Exercises for Higher Structures in Differential Geometry SS 2013

Sheet 05

Exercise 23

Show that the restriction of the functor $\mathbf{Man} \to \mathbf{Diff}, M \mapsto D_M$ to the category \mathbf{Man}_{fin} of finite-dimensional manifolds is fully faithful.

Exercise 24

Let Y, Y', Z, Z' be diffeological spaces and $f: Y' \to Y, g: Z \to Z'$ be morphisms in **Diff**. Show that

 $\underline{\mathbf{Diff}}(Y,Z) \to \underline{\mathbf{Diff}}(Y',Z'), \quad \varphi \mapsto g \circ \varphi \circ f$

is a morphism in **Diff**.

Exercise 25

Show that the category **Diff** of diffeological spaces has arbitrary (small) colimits.

Exercise 26

Show that a morphism $f: Y \to Y$ of principal G-bundles ver Z is in local trivialisations

$$\Phi'_i \circ f \circ \Phi_i^{-1} \colon U_i \times X \to U_i \times X, \quad (y, x) \mapsto (y, \xi_i(y, x))$$

always given by $(y,g) \mapsto \xi_i(y) \cdot g$, where $\xi_i \colon U_{ij} \to G$ is smooth. Deduce from this that morphisms of principal bundles are automatically isomorphisms.

Exercise 27

Let $\pi: Y \to Z$ be a principal *G*-bundle. Show that $Y \times_Z Y$ is isomorphic to the trivial principal *G*-bundle over *Y*. **Hint:** $(y, y') \in Y \times_Z Y$ gives rise to a unique $g \in G$ with $y' = y \cdot g$.

Exercise 28

Let $\pi \colon Y \to Z$ be a bundle. Show that

$$(U \subseteq Z) \mapsto \Gamma^{\pi}(U) := \{ \gamma \in C^{\infty}(U, Y) \mid \pi \circ \gamma = \mathrm{id}_U \}$$

is a sheaf on **Open**_X. This is also called the *sheaf of sections* of $\pi: Y \to Z$.