Exercises for Higher Structures in Differential Geometry SS 2013

Sheet 09

Exercise 45

Suppose M is a compact manifold, N is a locally metrisable manifold and $L \subseteq M$ be a subset and $n_0 \in N$. Show that

$$C_L^{\infty}(M, N) := \{ f \in C^{\infty}(M, N) \mid f \mid_L = n_0 \},\$$

where n_0 is identified with the constant map with values n_0 is a closed submanifold of $C^{\infty}(M, N)$.

Exercise 46

Let \mathbb{Z}_n act on \mathbb{C} (from the right) by $z[s] := \rho(z, [s]) := e^{\frac{2\pi i}{s}} \cdot z$.

a) Show that \mathbb{C}/\mathbb{Z}_n , together with the quotient topology and the quotient map $\mathbb{C} \to \mathbb{C}/\mathbb{Z}_n$ is the colimit of the diagram

$$\mathbb{C} \times \mathbb{Z}_n \xrightarrow{\mathrm{pr}_1} \mathbb{C} \xleftarrow{\rho} \mathbb{C} \times \mathbb{Z}_n \tag{1}$$

in Top.

- b) Show that \mathbb{C}/\mathbb{Z}_n does not possess a manifold structure such that $\mathbb{C} \to \mathbb{C}/\mathbb{Z}_n$ is smooth and the colimit of in **Man. Hint:** The corresponding statement is true if one considers the action of \mathbb{Z}_n on $\mathbb{C}\setminus\{0\}$. Assuming that there also exists a chart around $0 \cdot \mathbb{Z}_n$ in \mathbb{C}/\mathbb{Z}_n , consider the smooth curve $\mathbb{R} \hookrightarrow \mathbb{C}$ and show that this cannot be mapped to a smooth curve in the quotient (for instance if n = 2).
- c) Show that the statements of a) and b) are true if one replaces "colimit of (1)" by "surjective submersion".

Exercise 47

- a) Let C be a category with finite products. Define the notion of a group object in C (your definition should yield that group objects in **Man** are Lie groups), along with morphisms of group objects. Assure yourself that the definition also works if C does not have arbitrary products but only the products occurring in the definition and generalise the notion to groupoid objects (and morphisms of them).
- b) Show that group objects (respectively morphisms between those) in $\mathbf{PSh}_{\mathcal{C}}$ are those functors $\mathcal{C} \to \mathbf{Set}$ (respectively natural transformations) that have values in \mathbf{Grp} (respectively in group homomorphisms). Conclude that the category of group objects in $\mathbf{PSh}_{\mathcal{C}}$ is $\mathbf{Grp}^{\mathcal{C}^{\mathrm{op}}}$.
- c) Does the same also work in the same manner for algebra objects?

Exercise 48

Work out Example III.3 c) in the case of the open covering topology of **Top** explicitly. Even more explicitly, describe $\check{C}(R)$ for R the open covering of \mathbb{S}^1 by two (respectively three) open connected arcs such that each $e^{\frac{2\pi i}{n}}$ is for n = 2 (respectively n = 3) contained in only one arc.

Exercise 49

If (\mathcal{C}, K) is a site and $F: \mathcal{C}^{\text{op}} \to \mathbf{Grpd}$ is a weak presheaf in groupoids, show that $\mathbf{Match}(R, F)$ is for each $R = \{f_i: D_i \to C \mid i \in I\} \in K(C)$ a category with respect to $\mathrm{id}_{(X_i,\varphi_{ij})} = (\mathrm{id}_{X_i})$ and $(\alpha_i) \circ (\beta_i) = (\alpha_i \circ \beta_i)$. Moreover, show that

$$F(C) \to \operatorname{Match}(R, F), \quad (X \mapsto ((X|_{D_i}), (\varphi_{ij}(F, X)))), \ (\alpha \mapsto (\alpha|_{D_i})), \tag{2}$$

where $\varphi_{ij}(F, X) := F(f_i, \pi_{ij})(X)^{-1} \circ F(f_j, \rho_{ij})(X)$, is a functor.