the same way ∆−1/2anΩ → ∆−1/2ξ.We put everything together with a lemma linking M and M ′ on a densesubspa
e to whi
h many fun
tions of ∆ 
an be applied.Lemma 13.1.7. If ξ and η are in D(S) ∩ D(F ), a′, λ and a as in 13.1.5,then

λ〈SaSξ, η〉+ λ−1〈FaFξ, η〉 = 〈a′ξ, η〉.Proof. By moving one S and F to the other side of the inner produ
ts, wesee by the previous lemma that we may assume ξ and η are xΩ and yΩrespe
tively, both in D(F ), for x and y inM . But onMΩ, SaS a
ts by rightmultipli
ation by a∗ so 〈SaSξ, η〉 = 〈xa∗Ω, yΩ〉 = 〈SaΩ, x∗yΩ〉. On the otherhand, systemati
ally using F ∗ = S we obtain 〈FaFxΩ, yΩ〉 = 〈y∗xΩ, aΩ〉 =
〈Sx∗yΩ, aΩ〉 = 〈FaΩ, x∗yΩ〉. Combining these two we see

λ〈SaSξ, η〉+ λ−1〈FaFξ, η〉 = 〈(λSa+ λ−1Fa)Ω, x∗yΩ〉.But by 13.1.5 this is 〈a′Ω, x∗yΩ〉 = 〈a′ξ, η〉.13.2 Proof of the main theorem.We begin with an easy exer
ise in 
ontour integration.Exer
ise 13.2.1. Let S be the strip {z ∈ C : −1/2 ≤ ℜ(z) ≤ 1/2}. Suppose
f is 
ontinuous and bounded on S and analyti
 on the interior of S. Then

f(0) =

∫ ∞

−∞

f(1/2 + it) + f(−1/2 + it)

2 cosh πt
dtHint: Integrate f(z)

sin πz
around re
tangular 
ontours in S tending to theboundary of S. 94



Proposition 13.2.2. With notation as in the previous se
tion
a =

∫ ∞

−∞
λ2it ∆itJa′J∆−it

2 cosh πt
dtProof. Sin
e J∆1/2J = ∆−1/2 we have J(D(S) ∩ D(T )) = D(S) ∩ D(T ) soafter a little rearrangement the formula of 13.1.7 reads

〈Ja′Jξ, η〉 = λ〈a∆−1/2ξ,∆1/2η〉 + λ−1〈a∆1/2ξ,∆−1/2η〉.Now let H0 be the dense subspa
e of all ve
tors in H whi
h is the union ofall ξ[a,b](∆ for 0 < a < b <∞. Certainly H0 ⊆ D(S)∩D(F ), H0 is invariantunder J and ∆z for z ∈ C, and moreover for ξ ∈ H0, z 7→ ∆zξ is an entirefun
tion of z.For ξ, η ∈ H0 de�ne the analyti
 fun
tion
f(z) = λ2z〈a∆−zξ,∆zη〉.Then f is bounded in the strip S of the previous lemma and f(0) = 〈aξ, η〉.Also f(1/2 + it) = 〈∆it∆1/2ξ, η〉 so that

f(1/2 + it) + f(−1/2 + it) = λ2it〈∆itJa′J∆−itξ, η〉.So by the previous lemma we are done.Theorem 13.2.3. Let M be a von Neumann algebra on H and Ω a 
y
li
and separating ve
tor for M . Suppose S is the 
losure of xΩ 7→ x∗Ω on MΩ.Let ∆ = S∗S, and J be the antiunitary of the polar de
omposition S = J∆1/2.Then(i) JMJ = M ′(ii) ∆itM∆−it = M ∀t ∈ RProof. If a′ ∈M ′ we know that
∫ ∞

−∞
λ2it ∆itJa′J∆−it

2 cosh πt
dt ∈M.Conjugating by a unitary u ∈ M ′ and writing λ = e

iθ
2 we see that theFourier transforms of the strongly 
ontinuous rapidly de
reasing fun
tions

∆itJa′J∆−it

2 cosh πt
and u

∆itJa′J∆−it

2 cosh πt
u∗ are equal. Hen
e ∆itJa′J∆−it ∈ M forall real t sin
e it 
ommutes with every unitary u ∈M ′. (Take inner produ
tswith ve
tors if you are not happy with Fourier transforms of operator valuedfun
tions.)Putting t = 0 we see JM ′J ⊆ M and by symmetry JMJ ⊆ M ′. Hen
e

JMJ = M ′ and we are done. 95



De�nition 13.2.4. The operator J of the previous result is 
alled the mod-ular 
onjugation and the strongly 
ontinuous one-parameter group of auto-morphisms of M de�ned by σφt (x) = ∆itx∆−it is 
alled the modular auto-morphism group de�ned by φ.13.3 Examples.Example 13.3.1. ITPFIThe a
ronym ITPFI stands for �in�nite tensor produ
t of �nite type I�.These von Neumann algebras are formed by taking the *-algebra A∞ as theunion A∞ of tensor produ
ts Am =

m
⊗

k=1

Mnk(C), the in
lusion of Am in Am+1being diagonal. The state φ on A∞ is then the tensor produ
t of states onea
h Mnk . One may then perform the GNS 
onstru
tion with 
y
li
 andseparating ve
tor Ω given by 1 ∈ A∞, to obtain the von Neumann algebra
M =

∞
⊗

k=1

Mnk(C) as the weak 
losure of A∞ a
ting on Hφ. The 
ase whereall the nk are equal to 2 and all the states are the same is 
alled the �Powersfa
tor� and the produ
t state the �Powers state� as it was R.Powers who �rstshowed that they give a 
ontinuum of non-isomorphi
 type III fa
tors.A slight snag here is that we do not know that Ω de�nes a faithful stateon M . But if we pro
eed anyway to 
onstru
t what have to be J and ∆ wewill soon see that the state is indeed faithful, i.e. Ω is 
y
li
 for M ′Ω.Re
all from exer
ise 13.0.6 that, forMn(C), and φh(x) = trace(xh) where
h is the diagonal matrix (density matrix) with hii = µi,

∑

µi = 1, µi > 0,then Jn(eij) =
√

µj
µi
eji and ∆n(eij) = µi

µj
eij (where dependen
e on h has beensuppressed).To diagonalise the modular operators on Hφ 
ompletely it is most 
on-vin
ing to 
hoose an orthonormal basis di of the diagonal matri
es, with

d1 = 1. Then a basis for the Hilbert spa
e Hφ is formed by tensors ⊗∞
k=1vkΩwhere vk = 1 for large k, and is otherwise a di or an eij with i 6= j.We 
an guess that J is, on ea
h basis ve
tor, the tensor produ
t of the J 's
oming from the matrix algebras. De�ning it as su
h it is 
learly an isometryon A∞Ω and thus extends to all of Hφ. But then, for any x ∈ A∞, JxJ is in

M ′ by the �nite dimensional 
al
ulation! But the linear span of these JxJΩis dense so Ω is 
y
li
 for M ′ and hen
e separating for M . We are hen
e ina position to apply Tomita-Takesaki theory. Ea
h of the basis elements is in
MΩ so S(⊗∞

k=1vkΩ) = ⊗∞
k=1wkΩ where wk is vk if vk is diagonal, and eji if96



vk = eij . So JS is diagonal and hen
e essentially self-adjoint. We 
on
ludethat
J(xΩ) = Jm(x)Ω and ∆(xΩ) = ∆m(x)Ω for x ∈ Am,and

σφt =
∞
⊗

k=1

σφhk .Example 13.3.2. Group-measure-spa
e 
onstru
tion.Let Γ be a dis
rete group a
ting on the �nite measure spa
e (X,µ) pre-serving the 
lass of the �nite measure µ. The Hilbert spa
e of the 
rossedprodu
t L∞(X,µ) is L2(X,µ)⊗ ℓ2(Γ) and as we saw in 
hapter 11 the ve
tor
1 ⊗ εid is a 
yli
 and separating ve
tor Ω for M = L∞(X,µ) ⋊ Γ.Sin
e the 
lass of µ is preserved by the γ ∈ Γ the Radon Nikodym theoremguarantees positive L1 fun
tions hγ so that φ(hγαγ(y)) = φ(x) where φ(y) =
∫

X
ydµ. We know that, if x ∈ L∞(X,µ) then S(uγx) = x∗uγ−1. In generalwe will not be able to 
ompletely diagonalise ∆ but the same argument asin the previous example gives that the domain of ∆ is

{f : Γ → L2(X,µ) :
∑

γ

∫

X

|hγ(x)f(x)|2dµ(x) <∞}on whi
h
(∆f)(γ) = hγf(γ),and

(Jf)(γ) = h−1/2
γ f(γ).We 
an now �nally answer the question as to whi
h sums∑γ xγuγ de�neelements of M = L∞(X,µ) ⋊ Γ.Theorem 13.3.3. With notation as above, if the fun
tion γ 7→ xγ ∈ L∞(X,µ)is su
h that∑γ xγuγ, interpreted as a matrix of operators as in se
tion 11.2,de�nes a bounded operator, then that operator is in M = L∞(X,µ) ⋊ Γ.Proof. By 13.2.3 it su�
es to show that∑γ xγuγ 
ommutes with JxuγJ forall x ∈ L∞(X,µ) and γ ∈ Γ. And for this it su�
es to 
he
k that the
ommutation holds on fun
tions of the form f ⊗ εγ for f ∈ L2. This is justa routine 
omputation.Exer
ise 13.3.4. Show that example 13.3.1 is in fa
t a spe
ial 
ase of thisgroup-measure-spa
e example in whi
h L∞(X,µ) is provided by the tensorprodu
ts of the diagonal elements and the group Γ is a restri
ted in�niteCartesian produ
t of 
y
li
 groups, 
onstru
ted from the non-diagonal eij's.Con
lude by the method of 11.2.15 that ITPFI algbras are fa
tors.97



This example brings to light a signi�
ant inadequa
y of our treatment ofTomita-Takesaki theory. We would like to treat the 
ase where the measureof the spa
e is in�nite. Although of 
ourse we 
ould 
hoose an equivalent�nite measure, this 
hoi
e may not be natural. To do this we would haveto 
onsider the theory of �weights� whi
h are to states as the tra
e on a II∞fa
tor is to the tra
e on a type II1 fa
tor. We need the same notion in orderto understand the origin of the term �modular� used above as 
oming fromthe modular fun
tion on a non-unimodular lo
ally 
ompa
t group. But aserious treatment of weights would take many pages so we simply refer thereader to Takesaki's book [3℄.Example 13.3.5. He
ke algebras à la Bost-Connes.If G is a �nite group let ug and vg be the unitaries of the left and rightregular representations respe
tively. If H is a subgroup, the proje
tion pH =
1
|H|
∑

h∈H vh proje
ts from ℓ2(G) onto fun
tions that are right translationinvariant under H , i.e. fun
tions on the quotient spa
e G/H . Thus the so-
alled �quasi-regular� representation of G on G/H is a dire
t summand ofthe left regular representation and we have from EP7 of 
hapter 3.4 that the
ommutant of the a
tion of G on ℓ2(G/H) is pHρ(G)pH where ρ(G) is thealgebra generated by the right regular representation (of 
ourse isomorphi
to C). This 
ommutant is spanned by the pHvgpH whi
h, thought of asfun
tions on G, are multiples of the 
hara
teristi
 fun
tions of the double
osets HgH whi
h form the double 
oset spa
e H\G/H . The subalgebraof ρ(G) spanned by these double 
osets is the spa
e of H − H bi-invariantfun
tions and we see it is the 
ommutant of G on ℓ2(G/H). It is known asthe He
ke algebra for the pair (G,H) and has a 
onsiderable role to playin the representation theory of �nite groups. A famous example is the 
asewhere G is the general linear group over a �nite �eld and H is the group ofupper triangular matri
es. The 
oset spa
e is then the so-
alled ��ag variety�and the He
ke algebra in this 
ase leads to a lot of beautiful mathemtati
s.See Bourbaki [℄.Nothing 
ould better indi
ate how di�erently things work for in�nite dis-
rete groups than how the He
ke algebra works. Far from being dire
t sum-mands, the quasiregular representations 
an be totally di�erent from the leftregular representations and 
an even generate type III fa
tors! These He
kealgebras give ni
e examples where the modular operators 
an be 
al
ulatedexpli
itly.De�nition 13.3.6. A subgroup H of the dis
rete group G is 
alled almostnormal if either of the two equivalent 
onditions below is satis�ed.(a) gHg−1 ∩H is of �nite index in H for all g ∈ G.98



(b) Ea
h double 
oset of H is a �nite union of left 
osets of H (i.e. theorbits of H on G/H are all �nite).If H is almost normal inG one may 
onstru
t operators in the 
ommutantof the quasiregular representation of G on ℓ2(G/H) as follows:Given an element x of G/H let εx be the 
hara
teristi
 fun
tion of x.These fun
tions form an orthonormal basis of ℓ2(G/H). Moreover ea
h ve
tor
εx is 
y
li
 for the a
tion of G hen
e separating for the 
ommutant. If D isa double 
oset of H de�ne TD by the matrix

(TD)x,y =

{

1 if y−1x = D;
0 otherwise. 
he
k this typesettingClearly TD is bounded sin
e H is almost normal and it obviously 
om-mutes with the a
tion of G. From the de�nition we have

T ∗
D = TD−1.It is also easy to 
he
k that

TDTE =
∑

F

nFD,ETFwhere the stru
ture 
onstants are de�ned by
nFD,E =

{

#(E/H) if F ⊆ ED;
0 otherwise. x 
he
k typesetting hereWe will 
all the von Neumann algebra generated by the TD's the He
ke-von Neumann algebra of the pair H ⊆ G and write it HvN(G,H). Theve
tor state φ de�ned on HvN(G,H) by εH is faithful and normal, and

〈TDεH , TD′εH〉 = 0 unless D = D′ so that the TD's are orthogonal. It is thuseasy to 
al
ulate the operators for the modular theory on Hφ (note that thisis not ℓ2(G/H)). We guess as usual that J(TDΩ) = (constant)TD−1Ω andby 
ounting 
osets in double 
osets (or sizes of orbits of H on G/H) we �ndthat the 
onstant has to be (#(D/H))1/2(#(H\D))−1/2. Thus as before JSis diagonal on the basis TDΩ of Hφ so essentially self-adjoint and
∆(TDΩ) =

