Exercises for Higher Structures in Differential Geometry SS 2013

Sheet 03

Exercise 11

Fill in the details of Example B.2 f) on the completeness of $C(X, \mathbb{R})$ with respect to the metric

$$d(f,g) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{p_n(f-g)}{1 + p_n(f-g)},$$

where $p_n(f) := \sup_{x \in K_n} |f(x)|$ and $K_1 \subseteq K_2 \subseteq ... \subseteq X$ are compact with $\bigcup_{n \in \mathbb{N}} K_n = X$.

Exercise 12

If X is a topological space and $U, V \subseteq X$ are open subsets, equipped with the subspace topology, then show that the pullback of the inclusions $U \hookrightarrow X$ and $V \hookrightarrow X$ is given by $U \cap V \hookrightarrow U$ and $U \cap V \hookrightarrow V$.

Exercise 13

Let A be a Banach algebra and denote by A^{\times} the group of units in A. Show that the inversion $\iota: A^{\times} \to A^{\times}, a \mapsto a^{-1}$ is smooth by the following steps

- 1. Verify that $b^{-1} a^{-1} = a^{-1}(a-b)b^{-1}$ for each $a, b \in A^{\times}$.
- 2. Calculate $d\iota(a)(v)$ and conclude that ι is of class C^1 .
- 3. Show inductively that if ι is of class C^k , then $d\iota$ is of class C^k and conclude that ι is of class C^k for each $k \in \mathbb{N}_0$.

Exercise 14

If A is a Banach algebra and X is a compact topological space, show that C(X, A) is a Banach algebra with respect to $(f \cdot g)(x) := f(x) \cdot g(x)$ and the supremum norm

$$||f||_{\infty} := \sup\{||f(x)|| : x \in X\}.$$

Exercise 15

Let X, Y be les, $f: U \subseteq X \to Y$ be a map and set $U^{[1]} := \{(x, v, s) \in U \times X \times \mathbb{R} \mid x + sv \in U\}$. Show that f is a C^1 -map if and only there exists a continuous map $f^{[1]}: U^{[1]} \to Y$ such that

$$f^{[1]}(x,v,s) = \frac{1}{s} \left(f(x+sv) - f(x) \right)$$
 if $s \neq 0$.

Hint: Try

$$f^{[1]}(x,v,s) := \begin{cases} \int_0^1 df(x+stv)(v)dt & \text{if } x+[0,1]sv \subseteq U\\ \frac{1}{s}\left(f(x+sv)-f(x)\right) & \text{else} \end{cases}$$

Use this to show the **Chain Rule:** If $f: U \subseteq X \to Y$ and $g: V \subseteq Z \to U$ are C^1 -maps, then so is $f \circ g$ and

$$d(f \circ g)(z)(w) = df(g(z))(dg(z)(w)).$$