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Exercise 11

Fill in the details of Example B.2 f) on the completeness of C(X,R) with respect to the
metric

d(f, g) =
∑
n∈N

2−n
pn(f − g)

1 + pn(f − g)
,

where pn(f) := supx∈Kn
|f(x)| and K1 ⊆ K2 ⊆ ... ⊆ X are compact with ∪n∈NKn = X.

Exercise 12

If X is a topological space and U, V ⊆ X are open subsets, equipped with the subspace
topology, then show that the pullback of the inclusions U ↪→ X and V ↪→ X is given by
U ∩ V ↪→ U and U ∩ V ↪→ V .

Exercise 13

Let A be a Banach algebra and denote by A× the group of units in A. Show that the
inversion ι : A× → A×, a 7→ a−1 is smooth by the following steps

1. Verify that b−1 − a−1 = a−1(a− b)b−1 for each a, b ∈ A×.

2. Calculate dι(a)(v) and conclude that ι is of class C1.

3. Show inductively that if ι is of class Ck, then dι is of class Ck and conclude that
ι is of class Ck for each k ∈ N0.

Exercise 14

If A is a Banach algebra and X is a compact topological space, show that C(X,A) is a
Banach algebra with respect to (f · g)(x) := f(x) · g(x) and the supremum norm

‖f‖∞ := sup{‖f(x)‖ : x ∈ X}.

Exercise 15

Let X,Y be lcs, f : U ⊆◦ X → Y be a map and set U [1] := {(x, v, s) ∈ U×X×R | x+sv ∈
U}. Show that f is a C1-map if and only there exists a continuous map f [1] : U [1] → Y
such that

f [1](x, v, s) =
1

s
(f(x+ sv)− f(x)) if s 6= 0.

Hint: Try

f [1](x, v, s) :=

{∫ 1
0 df(x+ stv)(v)dt if x+ [0, 1]sv ⊆ U
1
s (f(x+ sv)− f(x)) else

.

Use this to show the Chain Rule: If f : U ⊆◦ X → Y and g : V ⊆◦ Z → U are C1-maps,
then so is f ◦ g and

d(f ◦ g)(z)(w) = df(g(z))(dg(z)(w)).