#(H\D)

#(D/H)
TDΩwith the obvious domain. Thus

σφt (TD) =

(

#(H\D)

#(D/H)

)it

TD.99



Examples of almost normal subgroups are not hard to �nd. The 
lassi
alexample of He
ke himself is the 
ase where G = SL(2,Q) and H = SL(2,Z).In this 
ase the He
ke algebra is abelian. Bost and Connes in [4℄ examinedthe 
ase of the ax+b group over the rationals with the subgroup being integertranslations. They showed that HvN(G,H) in this 
ase is a type III fa
torand made a 
onne
tion with prime numbers.13.4 The KMS 
ondition.In the examples of the previous se
tion the operators of the modular groupwere easy to 
al
ulate expli
itly, in
luding the domain of ∆. One 
an imaginethat this is not always so. If we are parti
ularly interested in the modulargroup σφt it would be useful to be able to guess it and show that the guess isright without bothering about the domain of ∆. The KMS (Kubo-Martin-S
hwinger) 
ondition from quantum statisti
al me
hani
s allows us to do justthat. The modular group 
ame from the non-tra
e-like property of a stateand the KMS 
ondition allows us to 
orre
t for that. Let us do a formal
al
ulation assuming that the modular group 
an be extended to 
omplexnumbers (remember that Ω is �xed by S, J and ∆):
φ(xy) = 〈yΩ, x∗Ω〉

= 〈yΩ, J∆−1/2∆x∆−1Ω〉
= 〈∆x∆−1Ω, SyΩ〉
= 〈y∆x∆−1Ω,Ω〉.We 
on
lude that
φ(xy) = φ(yσφi (x)).Thus the tra
e is 
ommutative provide we operate by the modular group.Exer
ise 13.4.1. If M is �nite dimensional and φ is a faithful state, showthat φ ◦ σφt = φ and that for ea
h x and y in M there is an entire fun
tion

F (z) with, for t ∈ R,
F (t) = φ(σφt (x)y) and

F (t+ i) = φ(yαt(x)).If M is in�nite dimensional we would not expe
t the fun
tion F (z) of theprevious exer
ise to be entire. 100



De�nition 13.4.2. Let αt be a strongly 
ontinuous one parameter automor-phism group of a von Neumann algebra M , and φ be a faithful normal stateon M . We say that α satis�es the KMS 
ondition for φ if φ ◦ αt = φ and ,for ea
h x and y in M , there is a fun
tion F , 
ontinuous and bounded onthe strip {z : 0 ≤ ℑm(z) ≤ 1}, analyti
 on the interior of the strip and su
hthat for t ∈ R,
F (t) = φ(σφt (x)y) and

F (t+ i) = φ(yαt(x)).Theorem 13.4.3. If φ is a faithful normal state on a von Neumann algebra
M then σφt is the unique one parameter automorphism group satisfying theKMS 
ondition for φ.This 
hapter has been heavily te
hni
al so we defer the proof, whi
h is byapproximation on dense subspa
es of the domain of ∆ to whi
h the previous
al
ulations 
an be applied, to an appendix. We 
ontent ourselves here withan interesting 
orollary, identifying a part or M on whi
h φ behaves as atra
e.Corollary 13.4.4. For a ∈M the following are equivalent:1. φ(ax) = φ(xa) for all x ∈M .2. σφt (a) = a for all t ∈ R.Proof. (1 ⇒ 2) Observe that for x ∈ M , 〈x∗Ω, aΩ〉 = 〈Ω, xaΩ〉 = 〈Ω, axΩ〉(by 1). So 〈SxΩ, aΩ〉 = 〈a∗Ω, xΩ〉 so that aΩ ∈ D(S∗) and S∗(aΩ) = Ω∗. So
∆(aΩ) = aΩ, ∆itaΩ = aΩ and �nally σφt (a) = a for all t ∈ R.(2 ⇒ 1) φ(σφt (x)a) = φ(σφt (xa)) = φ(xa) so that F (t) is 
onstant. Use theS
hwarz re�e
tion prin
iple to 
reate a holomorphi
 fun
tion, 
onstant on R,in the union of the strip with its 
omplex 
onjugate. Thus F is 
onstant onthe strip and φ(xa) = φ(ax).De�nition 13.4.5. The von Neumann subalgebra of M de�ned by either ofthe 
onditions of the previous 
orollary is 
alled the 
entraliser of the state
φ.
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Chapter 14Connes' theory of type III fa
tors.
14.1 The Connes unitary 
o
y
le Radon-Nikodymtheorem.This result will allow us to extra
t information from the modular group of astate whi
h is independent of the state.Theorem 14.1.1. Let φ and ψ be faithful normal states on a von Neumannalgebra M . Then there is a strongly 
ontinous map t → ut from R to theunitary group of M so that

σφt = Adutσψt ∀ t ∈ R.Morevoer ut satis�es the 
o
y
le 
ondition utσψt (us) = ut+s.Proof. We de�ne the faithful normal state Φ on M ⊗M2(C) by Φ((x)ij) =
1
2
(φ(x11) + ψ(x22)). The proje
tion p = ( 1 0

0 0 ) is �xed by σΦ by 13.4.4. So σΦde�nes a one parameter automorphism group of pM⊗M2(C)p whi
h satis�esthe KMS 
ondition for φ. Hen
e σΦ
t (x ⊗ e11) = σφt (x) ⊗ e11. Similarly

σΦ
t (x ⊗ e22) = σψt (x) ⊗ e22. Let Vt = σΦ

t (1 ⊗ e21). Then VtV
∗
t = ( 0 0

0 1 )and V ∗
t Vt = ( 1 0

0 0 ). Hen
e Vt = ( 0 0
vt 0 ) for some unitary vt ∈ M . Routine
omputations give the rest.Corollary 14.1.2. If M is a fa
tor and σφt is outer for any φ and t then Mis of type III.Proof. By the previous result it su�
es to exhibit a single faithful normalstate on a type II fa
tor with inner modular group. In the II1 
ase use thetra
e and in the II∞ 
ase 
hoose a faithful normal state φ on B(H) and use

tr⊗φ, using the KMS 
ondition (if ne
essary) to very that the modular groupfor the tensor produ
t is the tensor produ
t of the modular groups.103



Corollary 14.1.3. The subgroup of all t ∈ R for whi
h σφt is inner is inde-pendent of the faithful normal state φ.De�nition 14.1.4. The subgroup of the previous 
orollary, whi
h is an in-variant of M , is 
alled T (M).We shall now 
al
ulate T (M) for the Powers fa
tor Rλ where this refersto the ITPFI fa
tor with all nk = 2 and all states having the same densitymatrix h =

(

1
1+λ

0

0 λ
1+λ

).Theorem 14.1.5.
T (Rλ) =

2π

log λ
Z.Proof. By the formula for the modular group σφ2π

log λ

= id so 2π
log λ

Z ⊆ T (Rλ).For the other dire
tion it su�
es to show that an automorphism α of theform
α = ⊗∞

k=1Aduis outer whenever the unitary u is not a s
alar.For this �rst de�ne uk = ⊗k
1u and observe that if α = Adv then (uk ⊗

1)−1v = id on the matrix algebra Ak = ⊗k
1M2(C). By exer
ise 4.3.3 thismeans that v = uk ⊗ w. Now it is 
lear from our basis that we 
an 
hoose

⊗p
j=1xi ⊗ 1Ω with non-zero inner pro
u
t with vΩ. But then �xing p andletting k tend to in�nity we see that

〈(⊗p
j=1xi ⊗ 1)Ω, vΩ〉 =

p
∏

j=1

〈xi, u〉〈1, u〉k−p〈1, w〉.The left hand side does not depend on k and |〈1, w〉| ≤ 1 so we must have
|〈1, u〉| = 1 whi
h means that u is a s
alar multiple of 1 by the Cau
hy-S
hwarz inequality.We 
on
lude that the Powers fa
tors Rλ are type III fa
tors, mutuallynon-isomorphi
 for di�erent values of λ.14.2 Type IIIλ.The spe
trum of the modular operator ∆ is easy to 
al
ulate for an ITPFIfa
tor. It is simply the 
losure of the set of all ratios µi

µj
as µ varies overall the density matri
es de�ning the produ
t state. Apart from being 
losed104



under the inverse operation this set of non-negative real numbers has noparti
ular stru
ture and 
an be altered easily by making 
hanges in �nitelymany density matri
es whi
h of 
ourse do not 
hange the fa
tor.De�nition 14.2.1. If M is a von Neumann algebra the invariant S(M)is the interse
tion over all faithful normal states φ of the spe
tra of their
orresponding modular operators ∆φ.Theorem 14.2.2. A fa
tor M is of type III i� 0 ∈ S(M).Theorem 14.2.3. (Connes-van Daele) S(M) \ {0} is a 
losed subgroup ofthe positive real numbers.There are only three kinds of 
losed subgroups of R+.De�nition 14.2.4. A fa
tor M is 
alled type IIIλ for 0 ≤ λ ≤ 1 if
λ = 0 : S(M) = {0} ∪ {1}

0 < λ < 1 : S(M) = {0} ∪ {λn : n ∈ Z}
λ = 1 : S(M) = {0} ∪ R+Theorem 14.2.5. The Powers fa
tor Rλ is of type IIIλ.In his thesis, Connes showed that every type IIIλ fa
tor for 0 < λ < 1 is Connes thesis
anoni
ally isomorphi
 to the 
rossed produ
t of a type II∞ fa
tor with ana
tion of Z whose generator s
ales the tra
e by λ.If A is a lo
ally 
ompa
t abelian group with an a
tion α on a von Neumannalgebra M , there is an a
tion α̂ of the Pontryagin dual Â on the 
rossedprodu
t M ⋊α A satisfying

α̂a(x) = x for x ∈M

α̂â(ua) = â(a)ua if ua are the unitaries de�ning the 
rossed produ
t.The existen
e of the so-
alled �dual a
tion� α̂ is trivial proved sin
e it isimplemented by the obvious unitary representation of Â on L2(A).Exer
ise 14.2.6. If A is �nite 
onsider the proje
tion p =
∑

a ua ∈M ⋊A.Show that pM⋊Ap = MAp and thus show that (M⋊αA)⋊α̂ Â is isomorphi
to M ⊗M|A|(C). 105



Observe that the 
rossed produ
t of a von Neumann algebra M on H bythe modular group σφ does not depend, up to isomorphism, on the faithfulnormal state φ. This follows from theorem 14.1.1 by de�ning the unitary Von L2(R,H) by
V f(t) = utf(t)where ψ is another faithful normal state with unitary one-
o
y
le ut. Conju-gating the operators that generate M⋊σφR by V one obtains the generatorsof M ⋊σψ R.Theorem 14.2.7. The 
rossed produ
t of M by the modular group admits atra
e satisfying the properties of 9.1.9De�nition 14.2.8. The a
tion of R̂ on Z(M ⋊σφ R) is 
alled the ��ow ofweights� of M .Theorem 14.2.9. (Takesaki duality) The 
rossed produ
t

(M ⋊σφ R) ⋊cσφ R̂is isomorphi
 to the tensor produ
t M ⊗ B(H) for H = L2(R).Thus if M is a fa
tor the �ow of weights is ergodi
.Theorem 14.2.10. If M is a fa
tor of type IIIλ the �ow of weights isIII1: The trivial �ow on a one point set if M is III1.IIIλ: The transitive �ow on the 
ir
le with period 2π
λ
if M is of type IIIλ,

0 < λ < 1.III0: Ergodi
 non-transitive if M is of type III0.Moreover any ergodi
 non-transitive �ow arises as the �ow of weights forsome type III0 fa
tor.
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Chapter 15Hyper�nitenessDe�nition 15.0.11. A von Neumann algebraM on a separable Hilbert spa
eis 
alled hyper�nite if there is an in
reasing sequen
e An of �nite dimensional*-subalgebras of M whi
h generates M as a von Neumann algebra.15.1 The hyper�nite type II1 fa
tor RThe �rst main result about hyper�niteness was proved by Murray and vonNeumann in [℄. We will use R to denote the hyper�nite II1 fa
tor whoseuniqueness they proved.Theorem 15.1.1. Up to abstra
t isomorphism there is a unique hyper�niteII1 fa
tor.Sket
h of proof. One works with the norm ||x||2 = tr(x∗x)1/2 on M . It isnot hard to show that a von Neumann subalgebra N of M is strongly denseinM i� it is dense in ||−||2. Given a subalgebra A ofM and a subset S ⊆Mone says
S ⊆ A

εif for ea
h x ∈ S there is a y ∈ A with ||x− y||2 < ε.The hyper�niteness 
ondition then implies:For every �nite subset S ⊆ M and every ε > 0 there is a �nite dimen-sional *-subalgebra A of M with
S ⊆ A.
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The next step is to show that the A in the pre
eeding 
ondition 
an be
hosen to be the 2n×2n matri
es for some (possibly very large) n. This partuses what might be des
ribed as �II1 fa
tor te
hnique�. One begins with Aand approximates all its minimal proje
tions {ei} by ones whose tra
es arenumbers of the form k/2n. The matrix units of A 
an be 
hanged a little bitin || − ||2 so that, together with matrix units 
one
ting proje
tions of tra
e
1/2n less than the ei, they generate a 2n×2n matrix algebra 
ontaining, up to
ε, the matix units of A. Perturbation of the matrix units will involve resultsof the form:If u ∈ M satis�es ||(uu∗)2 − uu∗||2 < ǫ then there is a partial isometry
v ∈M with ||v − u||2 < F (ǫ)(for some ni
e fun
tion f with f(0) = 0).or:If p and q are proje
tions with ||pq||2 < ǫ then there is a proje
tion q′ with
pq′ = 0 and ||q − q′|| < F (ǫ).or:If fij are �almost n× n matrix units�, i.e.(a) ||fij − fji||2 < ǫ(b) ||fijfkl − δj,kfil||2 < ǫ(
) ||1 −∑n

i=1 fii||2 < ǫthen there are n×n matrix units eij with ||eij−fij || < F (ǫ) where F dependsonly on n and F (0) = 0.Su
h results are proved by a skilful use of the polar de
omposition andspe
tral theorem.Thus one shows that in a hyper�nite type II1 fa
tor one has:Property * : For every �nite subset S ⊆M and every ε > 0 there is a
2n × 2n matrix subalgebra of M with

S ⊆ A.

εOne may now pro
eed to prove the theorem by 
hoosing a || − ||2-densesequen
e xk in M and indu
tively 
onstru
ting an in
reasing sequen
e of
2nk × 2nk matrix algebras Ak with the property thatFor ea
h k = 1, 2, 3, ..., {x1, x2, ..., xk} ⊆ Ak .

1/k108



The union of the Ak's is 
learly dense in || − ||2. This is enough to provethe theorem sin
e the Ak's 
an be used to give an isomorphism of M withthe type II1 fa
tor ⊗∞M2(C) 
onstru
ted in se
tion 6.2.To 
onstru
t Ak+1 from Ak one needs to arrange for the new algebrato 
ontain the one already 
onstru
ted. So to the elements x1, x2, ..., xk+1,add matrix units eij for Ak+1. Now use property * to obtain a B almost
ontaining the xi and the matrix units, with ǫ small enough to 
ontrol sumsover the matrix units eij . In B we know there are approximate matrix units
lose to the eij so by a te
hni
al lemma, exa
t matrix units fij 
lose to the
eij . Now 
hoose a unitary 
lose to the identity whi
h 
onjugates the fij tothe eij and use this unitary to 
onjugate B to a superalgebra of Ak. Thissuperalgebra is Ak+1 and it 
ontains the xi up to epsilon sin
e u is 
lose tothe identity.This 
ompletes the sket
h of the proof. The te
hnique involved is 
on-sidered standard in von Neumann algebras and the details 
an be found in. dixmierCorollary 15.1.2. If S∞ is the group of �nitely supported permutations ofa 
ountably in�nite set then vN(S∞) ∼= ⊗∞M2(C).Proof. The subgroups of S∞ permuting an in
reasing sequen
e of �nite setsshow that vN(S∞) is hyper�nite.It is surprising at �rst sight that the type II1 fa
tor L∞(X,µ)⋊Z obtainedfrom an ergodi
 measure-preserving transformation T is hyper�nite. This 
anbe shown by Rokhlin's tower theorem whi
h asserts that, for ea
h n ∈ N andea
h ǫ > 0 there is a measurable subset A ⊆ X with(1) T i(A) ∩ T j(A) = ∅ for 1 ≤ i < j ≤ n, and(2) µ(X \ ∪ni=0T

i(A)) < ǫ.The unitary u1 of the 
rossed produ
t and the 
hara
teristi
 fun
tion of A
an be 
ombined, with a little perturbation to get the identity, to get a n×nmatrix algebra. Careful appli
ation of the tower theorem will allow one toget any element of L∞(X,µ), and u1, in this matrix algebra up to some ǫ.This was �rst proved by Henry Dye in who went on to prove that in fa
t all Dyegroups of polynomial growth give hyper�nite II1 fa
tors in this way.The ultimate result in this dire
tion is the 
elebrated �Inje
tive fa
tors�theorem of Connes who showed that hyper�niteness for a von Neumann al-gebraM on H is equivalent to �inje
tivity� whi
h means there is a proje
tionin the Bana
h spa
e sense of norm one from B(H) onto M . This theorem,whose proof is a great, great tour de for
e, has a raft of 
orollaries, many of109



whi
h were open questions. Let us just mention the fa
t that it follows easilythat any subfa
tor of R whi
h is in�nite dimensional is in fa
t isomorphi
 to
R. It also implies that vN(Γ), as well as L∞(X,µ) ⋊ Γ is hyper�nite as soonas Γ is amenable.15.2 The type III 
ase.The 
omplete 
lassi�
ation of inje
tive(=hyper�nite) fa
tors is a triumphof 20th. 
entury mathemati
s. Connes showed in that there is only oneConnes a
tions tra
e-s
aling automorphism of R⊗ B(H) for ea
h s
aling fa
tor λ 6= 1 up to
onjuga
y. Together with this shows that for ea
h λ with 0 < λ < 1 there isConnes Inje
tive fa
tors a unique inje
tive fa
tor of type IIIλ.Using results of Krieger in , his thesis and , Connes showed that hyper�-kriegerinje
tive nite type III0 fa
tors are 
lassi�ed by their �ow of weights (up to 
onjuga
y of�ows, not orbit equivalen
e). This means that there is a rather large numberof III0 fa
tors but their 
lassi�
ation is in the realm of ergodi
 theory ratherthan von Neumann algebras.The remaining 
ase of inje
tive type III1 fa
tors was solved by Haagerupin . There is just one su
h fa
tor and a hyper�nite fa
tor is �generi
ally� ofu�eIIIone type III1.
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Chapter 16Central Sequen
es.
16.1 Generalities.De�nition 16.1.1. If M is a type II1 fa
tor, a 
entral sequen
e in M is anorm bounded sequen
e (xn) with limn→∞ ||[xn, a]||2 = 0. A 
entral sequen
eis said to be trivial if limn→∞ ||xn − tr(xn)id||2 = 0. M is said to haveproperty Γ if there is a 
entralThe 
olle
tion of all 
entral sequen
es is 
learly a C∗-subalgebra of ℓ∞(N,M).If ω is a free ultra�lter on N, the subalgebra Iω of ℓ∞(N,M) 
onsisting ofsequen
es with limn→ω ||xn||2 = 0 is a 2-sided ideal of ℓ∞(N,M). Note alsothat M is embedded in ℓ∞(N,M) as 
onstant sequen
es.De�nition 16.1.2. With notation as above, the ultraprodu
t ofM along ω isthe quotient of ℓ∞(N,M) by Iω. It is written Mω. The algebra of (ω-)
entralsequen
es is the 
entraliser Mω = M ′ ∩Mω of M in ℓ∞(N,M).By 
ompa
tness, the tra
e on M de�nes a tra
e on Mω by

tr((xn)) = lim
n→ω

tr(xn)and by de�nition it is faithful on Mω.Exer
ise 16.1.3. Show that the unit ball (in the C∗ norm) ofMω is 
ompletein || − ||2 so that Mω and Mω are von Neumann algebras.16.2 Central sequen
es in RAll models for R exhibit 
entral sequen
es in abundan
e. The most obvioussituation is that of ⊗∞M2(C). Fixing x ∈M2(C) we 
an de�ne the sequen
e111



xn = 1⊗ 1⊗ 1...x⊗ 1⊗ 1... with the x in the nth slot in the tensor produ
t.For large enough n, xn will 
ommute with any element in the algebrai
 tensorprodu
t so by the obvious (in the II1 
ase!) inequality ||[xn, a]|| ≤ 2||xn|| ||a||2we see that (xn) is 
entral and 
learly non-trivial if x is not a s
alar. Just as
learly the 
entral sequen
e algebra is non-
ommutative as we only need to
hoose x and y that do not 
ommute and 
onstru
t the sequen
es (xn) and
(yn) as above. In fa
t it is not hard to show that Rω is a fa
tor.Theorem 16.2.1. The 
entral sequen
e algebra Rω is a type II1 fa
tor.Proof. If (xn) represents an element X ∈ Rω,�nish proof! 16.3 Type II1 fa
tors without property Γ.Theorem 16.3.1. Let Γ be an i

 group possessing a subset ∆ not 
ontainingthe identity and three elements α, β and γ su
h that(a)Γ = {1} ∪ ∆ ∪ α∆α−1(b)∆, β∆β−1 and γ∆γ−1 are mutually disjoint.then for x ∈ vN(Γ),

||x− tr(x)id||2 ≤ 14 max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.Proof. Write x as ∑ν∈Γ xνuν . We will frequently use the formula
||[x, uρ]||22 = ||uρ−1xuρ − x||2 =

∑

ν∈Γ

|xν − xρνρ−1 |2.By repla
ing x by x − tr(x)id it su�
es to prove the result if tr(x) = 0and we may suppose ||x||2 = 1 so that for su
h an x we must show 1 ≤
14 max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.We �rst make a simple estimate. If Λ is any subset of Γ and ρ ∈ Γ then

|
∑

ν∈Λ

|xν |2 −
∑

ν∈Λ

|xρνρ−1 |2| =
∑

ν∈Λ

(|xν | + |xρνρ−1 |)||xν | − |xρνρ−1 ||

≤
∑

ν∈Λ

(|xν | + |xρνρ−1 |)(|xν − xρνρ−1 |)

≤ 2||x||2(
∑

ν∈Λ

|xν − xρνρ−1 |2)1/2112



so that if ρ ∈ {α, β, γ} we have
|
∑

ν∈Λ

|xν |2 −
∑

ν∈Λ

|xρνρ−1 |2| ≤ 2ǫwhere ǫ = max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.Let us now �rst overestimate ||x||2 = 1:
1 ≤

∑

ν∈∆

|xν |2 +
∑

ν∈∆

|xανα−1 |2

≤ 2
∑

ν∈∆

|xν |2 + 2ǫ.Now underestimate it:
1 ≥

∑

ν∈∆

|xν |2 +
∑

ν∈∆

|xβνβ−1 |2 +
∑

ν∈∆

|xγνγ−1 |2

≥ 3
∑

ν∈∆

|xν |2 − 4ǫ.Let y =
∑

ν∈∆ |xν |2 and eliminate y from the inequalities 1 ≤ 2y+2ǫ and
1 ≥ 3y − 4ǫ to obtain

ǫ ≥ 1/14as desired.It is easy to 
ome up with groups having subsets as in the previous the-orem. For instan
e if G = F2, free on generators g and h, let ∆ be the setof all redu
ed words ending in a non-zero power of g. Let α = g, β = h and
γ = h−1. The same works for more than two generators. We 
on
lude:Theorem 16.3.2. The type II1 fa
tor vN(Fn) for n ≥ does not have property
Γ.
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Chapter 18Fermions and Bosons:CAR andCCRA

ording to physi
s lore, the states of a quantum system are given by (theone-dimensional subspa
es of) a Hilbert spa
e H and if two systems havestate spa
es H and K, the joint system has state spa
e H ⊗ K. Fermionsare parti
les su
h that "the wave fun
tion of several fermions is antisymmet-ri
" whi
h means that it is the antisymmetri
 tensor produ
t ΛnH whi
hdes
ribes n identi
al fermions. Bosons are parti
les whose wave fun
tionsare symmetri
 so it is the symmetri
 tensor power SnH whi
h des
ribes nidenti
al bosons. In order to treat families with an unlimited number offermions and Bosons we need the fermioni
 and bosoni
 Fo
k spa
es (whi
hare Hilbert spa
e dire
t sums):
F(H) = ⊕∞

n=0Λ
nHand

S(H) = ⊕∞
n=0S

nH.The passage from H to F(H) or S(H) is known as �se
ond quantisation'.We will not attempt to explain the physi
s above but will de�ne properlythese two Fo
k spa
es and how they give rise to interesting von Neumannalgebras related to physi
s.Both these Fo
k spa
es are subspa
es of the "full Fo
k spa
e" or tensoralgebra
T (H) = ⊕∞

n=0 ⊗n H
T (H) is related to quantum physi
s also though so far in a less funda-mental way through the large N behaviour of random N × N matri
es andVoi
ules
u's free probability. 117



18.1 The Fo
k spa
es.18.1.1 Full Fo
k spa
eDe�nition 18.1.2. If H is a real or 
omplex Hilbert spa
e the full Fo
k spa
e
T (H) is the Hilbert spa
e dire
t sum ⊕∞

n=0 ⊗n H. By de�nition ⊗0H is onedimensional, spanned by the "va
uum" ve
tor Ω.Even when H is real one 
omplexi�es T (H) so that it is a 
omplex Hilbertspa
e.For ea
h n and f ∈ H the operator ℓ(f) : ⊗nH → ⊗n+1H given by
ℓ(f)(ξ1 ⊗ ξ2 · · · ξn) = f ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξnis 
learly bounded by ||f || so extends to an operator we will 
all ℓ(f) on allof full Fo
k spa
e.Exer
ise 18.1.3. (i) Show that

ℓ(f)∗(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = 〈ξ1, f〉ξ2 ⊗ ξ3 · · · ξn,

ℓ(f)∗(ξ) = 〈ξ, f〉Ω for ξ ∈ ⊗1H,and ℓ(f)∗Ω = 0.(ii) Show that
ℓ(f)∗ℓ(g) = 〈g, f〉Proposition 18.1.4. The a
tion of the ℓ(f) and ℓ(f)∗ on full Fo
k spa
e isirredu
ible.Proof. It su�
es to show that any non-zero ve
tor in T (H) is 
y
li
. Theva
uum ve
tor Ω is obviously 
y
li
. Note that the linear span of the imagesof the ℓ(f)ℓ(f)∗ is the orthogonal 
omplement Ω⊥. The proje
tion onto Ω⊥is thus in {ℓ(f), ℓ(f)∗}′′. If ξ is any ve
tor we are thus done if 〈ξ,Ω〉 6= 0.Otherwise 〈ξ, f1 ⊗ f2 · · · fn〉 must be non-zero for some fi ∈ H. But then

〈ℓ(f1)ℓ(f2) · · · ℓ(fn)Ω, ξ〉 6= 0 and the ve
tor (ℓ(f1)ℓ(f2) · · · ℓ(fn))∗ξ, whi
h
an be rea
hed from ξ, proje
ts non-trivially onto the va
uum and is thus
y
li
.One may also 
onsider the right 
reation operators r(ξ) de�ned by
r(f)(ξ1 ⊗ ξ2 · · · ξn) = ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn ⊗ f.They satisy the same relations as the ℓ(f) and almost 
ommute with them.To be pre
ise 118



18.1.5.
ℓ(f)r(g) = r(g)ℓ(f)and

ℓ(f)r(g)∗ − r(g)∗ℓ(f) = −〈f, g〉pΩwhere pΩ is proje
tion onto the one dimensional subspa
e spanned by theva
uum.The r(f)'s and r(f)∗'s a
t just as irredu
ibly as the ℓ's.18.1.6 Fermioni
 Fo
k spa
e.Given a Hilbert spa
eH, the nth. exterior or antisymmetri
 power ofH is theHilbert spa
e ΛnH = p(⊗nH) where p is the antisymmetrisation proje
tion
p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =

1

n!

∑

σ∈Sn

(−1)σξσ(1) ⊗ ξσ(1) ⊗ ξσ(2) · · · ⊗ ξσ(n)De�nition 18.1.7. The fermioni
 Fo
k spa
e of H is the Hilbert spa
e dire
tsum
F(H) = ⊕∞

n=0Λ
nH. Given ξ1, ..ξn ∈ H we set

ξ1 ∧ ξ2 ∧ · · · ∧ ξn =
√
n! p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn)Exer
ise 18.1.8. Show that 〈ξ1 ∧ ξ2 ∧ · · · ∧ ξn, η1 ∧ η2 ∧ · · · ∧ ηn〉 is thedeterminant of the matrix whose (i, j) entry is 〈ξi, ηj〉.Obviously if σ ∈ Sn,

ξσ(1) ∧ ξσ(1) ∧ ξσ(2) · · · ∧ ξσ(n) = (−1)σξ1 ∧ ξ2 ∧ · · · ∧ ξn.Exer
ise 18.1.9. For f ∈ H de�ne A(f) : ⊗nH → Λn+1H by
A(f)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =

1√
n!
f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn,show that A(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.119



Exer
ise 18.1.10. The previous exer
ise shows that for ea
h f ∈ H there isa bounded linear map from ΛnH to Λn+1H de�ned by:
a(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.Show that

a(f)∗(ξ1 ∧ ξ2 ∧ · · · ∧ ξn+1) =
n+1
∑

i=1

(−1)i+1ξ1 ∧ · · · ξ̂i · · · ∧ ξn+1We have sloppily left out the n on our operators a(f). But we 
an putthem all together to form the densely de�ned operators a(f) and a(f)∗ on
F(H) whose domain is the algebrai
 dire
t sum of the ΛnH.Exer
ise 18.1.11. Show that these densely de�ned operators satisfy the CARrelations.Exer
ise 18.1.12. Show that ||a(f)ξ|| ≤ ||ξ|| for ξ in the domain of a(f) so
a(f) an a(f)∗ extend to bounded operators on F(H) whi
h are one another'sadjoints and satisfy the CAR relations.Exer
ise 18.1.13. Imitate 18.1.4 to show that the *-algebra generated bythe a(f) a
ts irredu
ibly on fermioni
 Fo
k spa
e.18.2 CAR algebra, CCR algebra and the (ex-tended) Cuntz algebra.18.2.1 CAR algebraDe�nition 18.2.2. If H is a 
omplex Hilbert spa
e the CAR (
anoni
alanti
ommuation relations) algebra CAR(H) is the unital *-algebra with gen-erators a(f) for ea
h f ∈ H subje
t to the following relations:(i) The map f 7→ a(f) is linear.(ii) a(f)a(g) + a(g)a(f) = 0 ∀f, g ∈ H.(iii) a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉 ∀f, g ∈ H.(the identity is impli
it on the right hand side of (iii))We already know a non-trivial representation of the CAR algebra onFermioni
 Fo
k spa
e.Exer
ise 18.2.3. Show that if dimH = 1, CAR(H) is isomorphi
 toM2(C).120



Proposition 18.2.4. If dimH = n < ∞, the Fo
k spa
e representation isirredu
ible and faithful so CAR(H) ∼= M2n(C).Proof. Irredu
ibility was already shown. This means that the dimensionof the image of the representation is 22n. But words in the a(f) may berearranged without 
hanging their linear span so that all a(f)'s 
ome beforeall a(g)∗'s. Moreover the order of the a(f)'s in a word only matters up to asign so that, after 
hoi
e of a orthogonal basis, the CAR algebra is linearlyspanned by words given by pairs of subsets of the basis-one for the a(f)'sand one for the a(f)∗'s. Thus the dimension of the CAR algebra is ≤ 22nand the Fo
k spa
e represenation is bije
tive.Corollary 18.2.5. If K is a subspa
e of H, the obvious in
lusion map of
CAR(K) into CAR(H) is inje
tive.Proof. If K is �nite dimensional this follows from the simpli
ity of a matrixalgebra. In general an element of CAR(H) is a �nite linear 
ombination ofwords on a(f)'s and a(f)∗'s so in CAR of a �nite dimensional subspa
e.Corollary 18.2.6. There is a unique C∗-norm and a unique normalised tra
eon CAR(H).Proof. This follows from the uniqueness of the norm and tra
e on a matrixalgebra as in 18.2.5We will see an expli
it formula for the tra
e on words in the a(f) and
a(f)∗ later-it is a "quasi-free" state.Exer
ise 18.2.7. Show that ||a(f)|| = ||f ||.This shows that, if we 
hoose an orthonormal basis ξi of H (supposedseparable), the *-algebra generated by {a(ξi)|i = 1, 2, · · ·∞} is dense in the
C∗-
ompletion of CAR(H). Thus this C∗-algebra is in fa
t isomorphi
 to theindu
tive limit of 2n× 2n matri
es and one obtains the hyper�nite II1 fa
toras its GNS 
ompletion.From now on we will abuse notation by using CAR(H) for the C∗-algebra
ompletion.Exer
ise 18.2.8. A unitary u on H obviously de�nes an automorphism αuof CAR(H) (sometimes 
alled a Bogoliubov automorphism) by fun
toriallyextending αu(a(f)) = a(uf). In parti
ular 
hoosing u = −1 makes CAR(H)into a Z/2Z-graded algebra. De�ne a notion of graded produ
t A ⊗Z/2Z Bfor Z/2Z-graded algebras A and B. Show that if V and W are orthogonalHilbert subspa
es of H then CAR(V ⊕W ) ∼= CAR(V ) ⊗Z/2Z CAR(W ).121



18.3 Va
uum expe
tation valueThe va
uum ve
tor Ω de�nes a state ωΩ on CAR(H) as usual via 〈xΩ,Ω〉whi
h as we know would re
onstru
t Fo
k spa
e via the GNS 
onstru
tion.The following formula is 
lear:18.3.1.
ωΩ

(

a(fm)∗a(fm−1)
∗ · · ·a(fm)∗a(g1)a(g2) · · ·a(gn)

)

= δm,n det (〈gi, fj〉)We know that states on matrix algebras are given by tr(h)̇ so we wouldlike to know what ωΩ looks like in this pi
ture. For this we will 
onstru
t anexpli
it isomorphism between CAR(H) and M2n(C). To do this it su�
esto exhibit a family of n 
ommuting 2 × 2 matrix algebras. If we 
hoose anorthonormal basis ξ, ea
h a(ξ) will give a 2×2 matrix algebra but they won'tquite 
ommute. But this 
an be �xed up by unitaries whi
h implement theBogoliubov automorphism 
orresponding to −1.So let H be a Hilbert spa
e and let {ξi | i = 1, 2, ...∞} be an orthonormalbasis. Set
ai = a(ξi) ∈ CAR(H)and vi = 1 − 2a∗i ai. The vi 
ommute among themselves so put

uk =
k
∏

i=1

vi.Exer
ise 18.3.2. Show:
v2
i = 1 = u2

i , ujaiuj = −ai for i ≤ j and ujaiuj = ai for i > j.If we put ek12 = ukak, then [ek12, e
j
12] = 0 = [ek12, (e

j
12)

∗] for all j, k so thatthe ek12 generate mutually 
ommuting 2 × 2 matrix units with ek11 = aka
∗
kand ek22 = a∗kak. This gives an isomorphism between the CAR algebra of thelinear span of ξ, ξ2 · · · ..., ξn withM2n(C) and hen
e CAR(H) with ⊗∞

1 M2(C).Observe that uk implements the Bogoliubov automorphism for −1 and thusdepends on the basis only up to a sign.Now we 
an see what the va
uum expe
tation value looks like:
ωΩ(ekij) =

{

0 i 6= j or i = 1

1 i = j = 2Thus in the matrix pi
ture if h = ( 0 0
0 1 ) then ωΩ is the produ
t state

ωΩ(⊗∞
i=1xi) =

∞
∏

i=1

tr(hxi).122



18.4 Quasi-free statesWe will now generalise formula 18.3.1 to what are 
alled quasi-free states.The operator a in the theorem below is 
alled the �
ovarian
e" of the state.Theorem 18.4.1. For ea
h self-adjoint a on H, 0 ≤ a ≤ 1 there is a state
φa on CAR(H) de�ned by

φa
(

a(fm)∗a(fm−1)
∗ · · ·a(f1)

∗a(g1)a(g2) · · ·a(gn)
)

= δm,n det (〈agi, fj〉)Proof.Lemma 18.4.2. Theorem 18.4.1 is true if a is a proje
tion p and dimH =
n <∞.Proof. Choose a basis ξ1, ξ2, ..., ξk for pH and η1, η2, ..., ηn−k for (1−p)H. We
laim that if v = η1 ∧ η2 ∧ · · · ηn−k the the ve
tor state ωv is the requiredstate. For this note that it su�
es to prove the formula

ωv
(

a(fm)∗a(fm−1)
∗ · · ·a(f1)

∗a(g1)a(g2) · · ·a(gn)
)

= δm,n det (〈pgi, fj〉)when the f 's and g's are basis ve
tors sin
e both sides are suitably multilinear.If any of the f 's and g's is in (1− p)H both sides are zero. If all the f 's and
g's are in pH the left hand side is 〈g1 ∧ · · · ∧ gn ∧ v, f1 ∧ · · · fm ∧ v〉 whi
h is
0 unless m = n in whi
h 
ase it is the determinant:

(

det(〈gi,fj〉) 0

0 det(〈ηi,ηj〉)

)

= det (〈pgi, fj〉)Lemma 18.4.3. Theorem 18.4.1 is true if p is a proje
tion.Proof. Choose bases ξ1, ξ2, · · · for pH and η1, η2, · · · for (1 − p)H and let Vkbe the subspa
e of H spanned by {ξi, ηj|1 ≤ i, j ≤ k}. Then for ea
h k thereis a state on CAR(Vk) satisfying the formula and these states are 
oherentwith the in
lusions CAR(Vk) ⊂ CAR(Vk+1). By density and 
ontinuity ofstates they extend to a state on CAR(H) still satisfying the formula of thetheorem.To end the proof of theorem 18.4.1 we form H ⊕ H and 
onsider theproje
tion
p =

(

a
√
a(1−a)√

a(1−a) 1−a

). Obviously the quasifree state φp on CAR(H ⊕ H) restri
ts to a state on
CAR(H) ⊕ 0 satisfying the formula of the theorem.123



Exer
ise 18.4.4. Show that if a is diagonalisable with eigenvalues λi thenusing the basis of eignve
tors to identify CAR(H) with ⊗∞M2(C), the quasi-free state with 
ovarian
e a be
omes a produ
t state with hi =
(

λi 0
0 1−λi

).Let us think a little more about a quasi-free state whose 
ovarian
e is aproje
tion p, �rst in �nite dimensions. The ve
tor of the GNS 
onstru
tionhas been identi�ed with η1 ∧ η2 · · · ∧ ηk where the η are an orthonormal basisfor (1 − p)H. Physi
ists think of this η1 ∧ η2 · · · ∧ ηk as a new "va
uum" inwhi
h the "states" η1, · · · ηk have been �lled. There is no parti
ular reason notto use this notation when dim(1−p)H = ∞ so the va
uum is η1 ∧ η2 ∧ η3 · · ·whi
h represents Dira
's �sea� and a state η1 ∧ η2 · · · ∧ η̌i ∧ · · · represents anex
itation of the va
uum by a �hole" or antiparti
le ηi.One may make of this what one likes but there is a parti
ularly signi�-
ant mathemati
al 
onsequen
e. If ut is a one-parameter group of unitarieson H whi
h 
ommutes with p then the 
orresponding group of Bogoliubovautomorphisms αt preserves φp and so de�nes a one parameter unitary group
Ut(πφp(x)Ωp) = πφp(αt(x))Ωp of the GNS spa
e Hp with va
uum ve
tor Ωpfor φp. The map from (1 − p)H to H, η 7→ a(η)∗Ωp is anti -linear so the signof t will be reversed. More 
on
retely suppose for simpli
ity that ut has anorthonomal basis of eigenve
tors {ξk|k ∈ Z} with

utξk = eiEktξk,and that p is the proje
tion onto the spa
e spanned by the ξk with Ek < 0.Then following through the de�nition of Ut, we see that
Utξk =

{

eiEktξk if Ek ≥ 0

e−iEktξk if Ek < 0.Physi
ally this is remarkable. If we start with a Hamiltonian inadmissiblebe
ause of its negative energy eigenvalues, se
ond quantisation with the ap-propriate quasi-free state turns all the negative energies into positive ones!18.5 Complex stru
tureOne may obtain the existen
e of the quasi-free states without basis 
al
ula-tions by 
hanging the 
omplex stru
ture on H.De�nition 18.5.1. If K is a real Hilbert spa
e, a 
omplex stru
ture on K isan orthogonal transformation J with J2 = −1.124



Lemma 18.5.2. A real Hilbert spa
e K with inner produ
t (, ) and a 
omplexstru
ture J 
an be made into a 
omplex Hilbert spa
e by de�ning the a
tionof C as (x+ iy)ξ = xξ + yJξ and the inner produ
t
〈ξ, η〉 = (ξ, η) − i(Jξ, η)Proof. The ve
tor spa
e stru
ture is routine as is sesquilinearity of 〈, 〉. But

〈ξ, ξ〉 = (ξ, ξ)− i(Jξ, ξ) and (Jξ, ξ) = −(ξ, Jξ) = −(Jξ, ξ) whi
h is thereforezero. Hen
e <,> is positive de�nite and de�nes the same norm as (, ) so
ompleteness is un
hanged.De�nition 18.5.3. The Cli�ord algebra of a real Hilbert spa
e K is the(
omplex) *-algebra generated by c(f) subje
t to:(i) The map f 7→ c(f) is real linear.(ii) c(f) = c(f)∗ ∀f ∈ K.(iii) {c(f), c(g)} = 2(f, g) ∀f, g ∈ H.(
learly c(f)2 = (f, f) is equivalent to (iii)).Proposition 18.5.4. If K is a real Hilbert spa
e with 
omplex stru
ture J ,mapping a(f) to 1
2
(c(f)−ic(Jf)) de�nes an isomorphism of the CAR algebraof the 
omplex Hilbert spa
e onto the Cli�ord algebra of K. The inverse mapis given by c(f) 7→ a(f) + a(f)∗.Proof. It is routine that f 7→ a(f) is 
omplex-linear and satis�es the CARrelations, so the map extends to all of CAR. Also a(f) + a(f)∗ satis�es theCli�ord algebra relations and is an inverse to a(f) 7→ 1

2
(c(f)− ic(Jf)) on thegenerators hen
e on all of the Cli�ord algebra.Thus given a 
omplex Hilbert spa
e H and another 
omplex stru
ture Jon the underlying real Hilbert spa
e, there is an isomorphism of 
omplex *-algebras χJ : CAR(H) → CAR(HJ) and hen
e a representation of CAR(H)every time we have one of CAR(HJ ), in parti
ular the Fo
k representationof HJ gives a representation of CAR(H). Expli
itly if we follow the isomor-phism through the Cli�ord algebra we obtain18.5.5.

χJ(a(f)) =
1

2

(

A(f − Jif) + A(f + Jif)∗
)where we have used A(f) for the generators of CAR(HJ).The simplest J if given by 
hoosing a proje
tion p ∈ B(H) and 
hangingof i on pB(H)⊥, thus J = ip− i(1 − p) (whi
h is a
tually C-linear).125



Exer
ise 18.5.6. Show that the state indu
ed on CAR(H) by ξ and the Fo
kva
uum for HJ with J as above is quasi-free of 
ovarian
e p.The question thus be
omes: what does HJ , and hen
e its Fo
k spa
e,look like? If H is a Hilbert spa
e let H be the dual Hilbert spa
e of H and
ξ 7→ ξ be the 
anoni
al antilinear map from H to its dual.Proposition 18.5.7. Let q = (1 − p). Then the map ξ 7→ pξ ⊕ qξ is a
C-linear isomorphism from HJ to pH⊕ (1 − p)H.Exer
ise 18.5.8. If the Hilbert spa
e H is the dire
t sum K ⊕ L, show that
F(H) is 
anoni
ally isomorphi
 to

⊕∞
n=0 ⊕i+j=n

(

ΛiK ⊗ ΛjL
)Thus F(HJ) ∼= ⊕∞

n=0⊕i+j=n

(

ΛipH⊗Λj(1 − p)H
) on whi
h CAR(H) a
tsa

ording to 18.5.5.Exer
ise 18.5.9. Show how the general quasi-free states are related to arbi-trary 
omplex stru
tures on a 
omplex Hilbert spa
e.18.5.10 CCR algebra18.5.11 Cuntz algebraDe�nition 18.5.12. Given the 
omplex Hilbert spa
e H, let the extendedCuntz algebra of H, C(H), be the unital ∗-algebra with generators ℓ(f) forea
h f ∈ H subje
t to the following relations:(i) The map f 7→ ℓ(f) is linear.(ii) ℓ(f)∗ℓ(g) = 〈g, f〉 ∀f, g ∈ H.The ℓ(f) de�ned on full Fo
k spa
e show that this algebra is non-trivial.Exer
ise 18.5.13. Show that the representation of C(H) on full Fo
k spa
eis faithful.This means that there is a C∗-norm on C(H) so we may 
onsider it as aC∗ algebra.Exer
ise 18.5.14. If ξ1, ξ2, ..., ξn are orthogonal unit ve
tors then ℓ(ξi) areisometries with orthogonal ranges, and the proje
tion

n
∑

i=1

ℓ(ξi)ℓ(ξi)
∗depends only on the spa
e spanned by ξ1, ξ2, ...., ξn.126



If H is �nite dimensional and ξi is an orthonormal basis we see that theproje
tion p = 1−∑n
i=1 ℓ(ξi)ℓ(ξi)

∗ doesn't depend on anything. We may takethe quotient C∗ algebra by the two sided ideal generated by this proje
tion.This quotient is THE Cuntz algebra dis
overed by Cuntz in [℄. Note thatin the representation on full Fo
k spa
e p is the proje
tion onto the va
uumthat we used to prove irredu
ibility.The 
ase dimH = 1 is already interesting. The full Fo
k spa
e is ℓ2(N)and if ξ is a unit ve
tor, ℓ(ξ) is the unilateral shift. C(H) in this 
ase isknown as the Toeplitz algebra and there is an exa
t sequen
e 0 → k(ℓ2(N)) 7→
C(H) 7→ C(S1) where k(ℓ2(N)) is the ideal generated by 1 − ℓ(ξ)ℓ(ξ)∗ whi
his the 
ompa
t operators.If dimH > 1 it is known that the Cuntz algebra is simple ([℄).We refer to [℄ for a development of the notion of quasi-free states onthe extended Cuntz algebra. Most important is of 
ourse the va
uum state
φ = ωΩ. It is obvious that C(H) is spanned by produ
ts of the form
ℓ(f1)ℓ(f2) · · · ℓ(fm)ℓ(g1)

∗ · · · ℓ(gn)∗ and the va
uum expe
tation value of thisword is 0 unless m = n = 0.Given a subspa
e V of H, C(V ) is naturally in
luded in C(H).De�nition 18.5.15. Let ℓ(V )′′ be the von Neumann algebra generated by
C(V ) on T (H).Proposition 18.5.16. Let x ∈ ℓ(V )′′ be su
h that φ(x) = 0. Then there is asequen
e xi with ||xi|| ≤ ||x|| of linear 
ombinations of produ
ts of the form
ℓ(f1)ℓ(f2) · · · ℓ(fm)ℓ(g1)

∗ · · · ℓ(gn)∗ (with m or n di�erent from zero) su
h that
xi tends strongly to x.Proof. Use Kaplansky density to get xi's in C(V ) then subtra
t φ(xi) timesthe identity. Sin
e φ is 
ontinuous the 
orre
tion tends to zero.Lemma 18.5.17. The state φ has the following "freeness" property:let V1 and V2 be orthogonal subspa
es ofH and suppose x1x2 · · ·xn is a produ
tin ℓ(H)′′ su
h that(i) φ(xi) = 0 ∀i(ii) Ea
h xi is in ℓ(V1)

′′ or ℓ(V2)
′′ and xi ∈ ℓ(V1)

′′ ⇐⇒ xi±1 ∈ ℓ(V2)
′′, then

φ(x1x2 · · ·xn) = 0.Proof. Applying the previous proposition we 
an work in the C(V )'s wherethe result is obvious from orthogonality.127



Observe that the result works just as well for any family of mutuallyorthogonal subspa
es and appropriate words. Note that the "free" terminol-ogy 
omes from vN(Fn) where the algebras generated by the generators of
Fn have this property with φ repla
ed by the tra
e (by essentially the samereasoning).De�nition 18.5.18. If A is a 
omplex unital *-algebra with a state φ, twounital *-subalgebras A1 and A2 will be 
alled φ-free if
φ(x1x2 · · ·xn) = 0 whenever x1x2 · · ·xn is a produ
t in A su
h that(i) φ(xi) = 0 ∀i(ii) Ea
h xi is in A1 or A2 and xi ∈ A1 ⇐⇒ xi±1 ∈ A2.make sure de�ntion of stateapplies to a general *-algebra The analogue of the Cli�ord algebra generators would be c(f) = ℓ(f) +
ℓ(f)∗. Taking 
ommutators reveals nothing interesting but 
onsidering C(H)on full Fo
k spa
e where we have the right 
reation operators and we mayform d(f) = r(f) + r(f)∗.Proposition 18.5.19. [c(f), d(f)] = 〈g, f〉 − 〈f, g〉Proof. See 18.1.5We see that c(f) and d(f) 
ommute if 〈f, g〉 is real.De�nition 18.5.20. A real subspa
e of H on whi
h 〈, 〉 is real will be 
alledisotropi
 A real stru
ture on H is one of the following equivalent notinons.(i) An antilinear involution σ on H.(ii) An isotropi
 subspa
e V of H with H = V + iV .The subspa
e V is the �xed points for the involution σ.De�nition 18.5.21. If V is an isotropi
 subspa
e of H, 
all c(V ) the vonNeumann algebra generated by the c(f) for f ∈ V on T (H).Lemma 18.5.22. If V is an isotropi
 subspa
e of H then φ is a tra
e on
c(V ).Proof. By 
ontinuity it su�
es to show that φ(wc(f)) = φ(c(f)w) for all
f ∈ V any word w on the c(g)'s. But

〈wc(f)Ω,Ω〉 = 〈wf,Ω〉 (18.1)
= 〈wd(f)Ω,Ω〉 (18.2)
= 〈d(f)wΩ,Ω〉 (18.3)
= 〈wΩ, d(f)Ω〉 (18.4)
= 〈wΩ, c(f)Ω〉 (18.5)
= 〈c(f)wΩ,Ω〉 (18.6)128



We will write tr for the restri
tion of φ to c(V ).Lemma 18.5.23. If V is a real stru
ture on H, Ω is 
y
li
 and separatingfor c(V ).Proof. By symmetry with the d(f)'s it su�
es to prove that Ω is 
y
li
 for
c(V ). By indu
tion on n suppose c(V )Ω 
ontains ⊕n

i=0 ⊗i H. Then for
v ∈ ⊗nH, c(f)v = f ⊗ v + x with x ∈ ⊗n−1H. Hen
e c(V )ω 
ontains
f ⊗ (⊗nH) and sin
e H = V + iV we are done.We see that c(V ) is a �nite von Neumann algebra in standard form on
T (H). We will see that for dimh > 1 it is a type II1 fa
tor by showing it isisomorphi
 to vN(Fn) where n = dimH, but let us begin by understandingthe one dimensional 
ase. Any unit ve
tor ξ spans a real stru
ture and ℓ(ξ) isunitarily equivalent to the unilateral shift so that c(ξ) is given by the matrix

(

0 1 0 0 ···
1 0 1 0 ···
0 1 0 1 ···
0 0 1 0 ···
···

)Lemma 18.5.24. c(ξ) has no eigenvalues.Proof. If the eigenvalue were λ then it would have to be real. Let the eigen-ve
tor be (xn) with n ≥ 0. λ = 0 is easily ex
luded so xn+1 = λxn− xn−1 for
n ≥ 1 and x1 = λx0. Thus xn = Aσn + Bσ−n with both A and B di�erentfrom 0. So (xn) is not square summable.Although this lemma is enough to obtain our type II1 fa
tor result, letus 
omplete the spe
tral analysis of c(ξ) by obtaining the moments, i.e. thetra
es or va
uum expe
tation values of c(ξ)n for n ≥ 0. Our method will bea bit long-winded but adapted to further 
al
ulations.Lemma 18.5.25. We have

tr(c(ξ)n) =

{

0 if n is odd
1

m+1

(

2m
m

) if n = 2mProof. Let x = c(ξ). Then we want to 
al
ulate
〈(x+ x∗)(x+ x∗) · · · (x+ x∗)Ω,Ω〉.That this is zero for odd n is obvious, so put n = 2m. Expand the produ
tinto 2n terms, ea
h a word on x and x∗. We want to enumerate those whi
hgive a non-zero 
ontribution to tra
e. There must be as many x's as x∗'s andthe word must end in x. We pro
eed to redu
e the word by the following129



algorighm: the last o

urren
e of x∗ is followed by an x so use x∗x = 1 toeliminate the pair. The new word must also end in x so 
ontinue until only
〈Ω,Ω〉 remains. We may re
ord the sequen
e of eliminations of (x∗, x) pairsby pairing them as indi
ated below for a typi
al word:

x∗ x x x∗ x x∗ x x.The diagram above the word is known as a Temperley-Lieb diagramor non-
rossing pairing or planar pairing. It 
onsists of m smooth non-interse
ting ar
s joining the letters in the word. Thus for every su
h pi
tureup to isotopy there is a 
ontribution of 1 to the tra
e. It remains only to
ount su
h Temperley-Lieb diagrams. Let tn be the number of su
h diagrams,with t0 set equal to 1. Then by 
onsidering the letter to whi
h the �rst letterof the word is 
onne
ted, it is obvious that
tn+1 =

n
∑

j=0

tjtn−j for n ≥ 0.Multiplying both sides by zn+1 and summing over n we get
Φ(z) − 1 = zΦ(z)2where Φ(z) =

∑∞
n=0 is the generating fun
tion for the tn. So

Φ(z) =
1 −

√
1 − 4z

2zand if we expand using the binomial formula we get the answer.Corollary 18.5.26. For −2 ≤ x ≤ 2 let dµ = 1
2π

√
4 − x2dx. Then thereis a tra
e preserving isomorphism of c(ξ)′′ onto L∞([−2, 2], dµ) sending c(ξ)onto the operator of multipli
ation by x.Proof. By7.1.9 it su�
es to prove that

1

2π

∫ 2

−2

xn
√

4 − x2dx =

{

0 if n is odd
1

m+1

(

2m
m

) if n = 2mWe leave this as an exer
ise. 130



Now return to showing that c(V )′′ ∼= vN(Fn) for n = dimH. We will dothis when n = 2, leaving the general 
ase as a straightforward generalisation.So letH be a two dimensional 
omplex ve
tor spa
e with real stru
ture V andlet V1 and V2 be the subspa
es of V spanned by orthonormal ve
tors f1 and
f2 respe
tively. Then by lemma 18.5.17 we see that c(V ) is generated by twoabelian subalgebras c(V1) and c(V2) with the property that tr(x1x2 · · ·xn) = 0whenever tr(xi) = 0 ∀i and the xi are in c(V1) or c(V2) depending only on
i mod 2. But then if w = x1x2 · · ·xn is any su
h produ
t without imposing
tr(xi) = 0 we may in a universal way 
al
ulate the tra
e of w by writing
xi = (xi − tr(xi)) + tr(xi). The result depends only on the tra
es of the
xi. So if M is any other �nite von Neumann algebra with faithful normaltra
e tr generated by two abelian subalgebras A1 and A2 having the sameproperty, we 
an 
onstru
t an isomorphism between M and c(V ) as soon aswe are given tr-preserving isomorphisms from A1 to c(V1), and A2 to c(V2)respe
tively.Let us re
ord this more formally.Theorem 18.5.27. Let (A,A1, A2, φ) and (B,B1, B2, ψ) be algebras andstates as in de�nition 18.5.18, with A1 and A2 free with respe
t to φ and
B1 and B2 free with respe
t to ψ. Suppose θi are unital *-isomorphisms from
Ai to Bi for i = 1, 2, taking φ to ψ. Then there is a unique *-isomorphismfrom the algebra generated by A1 and A2 onto the algebra generated by B1and B2 extending θ1 and θ2.Proof. By faithfulness it su�
es to show that

φ(y1y2 · · · yn) = ψ(θ(y1)θ(y2) · · · θ(yn))whenever ea
h yi is in either A1 or A2 and θ is θ1 or θ2 a

ordingly. We willprove this assertion by indu
tion on n. We may 
learly assume su

essive yi'sbelong to di�erent Ai's sin
e otherwise we 
an redu
e the length of the wordusing the properties of the θi and apply the indu
tive hypothesis. But thenwrite xi = yi−φ(yi) so that yi = φ(yi) + xi. Expanding (φ(y1) + x1)(φ(y2) +
x2) · · · (φ(yn) + xn) we see x1x2 · · ·xn plus a linear 
ombination of words oflength less than n with 
oe�
ients the same as those expanding (ψ(θ(y1)) +
θ(x1))(ψ(θ(y2)) + θ(x2)) · · · (ψ(θ(yn)) + θ(xn)) in the same way. The freeness
ondition and the indu
tive hypothesis imply the desired equality.Corollary 18.5.28. Let H be a Hilbert spa
e of dimension n with 
omplexstru
ture V . Then c(V )′′ ∼= vN(Fn).Proof. If Fn is free on generators ai and xi is an orthonormal basis in V for
H, then by 18.5.26,both {uai}′′ and c(Rxi) are L∞ of a standard atomless131



probability spa
e so there are tra
e preserving isomorphisms between them.We are done by 7.1.9 and the previous theorem (with 2 repla
ed by n).We 
an generalise 18.5.25 immediately to dimH > 1 as follows.Proposition 18.5.29. Let f1, f2, ..., fk be ve
tors in H. Then
〈c(f1)c(f2)...c(fk)Ω,Ω〉 =

∑∏

i,σ(i)

〈fi, fσ(i)〉where the sum is over all planar pairings σ of (1, 2, 3, · · · , k), with i < σ(i).Proof. The same argument as in 18.5.25 applies.Remark 18.5.30. We may form the *-algebra C〈X1, X2, · · ·Xn〉 of polyno-mials in n non-
ommuting self-adjoint variables. The previous work may be
onsidered as de�ning a tra
e on this algebra by sending Xi to c(ξi) for anorthonormal basis {ξi} of V .Thus the tra
e of a word x1x2x3 · · ·xk, where ea
h of the xi is one of the
Xi is the number of Temperley Lieb diagrams as below for whi
h xj = xj ifthey are joined by a 
urve in the diagram:

x∗1 x2 x3 x∗4 x5 x∗6 x7 x8.We 
all this tra
e the Voi
ules
u tra
e on C〈X1, X2, · · ·Xn〉. An expli
itformula like that of 18.5.25 is not so 
lear and it 
an be di�
ult to workwith a s
alar produ
t for whi
h the words are not orthogonal. This 
an be
orre
ted by using the obvious orthonormal basis of Fo
k spa
e as tensorprodu
ts of the ξi. Multipli
ation in this basis is more 
ompli
ated but notmu
h more so:Exer
ise 18.5.31. De�ne multipli
ation on C〈X1, X2, · · ·Xn〉 as follows:Let x1x2 · · ·xp and y1y2...yq be words on X1, X2, · · ·Xn. Then
x1x2 · · ·xp⋆y1y2...yq =

min(p,q)
∑

i=0

δxp,y1δxp−1,y2 · · · δxp−i+1,yix1x2 · · ·xp−iyi+1yi+2 · · · yqThus for instan
e
X2

1X2X3 ⋆ X3X2X1X2 = X2
1X2X

2
3X2X1X2 +X2

1X
2
2X1X2 +X3

1X2 +X1X2132



We would like to show how the Voi
ules
u tra
e arises in the study of largerandom matri
es. For this we will use Wi
k's theorem 
on
erning jointlyGaussian random variables. A 
omplex (
entred) Gaussian random vari-able is a sum A+ iB of two independent identi
ally distributed real 
entredGaussian random variables. The varian
e of A + iB is √E(A2) + E(B2),and E((A + iB)2) = 0. Suppose Z1, Z2 · · ·Zn are 
omplex 
entred jointlyGaussian random variables with E(ZiZj) = aij .Theorem 18.5.32.
E(Z1Z2 · · ·Zn) =

∑

σ

∏

i<σ(i)

aiσ(i)where the sum is over all pairings σ of {1, 2, · · ·n}.Now let X = Xij be a self-adjoint N × N random matrix. This meansthat the Xij are jointly Gaussian 
omplex random variables with
Xij = Xji for i 6= j and Xiiis real,and all other matrix entries are independent. Suppose E(|Xij|2) = d.Wewant to 
onsider E(Trace(Xk)). Writing this out in full we get
∑

i1,i2,···ik

E(Xi1i2Xi2i3Xi3i4 · · ·Xiki1).The individual terms in this sum 
an ea
h be expanded using Wi
k'sformula. In the �gure below we have represented a typi
al term in the ex-pansion, ea
h bla
k dot being an o

urren
e of X and the pairing is indi
atedby 
urves outside the 
ir
le. We have used a 
ir
le rather than a straight linesegment to emphasize the 
y
li
 aspe
t of the tra
e.133



5

i i
i

i

i

i
i

ii

i
i

iiiii

i

i
i 1 2

3

i3

4

5
6

6

7

7

8

8

1  2

4

Be
ause of the independen
e of the Gaussians we will only get a non-zero
ondition when k is even and the indi
es at one end of the pairing are thesame as at the other end, but in the opposite order. In order to get a non-zero
ontribution, In the �gure above this for
es i1 = i4, i4 = i6, i6 = i3, i3 = i2and i7 = i1. So in fa
t there are only 3 freely varying indi
es, i1, i5 and
i8 ea
h of whi
h gives a 
ontribution to the total sum of d3. We representea
h su
h 
ontribution below where we have thi
kened the 
urves de�ningthe pairing into (�at) ribbons. Observe that the indi
es i1, i5 and i8 extendto the boundary 
omponents of the surfa
e obtained by gluing the ribbonsto a 
entral dis
. There are N3 ways to assign the indi
es and on
e assigned,ea
h term 
ontributes dk/2. So the total 
ontribution of all terms with thegiven pairing is N3dk/2. 134
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Now 
onsider a general pairing and pro
eed in the same way. If we glue in(abstra
t) dis
s along the boundary 
omponents we get an orientable surfa
ewhose Euler 
hara
teristi
 is �V-E+F" whi
h in general will be 1 − k/2 + Fwhere F is the number of dis
s glued in, i.e. the number of freely varyingindi
es for the given pairing. If g is the genus of the surfa
e, we have 2−2g =
F + 1 − k/2 whi
h gives

F = k/2 + 1 − 2g.So the total 
ontribution of all terms with the given pairing isNFdk/2. We seethat if d = 1√
N
then this 
ontribution will be N1−2g so that 1

N
E(Trace(Xk))will tend, as N → ∞, to the number of pairings with g = 0. But if the pairingis planar, obviously g = 0 and if g = 0 we know from the 
lassi�
ation ofsurfa
es that we get a 2-sphere, from whi
h it is 
lear that the partition isplanar! Hen
e we have shown:

lim
N→∞

1

N
E(Trace(Xk)) =

{

0 if k is odd
1

m+1

(

2m
m

) if k = 2mThe above argument works equally well with n random N ×N matri
es
X1, X2, · · ·Xn ea
h of whi
h has entries with 
ovarian
e as above and forwhi
h entries in di�erent random matri
es are independent. We see we haveproved the following: 135



Theorem 18.5.33. If w is a word on the random matri
es X1, X2, · · ·Xnas above then limN→∞
1
N
E(Trace(w)) exists and is equal to the Voi
ules
utra
e of the same word viewed as an element of C〈X1, X2, · · ·Xn〉.This result, together with 18.5.28 gave Voi
ules
u a remarkable new in-sight into the vN(Fn) and he was able to prove some spe
ta
ular isomor-phisms between them -[℄.
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Chapter 19Subfa
tors
19.1 Warmup. Finite Groups.Let G be a �nite group with an outer a
tion α on the type II1 fa
torM . Let
N = MG be the �xed point algebra. We 
ontinue the notational 
onventionsfrom 
hapter 11 on the 
rossed produ
t.A 
ovariant representation of (M,α) is an a
tion of M on some Hilbertspa
e H together with a unitary representation vg on H with vgxv∗g = αg(x)for g ∈ G and x ∈M .Proposition 19.1.1. For �nite groups the 
rossed produ
t is universal for
ovariant unitary representations. In fa
t any 
ovariant representation of
(M,α) extends to an isomorphism from M ⋊G onto {M, {vg}}′′ by sending
ug to vg.Proof. De�ne π : M ⋊ G → {M, {vg}}′′ by π(

∑

g agug) =
∑

g agvg. π isobviously ultraweakly 
ontinuous so its image is a von Neumann algebra.But that image 
ontains M and the vg. And a type II1 fa
tor is simple.A 
anoni
al way to obtain a 
ovariant representation is to extend thea
tion of G on M to L2(M). We 
all these unitaries wg. We see that, for�nite groups only, another model for the 
rossed produ
t is the von Neumannalgebra on L(M) generated by M and the wg.Exer
ise 19.1.2. dimMM ⋊G = |G|.Proposition 19.1.3. The extension to L2(M) of the 
onditional expe
tation
EN : M → N is eN = 1

|G|
∑

g wg.Proof. Obvious. 137



Theorem 19.1.4.
JN ′J = {M ∪ {wg}}′′ = {M ∪ {eN}}′′Proof. Clearly J 
ommutes with the wg and eN so the assertion is the sameas N ′ = {M ′∪{wg}}′′ = {M ′∪{eN}}′′. BothM ′ and the wg's are in N ′ so itsu�
es to prove that N ′ ⊆ {M ′ ∪ {eN}}′′ or equivalently {M ′ ∪ {eN}}′ ⊆ Nwhi
h follows from the assertion:
x ∈M and [x, eN ] = 0 =⇒ x ∈ N.For this just evaluate xeN and eNx on the identity inside L2(M).Remark 19.1.5. There is a
tually quite a bit of 
ontent here. How youwould write an individual wg for instan
e as an element of {M ∪ {eN}}′′?Corollary 19.1.6. If G is a �nite group a
ting by outer automorphisms on atype II1 fa
torM thenMG is a subfa
tor with trivial 
entraliser, dimMG(L2(M)) =

|G| and (MG)′ ∩M ⋊G = CG.Proof. N is the 
ommutant of a type II1 fa
tor inside a type II1 fa
tor, hen
ea type II1 fa
tor. And N ′ ∩M = (M ′)′ ∩ {M ′ ∪ {vg}}′′ whi
h is the s
alarsby 19.1.1 and 11.2.5. For the dimension 
al
ulation note that by 11.2.5 weobtain M ⊆ M ⋊ G from any 
ovariant representation. In parti
ular we
an start with the 
rossed produ
t on its own L2 spa
e and redu
e by aproje
tion of tra
e |G|−1 in its 
ommutant. Thus by the formulae governingthe behaviour of dimM , dim{M,{wg}}′′ L
2(M) = |G|−1 and the result followsfrom 19.1.4. The last assertion is a trivial 
a
lulation.Exer
ise 19.1.7. If α is an outer a
tion of the �nite group G on the typeII1 fa
tor M and ξ : G→ T is a one dimensional 
hara
ter, show there is aunitary u ∈M with

αg(u) = ξ(g)u ∀g ∈ G.Hint: try a 2x2 matrix argument, 
hanging the a
tion α⊗1 by Advg, vg beingthe unitary ( 1 0
0 ξ(g)

).The group Ĝ of all 1-dimensional 
hara
ters ξ : G → T a
ts on M ⋊ Gvia the formula
α̂ξ(
∑

g

agug) =
∑

g

ξ(g)agugThis is 
alled the dual a
tion. 138



Exer
ise 19.1.8. Show that the dual a
tion (even for in�nite groups G) isouter.If G is abelian one may form the 
rossed produ
t
(M ⋊α G) ⋊α̂ ĜExer
ise 19.1.9. Show that if G is �nite, the se
ond dual a
tion of G on

(M ⋊α G) ⋊α̂ Ĝ is 
onjugate to the "stabilised" a
tion
α⊗ Adℓgon M ⊗ B(L2(G)) (where ℓg is the left regular representation).The result of the previous exer
ise remains true for lo
ally 
ompa
t abeliangroups and motivates an alternative de�nition of the 
rossed produ
t as the�xed points for the stabilised a
tion.19.2 Index.Inspired by the above and 10.2.2 we make the following:De�nition 19.2.1. If N ⊆M are II1 fa
tors, the index [M : N ] of N in Mis the real number dimN L

2(M).Exer
ise 19.2.2. Show that [M : N ] = 1 implies N = M .Proposition 19.2.3. (i) If M a
ts on H so that dimN H <∞ then
[M : N ] =

dimN H
dimM H .(ii) If [M : N ] < ∞ and p is a proje
tion in N ′ ∩M then set [M : N ]p =

[pMp : pN ], then
[M : N ]p = trN ′(p)trM(p)[M : N ].(for any a
tion of M on H for whi
h N ′is a type II1 fa
tor.) (iii) If {p} isa partition of unity in N ′ ∩M then

[M : N ] =
∑

p

[M : N ]p
tr(p)

.(iv) If N ⊆ P ⊆M are type II1 fa
tors then
[M : N ] = [M : P ][P : Q].(v) If M a
ts on H su
h that dimN H <∞ then

[M : N ] = [N ′ : M ′]139



Proof. (i) CertainlyM ′ (on H) is a type II1 fa
tor sin
e N ′ is and taking thedire
t sum of �nitely many 
opies of H will not 
hange the ratio dimN H
dimM H . Sowe may assume dimM H ≥ 1 whi
h means there is a proje
tion p in M ′ with

pH ∼= L2(M) as an M module. But the tra
e of this p in N ′ is the same asthe tra
e in M ′ by uniqueness of the tra
e. Hen
e by the properties of the
oupling 
onstant, dimN H
dimM H does not 
hange under redu
tion by this p.(ii) This follows immediately from (i) and properties of the 
oupling 
onstant.(iii) Just sum [M :N ]p

trM (p)
over p.(iv) The only 
ase of interest is when [M : N ] <∞. Then the result followsimmediately from (i).(v) Immediate from (i).Corollary 19.2.4. If N ′ ∩M 6= Cid then [M : N ] ≥ 4.De�nition 19.2.5. We 
all a subfa
tor irredu
ible if N ′ ∩M = Cid.De�nition 19.2.6. A subfa
tor N ⊆M is 
alled lo
ally trivialif [M : N ]p = 1 for any minimal proje
tion in N ′ ∩M .Exer
ise 19.2.7. Show that dim(N ′ ∩M) ≤ [M : N ].Here is a list of what might be 
alled the "
lassi
al" subfa
tors- oneswhose existen
e owes nothing to the dedi
ated development of subfa
tor the-ory.Example 19.2.8. The trivial subfa
tors.If M is a type II1 fa
tor, so is M ⊗Mk(C) for any integer k > 0. We 
anembed M in M ⊗Mk(C) by x 7→ x ⊗ 1. It is 
lear that L2(M ⊗Mk(C)) isthe dire
t sum of k2 
opies of L2(M) so [M ⊗Mk(C) : M ] = k2.Example 19.2.9. Continuously varying index.Choose a proje
tion of tra
e d in the hyper�nite type II1 fa
tor R. Then

pRp and (1 − p)R(1 − p) are isomorphi
 by hyper�niteness so 
hoose a vonNeumann algebra isomorphism θ : pRp→ (1− p)R(1− p). Let M be R and
N be the subalgebra {x + θ(x)|x ∈ pRp}. It is 
lear that pMp = Np and
(1 − p)M(1 − p) so by lemma 19.2.3,

[M : N ] =
1

d
+

1

1 − d
.As d varies between 0 and 1, this index takes all real values ≥ 4.Observe though that N ′∩M 
ontains p so the subfa
tor is redu
ible. Theset of index values for irredu
ible subfa
tors of R is not understood thoughfor other type II1 fa
tors it may be the interval [4,∞]140



Example 19.2.10. Group-subgroup subfa
tors.If G is a dis
rete group a
ting by outer automorphisms on the type II1 fa
tor
M , and H is a subgroup of G, it is 
lear that M ⊗H is a subfa
tor ofM ⊗Gof index [G : H ].If G is �nite we may 
onsider MG ⊆ MH whi
h also has index [G : H ]by 19.1.2 and 19.2.3Example 19.2.11. Making the trivial non-trivial.De�nition 19.2.12. An a
tion of a 
ompa
t group on a fa
tor M is 
alledminimal if (MG)′ ∩M = Cid.If G has a minimal a
tion α on M and ρ is an irredu
ible unitary repre-sentation of G on Ck we may take the a
tion α⊗Adρ on M ⊗Mk(C). Onethen de�nes the "Wassermann subfa
tor"

(M ⊗ 1)G ⊆ (M ⊗Mk(C))G.The point is that the 
ommutant of (M ⊗ 1)G in M ⊗Mk(C) is already just
Mk(C) by minimality of the a
tion. So the �xed points are indeed fa
torsand the Wassermann subfa
tor is irredu
ible.Already for �nite groups this provides lots of examples. If G is in�nitethere is a simple way to 
onstru
t minimal a
tions. Just take a �nite dimen-sional unitary representation ρ and 
onsider ⊗∞

1 Adρ on R. The group S∞ is
ontained in the �xed points via its (inner) a
tion permuting the tensor prod-u
t fa
tors. Moreover if we 
hoose an orthonormal basis {xi|i = 1, 2, ...k2} for
Mk(C) with x1 = 1, an orthonormal basis of R is formed by tensors ⊗∞

j=1xi(j)indexed by fun
tions i : N → {1, 2, · · · , k2} with i(j) = 1 for su�
ientlylarge j. The a
tion of S∞ on this basis has only one �nite orbit-that of theidentity. So the only �xed points on in L2(R) are the s
alar multiplies of theidentity.Example 19.2.13. Finitely generated dis
rete groups.This example shows that �nite index subfa
tors 
an be in�nite obje
ts indisguise. Let Γ = 〈γ1, γ2 · · ·γk〉 be a �nitely generated dis
rete group. Wehave seen that Γ 
an a
t in lots of ways, in parti
ular outer, on type II1fa
tors. Choose any a
tion on M and for ea
h x in M de�ne the matrix
d(x) = xi,j over M by

xi,j =

{

0 if i 6= j

γi(x) if i = j141



Then 
onsider the subfa
tor
D(M) = {d(x)|x ∈M} ⊆M ⊗Mk(C).This subfa
tor is lo
ally trivial so its index is k2 and one may think of it asa "twisted" version of the trivial subfa
tor of index k2.Exer
ise 19.2.14. Show that dim(D(M)′ ∩M ⊗Mk(C)) = k i� γ−1

i γj isouter whenever i 6= j.In fa
t one may easily extra
t the image of Γ modulo inner automorphismsfrom the subfa
tor D(M).We now want to 
onsider an entirely arbitrary subfa
tor. For this the fol-lowing "basi
 
onstru
tion" is important. We have already seen its usefulnessfor �nite group a
tions.Proposition 19.2.15. Let N ⊆ M be a type II1 fa
tors a
ting on L2(M)and let eN be the extension to L2 of the tra
e-preserving 
onditional ENexpe
tation onto N . Then
JN ′J = (JNJ)′ = {M, eN}”.Proof. Already done in 19.1.4.De�nition 19.2.16. The von Neumann algebra 〈M, eN 〉 = {M, eN}” of theprevious result is said to be the "basi
 
onstru
tion" for N ⊆M .Here are the most important fa
ts about the basi
 
onstru
tion. It willbe 
onvenient from now on to use τ for [M : N ]−1. Sin
e 〈M, eN〉 is a typeII1 fa
tor its tra
e is unique and its restri
tion to M is the tra
e of M . Sowe just use tr for it.Proposition 19.2.17.(i) For x ∈M, [x, eN ] = 0 i� x ∈ N .(ii) eNxeN = EN(x)eN for x ∈M .(iii) [M : N ] <∞ i� 〈M, eN〉 is a type II1 fa
tor, in whi
h 
ase

[〈M, eN 〉 : M ] = [M : N ].(iv) M +MeNM is a weakly dense *-subalgebra of 〈M, eN 〉.(v) eN 〈M, eN〉eN = NeN(vi) tr(eN) = [M : N ]−1(vii) For x ∈M , tr(eNx) = τtr(x) 142



Proof. (i) was done in 19.1.4.(ii) is a 
onsequen
e of the bimodule property of EN on the dense subspa
e
M of L2(M).(iii) is immediate from proposition 19.2.15.(iv) Closure ofM+MeNM under multipli
ation follows from (ii). It 
ontains
M and eN hen
e is dense.(v) Follows immediately from (ii) and (iv).(vi) Follows from (v) and the behaviour of the 
oupling 
onstant under re-du
tion by proje
tions-note that eN (L2(M)) = L2(N).(vii) tr(xeN ) = tr(eNxeN ) = tr(eNxeN ) = tr(EN(x)eN ) = τ(EN (x) wherewe dedu
e the last equality from uniqueness of the tra
e on the type II1 fa
tor
N . Sin
e the 
onditional expe
tation preserves the tra
e, we are done.From now on we will use τ for [M : N ]−1.Corollary 19.2.18. There is no subfa
tor N ⊆M with 1 < [M : N ] < 2.Proof. By the uniqueness of the tra
e we see that trN ′(eN) = τ . Thus trN ′(1−
eN) = 1 − τ . Hen
e [(1 − eN)〈M, eN〉(1 − eN) : N(1 − eN )] = (1 − τ)2(1/τ)2whi
h is less than 1 if 1/2 < τ < 1.If we suppose [M : N ] < ∞ we see we may do the basi
 
onstru
tionfor M ⊆ 〈M, eN 〉. In the type II1 fa
tor 〈〈M, eN〉, eM〉 we have the twoproje
tions eM and eN .Proposition 19.2.19.

eMeNeM = τeM and eNeMeN = τeN.Proof. For the �rst relation we must show that EM(eN) = τid. But this isjust another way of saying (vii) of 19.2.17.To prove the se
ond relation, by (iv) of 19.2.17 it su�
es to apply ea
h sideto elements of the form x+ yeNz ∈ L2(〈M, eN〉) for x, y, z ∈ M . To do thisnote that eN a
ts by left multipli
ation.Corollary 19.2.20. If [M : N ] 6= 1 then
eM ∨ eN =

1

1 − τ
(eN + eM − eMeN − eNeM)Proof. The relations show that eN and eM generate a 4-dimensional non-
ommutative algebra. By our analysis of two proje
tions its identity mustbe a multiple of (eM − eN )2. The normalisation 
onstant 
an be obtained byevaluating the tra
e. 143



Note that the spe
ial 
ase eN ∨ eM = 1 (whi
h is equivalent to τ = 1/2or index 2) means that eN and eM satisfy an algebrai
 relation.Exer
ise 19.2.21. Use this relation to prove that, in index two, 〈〈M, eN〉, eM〉is the 
rossed produ
t of 〈M, eN〉 by an outer a
tion of Z/2Z. Use dualityto dedu
e Goldman's theorem ([℄): a subfa
tor of index 2 is the �xed pointalgebra for an outer Z/2Z a
tion.Let φ be the golden ratio 1+
√

5
2

.Corollary 19.2.22. There is no subfa
tor N ⊆M with 2 < [M : N ] < φ2.Proof. We see that eN and eM are equivalent in the algebra they generateso their tra
es are equal wherever they are. Thus tr〈〈M,eN 〉,eM 〉(eN∨M ) =
trN ′(eN∨M) = 2τ and
[(1 − eN ∨ eM )〈〈M, eN〉, eM〉(1 − eN ∨ eM) : (1 − eN ∨ eM)N ] = (1 − 2τ)2τ−3This is less than 1 if φ−2 < τ < 1/2.If we did yet another basi
 
onstru
tion in the same way and 
al
ulatedthe tra
e of the supremum of the three 
onditional expe
tations we would
on
lude that there is no subfa
tor with index between φ2 and 3. But it ishigh time to systematise the pro
ess.19.3 The tower of type II1 fa
tors and the ei's.De�nition 19.3.1. Let N ⊆ M be a subfa
tor of �nite index τ−1. Set
M0 = N,M1 = M and de�ne indu
tively the tower of type II1 fa
tors

Mi+1 = 〈Mi, eMi−1
〉.Set ei = eMi−1

for i = 1, 2, 3, · · · .Proposition 19.3.2. The ei's enjoy the following properties.(i) e2i = e∗i = ei(ii) eiej = ejei if |i− j| ≥ 2(iii) eiei±1ei = τei(iv) tr(wei+1) = τtr(w) for any word w on {e1, e2, · · · ei}.Proof. These are all trivial 
onsequen
es of the 19.2.17 and 19.2.20. Notethat the tra
e in (iv) is unambiguous by uniqueness of the tra
e on a typeII1 fa
tor. 144



The relations of proposition 19.3.2 were dis
overed, albeit in a slightlydisguised form, in statisti
al me
hani
s in [℄, and were presented in almostthe above form in [℄ although property (iv) does not appear. With a beautifulinsight they were given a diagrammati
 form in [℄. They are now universallyknown, in whatever form, as the Temperley-Lieb relations or the Temperley-Lieb algebra. We present Kau�man's diagrammati
s in the appendix A.There is a lot of interesting 
ombinatori
s going with the Temperley-Liebalgebra but we want to get dire
tly to the results on index for subfa
tors.Here are some exer
ises to familiarise the reader with these relations.Exer
ise 19.3.3. Any word w on e1, e2, · · · en whi
h is redu
ed in the obvioussense with respe
t to the relations 19.3.2 
ontains en (and e1) at most on
e.Exer
ise 19.3.4. The dimension of the algebra generated by 1 and e1, e2, · · · enis at most
1

n+ 2

(

2n+ 2

n+ 1

)(This exer
ise is the �rst hint that there might be some 
onne
tion be-tween subfa
tors and random matri
es-see 18.5.25.)19.4 Index restri
tionsIt is 
lear from the restri
tions we have obtained so far that we should beinterested in the tra
e of the sup of the �rst n ei's.De�nition 19.4.1. Let Pn(τ) be the polynomials de�ned by P0 = 1, P1 = 1and
Pn+1 = Pn − τPn−1Thus P2 = 1 − τ = tr(1 − e1), P3 = 1 − 2τ = tr(1 − e1 ∨ e2) and

P4(τ) = 1 − 3τ + τ 2.Exer
ise 19.4.2. De�ne q by τ−1/2 = q+q−1. Show that Pn(τ) is essentiallythe "quantum integer" [n+ 1]q =
qn+1 − q−n−1

q − q−1
, to be pre
ise

Pn(τ) =
[n + 1]q
([2]q)nDe�nition 19.4.3. Put f0 = 1 and for ea
h n = 1, 2, 3, · · · let

fn = 1 − e1 ∨ e2 ∨ · · · ∨ en. 145



Note that the fn are de
reasing.The formula of the next theorem is due to Wenzl in [℄ whi
h 
ontains
omplete information about families of proje
tions on Hilbert spa
e satisfying(i),(i) and (i)Theorem 19.4.4. For n = 1, 2, 3, · · · , if fn−1 6= 0 then Pn(τ) > 0 and wemay form
x = fn−1 −

Pn−1(τ)

Pn(τ)
fn−1enfn−1Then x = 0 i� fn = 0 i� Pn+1(τ) = 0.Otherwise Pn+1(τ) > 0 and fn = x.Proof. It is easy to 
he
k for n = 1 and n = 2 for good measure.So suppose it is true for n, and that fn 6= 0. Then by indu
tion Pn+1(τ) >

0 and we may form x = fn −
Pn(τ)

Pn+1(τ)
fnen+1fn.Observe that x has the property that xei = eix = 0 for all i = 1, 2, · · ·nso it is a s
alar multiple of fn+1. So fn = 0 =⇒ x = 0. Sin
e fn 6= 0 it is ofthe form 1 + z where z is a linear 
ombination of words on e1, e2, · · · en. Soif x = 0, the identity is a linear 
ombination of words on e1, e2, · · · en+1, i.e.

fn+1 = 0. Moreover
EMn+1

(x) = fn(1 − τ
Pn(τ)

Pn+1(τ)
) = fn

Pn+2(τ)

Pn+1(τ)so x = 0 i� Pn+2(τ) = 0.So we may assume x 6= 0 and fn+1 6= 0. Sin
e x is manifestly self-adjoint,to see that it is fn+1 6= 0, observe that, modulo linear 
ombinations of the
ei's for i ≤ n+ 1 they are both equal to 1 (whi
h is not a linear 
ombinationof thesse ei's.Finally

EMn+1
(x) = fn

Pn+2(τ)

Pn+1(τ)as before so Pn+2(τ) > 0.Corollary 19.4.5. If fn 6= 0 then
tr(fn+1) = Pn+2(τ)146



Theorem 19.4.6. Let N ⊆M be type II1 fa
tors. Then if [M : N ] < 4 it is
4 cos2 π/n for some n = 3, 4, 5, . . . .Proof. The previous theorem shows that if Pn(τ) > 0 then Pn+1 ≥ 0. Nowthe interval (1/4, 1] is partitioned into intervals

In = (
1

4 cos2 π/(n+ 1)
,

1

4 cos2 π/n
]so if we 
an show that the smallest real zero of Pn is 1

4 cos2 π/(n+1)
and Pn+1(τ) <

0 on the same interval with that largest element, we are done.But if we put q = eiθ in 19.4.2 we see that τ−1 = 4 cos2 θ and
Pn−1(τ) =

sinnθ

2n−1 sin θ(cos θ)n−1This is zero for q a 2nth. root of unity (ex
ept q = 1 and the one with largest
osine is θ = π/n. So Pn−1(τ) is negative for θ between π/n and 2π/n. Butthis interval 
ontains π/(n− 1) in its interior.19.5 Finite dimensionsIt is ni
e to have these restri
tions on the values of the index but at thisstage the only values we know between 1 and 4 are 2 and 3. We will showthat all the values of theorem 19.4.6 a
tually o

ur. We will use a kindof "bootstrap" method. If the value of the index exists then there are ei'ssatsfying the relations of 19.3.2. But then we may 
onsider the von Neumannalgebra in the towerMn generated by {e1, e2, e3, · · · }. We will show that thisis a fa
tor. Moreover we will see that the subfa
tor generated by {e2, e3, · · · }will be seen to have index τ−1. But this presupposes the existen
e of thesubfa
tor! For τ < 1/4 we 
an get the ei's from the tower obtained fromexample 19.2.9. For τ ≥ 1/4 we will be able to 
onstru
t a tower 
omingfrom in
lusions A ⊆ B of �nite dimensional von Neumann algebras whi
hgets around the problem. For this we obviously need to know how the basi

onstru
tion works in �nite dimensions.Re
all from 4.4.3 that a unital in
lusion A ⊆ B of �nite dimensional vonNeumann algebras is given by a ve
tor ~v whose entries are labelled by theminimal 
entral proje
tions of A and a matrix Λ = λp,q where q runs over theminimal 
entral proje
tions in A an p over the minimal 
entral proje
tions in
B. Λ~v is then ve
tor whose entries are the ranks of the simple 
omponents of
B. If e ≤ p is minimal in A and f ≤ q is minimal in B then ef is a proje
tionof rank λp,qin the fa
tor qB. 147



De�nition 19.5.1. We 
all ~v as above the dimension ve
tor of a �nite di-mensional von Neumann algebra and the matrix Λ the in
lusion matrix. Wewill write ~vA and ΛB
A if we need to spe
ify whi
h algebras we are talking about.We will say the in
lusion is 
onne
ted if Z(A) ∩ Z(B) = Cid, whi
h 
an bere
ognised by 
onne
tedness of the obvious bipartite graph asso
iated to thein
lusion matrix.Thus in full:

ΛB
A~vA = ~vBThis information is 
onveniently re
orded graphi
ally:

1

5 4

2 3Here A = M2(C)⊕M3(C)⊕C so ~vA =
(

2
3
1

) and B = M5(C)⊕M4(C) so
~vB = ( 5

4 ). There is no "multipli
ity" so minimal proje
tions in A are sumsof minimal proje
tions in di�erent simple 
omponents of B and the in
lusionmatrix is ( 1 1 0
0 1 1 ).Exer
ise 19.5.2. If A ⊆ B and B ⊆ C then ΛC

A = ΛC
BΛB

A.This 
an be done by pure thought observing that ΛB
A is just the matrixof the in
lusion map from K0(A) to K0(B).The basi
 
onstru
tion 
an be performed without re
ourse to a tra
esimply by de�ning it as the 
ommutant on B of the right a
tion of A whi
hallows us to identify its 
entre with that of A. But we are after the ei's solets use (positive) tra
es.De�nition 19.5.3. If A is a �nite dimensional von Neumann algebra withtra
e tr de�ne the tra
e ve
tor ~tr to be the row ve
tor whose entries areindexed by the 
entral proje
tions of A and whose pth. entry is tr(e), e beinga minimal proje
tion in A, e ≤ p.Remark 19.5.4.(i)A tra
e is 
learly normalised i� ~tr · ~vA = 1.(ii) If A ⊆ B are as above and Tr is a tra
e on B whose restri
tion to A is

tr then:
~TrΛ = ~tr148



Given a (normalised) faithful tra
e Tr on B we may perform the basi

onstru
tion 〈B, eA〉 exa
tly as for type II1 fa
tors.The 
entre of 〈B, eA〉 
an be identi�ed with that of A by x 7→ JxJ so thein
lusion matrix for B ⊆ 〈B, eA〉 will have the same shape as the transposeof that of A ⊆ B.Exer
ise 19.5.5. Show that
Λ

〈B,eA〉
B = (ΛB

A)tThus in the example above we would get the "Bratteli" diagram:
4

5 4

2 3 1

5 9

for the tower A ⊆ B ⊆ 〈B, eA〉.In the non-fa
tor 
ase there is no 
anoni
ally de�ned tra
e on the basi

onstru
tion. For obvious reasons we would like to have su
h a tra
e TRwith the 
ru
ial property TR(eAx) = τTr(x) for x ∈ B.Theorem 19.5.6. If A ⊆ B is a 
onne
ted in
lusion with matrix Λ, there isa unique normalised tra
e Tr on B whi
h extends to a tra
e TR on 〈B, eA〉su
h that EB(eA) ∈ Cid. ~TRΛΛt = τ−1 ~TR for τ satisfying EB(eA) = τeA.Proof. Observe that if f is a minimal proje
tion in A then eAf is a minimalproje
tion in 〈B, eA〉 by (v) of 19.2.17. If p is a minimal 
entral proje
tionin A with pf = f , we want to show that eAf is under JpJ . To do this it isenough to show that JpJeAf 6= 0. But applying it to the identity in B we get
fp. So if Tr has an extension TR satisfying TR(eAx) = τTr(x) for x ∈ B,
TR(eAf) = τTr(f). This means that the tra
e ve
tor ~TR is τ ~tr where tr isthe restri
tion of Tr to A. On the other hand by exer
ises 19.5.2 and 19.5.5we have ~tr = ~TRΛΛt. So ~TR is the suitably normalised Perron-Frobeniuseigenve
tor for the irredu
ible matrix ΛΛt with eigenvalue τ−1. Hen
e TR isunique and so is Tr.Corollary 19.5.7. If τ−1 is the Perron Frobenius eigenvalue for an irre-du
ible matrix ΛtΛ for an N-valued matrix Λ, there exists a von Neumannalgebra M with faithful tra
e tr 
ontaining an in�nite sequen
e of proje
tions
ei satisfying the relations of 19.3.2. 149



Proof. Choose a 
onne
ted in
lusion A ⊆ B with matrix Λ and tra
e TRon 〈B, eA〉 as above. Then if we 
onsider the in
lusion B ⊆ 〈B, eA〉, we seethat ~Tr = ~TRΛ is the Perron-Frobenius eigenve
tor for ΛΛt so the tra
e on
〈B, eA〉 guaranteed by the previous theorem has the same value of τ and isequal to TR. We may thus iterate the basi
 
onstru
tion always using thetra
e given by the theorem. To getM just use GNS on the union of the (C∗-)algebras in the tower.Remark 19.5.8. In fa
t the M 
onstru
ted above is a type II1 fa
tor (pro-vided τ 6= 1 ....). This follows from the fa
t that the only tra
e on the toweris in fa
t the one used. See exer
ise 6.2.1.19.6 Existen
e of the 4 cos2 π/n subfa
tors.De�nition 19.6.1. GIven a �nite von Neumann algebra M with faithfulnormal normalised tra
e tr 
ontaining a sequen
e ei of proje
tions satisfying19.3.2 we de�ne the algebra P = {e1, e2, e3 · · · }′′ and the subalgebra Q =
{e2, e3, · · · }.We will have shown the existen
e of subfa
tors of index 4 cos2 π/n forea
h n = 3, 4, 5, · · · if we 
an show:(i) For ea
h n there exists an N-valued matrix Λ whose norm is 2 cosπ/n.(ii) P and Q are type II1 fa
tors and [P : Q] = 4 cos2 π/n.Let us begin with (i) sin
e it is easy. Just 
onsider the matrix whi
h is theadja
en
y matrix Λn in the bipartite sense for the graph An with n verti
es:

..........Thus for n = 2m even, Λn is m×m and for n = 2m+1 it is m× (m+1).In both 
ases
λi,j =

{

1 if i = j or j + 1

0 otherwiseExer
ise 19.6.2. Show that ||Λn|| = 2 cosπ/(n+ 1).Note that these are not the only 
hoi
es for Λ. If Λ is the bipartite adja-
en
y matrix for a Coxeter-Dynkin graph of type A, D or E one has:150



||Λ|| = 2 cosπ/n where n =































n+ 1 for An
2n− 2 for Dn

12 for E6

18 for E7

30 for E8These are the only possibilities for ||Λ|| < 2 (see [℄).Now let us show that P (and hen
e obviously Q) is a fa
tor.
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Appendix AKau�man's diagrammati
s for theTemperley-LIeb algebra.
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Appendix BProof of the KMS 
ondition.Theorem B.0.3. Let φ be a faithful normal state on a von Neumann algebra
M . Then the modular group σφt is the unique one parameter automorphismgroup of M whi
h satis�es the KMS 
ondition for φ.Proof. Perform the GNS 
onstru
tion with 
anoni
al 
y
li
 and separatingve
tor Ω and modular operators S = J∆1/2. Re
all that f(∆)Ω = Ω for anyfun
tion of ∆ with f(1) = 1. In parti
ular φ(σφt (x) = 〈(∆itx∆−itΩ,Ω〉 so σφtpreserves φ.Now let us 
he
k the rest of the KMS 
ondition. We have

φ(σφt (x)y) = 〈∆−ityΩ, x∗Ω〉and
φ(yσφt (x)) = 〈yσφt (x)Ω,Ω〉

= 〈J∆1/2σφt (x
∗)Ω, J∆1/2yΩ〉

= 〈∆1/2yΩ,∆1/2∆itx∗Ω〉
= 〈∆1/2−ityΩ,∆1/2x∗Ω〉So let ξ = yΩ, η = x∗Ω and let pn be the spe
tral proje
tion for ∆ forthe interval [1/n, n] so that pn tends strongly to 1 and ∆±1 are bounded on

pnHφ. The fun
tions
Fn(z) = 〈∆−izpnξ, η〉are then entire and

|Fn(t) − φ(σφt (x)y)| = |〈∆−it(1 − pn)ξ, η〉| ≤ ||(1 − pn)ξ|| ||η||
|Fn(t+ i) − φ(yσφt (x))| = |〈∆1/2−it(1 − pn)ξ,∆

1/2η〉| ≤ ||(1 − pn)∆
1/2ξ|| ||∆1/2η||.155



Hen
e the Fn are bounded and 
ontinuous on the strip {z : 0 < ℑmz < 1}and 
onverge uniformly on its boundary. By the Phragmen-Lindelof theoremwe are done.Now let us prove uniqueness of the modular group with the KMS 
ondi-tion.Let αt be another 
ontinous one-parameter automorphism group satisfy-ing KMS for φ. The fa
t that αt preserves φ means we 
an de�ne a strongly
ontinous one-parameter unitary group t 7→ ut by utxΩ = αt(x)Ω. By Stone'stheorem it is of the form t 7→ Dit for some non-singular positive self-adjointoperator A. The goal is to prove that D = ∆. As a �rst step we 
onstru
t adense set of analyti
 ve
tors in MΩ by Fourier transform. Let A be the setof all operators of the form
∫ ∞

−∞
f̂(t)αt(x)dxfor all C∞ fun
tions f of 
ompa
t support on R. The integral 
onvergesstrongly so

f(log(D))xΩ =

∫ ∞

−∞
f̂(t)Dit(xΩ)dxis in AΩ. Thus the spe
tral proje
tions of D are in the strong 
losure of Aand AΩ is dense. Moreover z 7→ DzxΩ is analyti
 for x ∈ A sin
e xΩ isin the spe
tral subspa
e of A for a bounded interval. Also AΩ is invariantunder Dz by the fun
tional 
al
ulus. To 
ompare with φ de�ne, for x and yin A, the entire fun
tion

F1(z) = 〈D−izyΩ, x∗Ω〉.Let F be the fun
tion, analyti
 inside the strip and 
ontinuous and boundedon it, guaranteed for x and y by the KMS 
ondition. Then if we de�ne G(z)for −1 ≤ ℑmz ≤ 1 by
G(z) =











F (z) − F1(z) if ℑmz ≥ 0;
F (z) − F1(z) if ℑmz ≤ 0.Sin
e F and F1 agree on the real line G is analyti
 for −1 < ℑmz < 1, hen
e
he
k typesetting equal to 0, and sin
e both F and F1 are 
ontinous on the strip, φ(yσt(x)) =

F (t+ i) = F1(t+ i) = 〈D1−ityΩ, x∗Ω〉. In parti
ular putting t = 0 we get
〈DyΩ, x∗Ω〉 = φ(yx)

= 〈xΩ, y∗Ω〉
= 〈J∆1/2x∗Ω, J∆1/2yΩ〉
= 〈∆1/2yΩ,∆1/2x∗Ω〉156



So ∆1/2yΩ is in the domain of ∆1/2 and ∆yΩ = DyΩ.Thus D and ∆ agree on AΩ. But multipli
ation by the fun
tion ez + 1 isa linear isomorphism of C∞
c so by fun
tional 
al
ulus (D+1)AΩ = AΩ whi
his thus dense. Sin
e D + 1 is invertible by spe
tral theory, any (ξ, (D + 1)ξ)in the graph of D+1 
an be approximated by (AnΩ, (D+1)AnΩ). Thus D isessentially self-adjoint on AΩ, and both ∆ and D are self-adjoint extensionsof the restri
tion of D to this domain. Thus D = ∆.
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