# Algebra II

JProf.-Dr. Christoph Wockel

28. Februar 2013

# Modules over Rings

# Lecture 1 (October 16)

- Def.: Ring (morphism), left- right and bimodule (morphism)
- Ex. (rings):  $\mathbb{Z}$ , k[x] (polynomials), continuous, smooth or analytic functions
- Ex. (morphism): initial and terminal morphism  $\mathbb{Z} \to R$  and  $R \to 0$
- Ex. (module): R over itself, vector spaces
- Prop.:  $\operatorname{Hom}_R(M, N)$  is naturally an abelian group and if R is commutative, then it also is naturally an R-module.

#### Lecture 2 (October 19)

- Opposite ring, anti-homomorphis, exchanging left- and right modules
- Ex. (modules):  $M \cong \operatorname{Hom}_R(R, M)$  (if R commutative), abelian groups as Z-modules, rings as Z-algebras
- Def.: R-algebra (e.g., k[x])
- Rem.: A is R-alg.  $\cong \Phi \colon R \to A$  with  $\Phi(r)a = a\Phi(r)$
- Lem.: Modules over  $R \cong$  morphisms  $R \to$ End(M)
- Def.: Polynomial ring/algebra (A, X) over R
- Prop.: Universal property of (A, X)
- Rem.: Evaluation homomorphism
- Lem.: Modules over  $R[X] \cong R$ -modules + R-linear map
- Def.: Group ring/group algebra R[G]

# Lecture 3 (October 23)

- Lem.: R[G] is a ring (an *R*-algebra if  $R = R^{op}$ )
- Def.: Representation  $\rho_V := (\rho, V)$  of G on a k-vector space V
- Rem.:  $(V, \rho) \triangleq$  left action on V by linear maps; canonical and trivial rep., rep. of Z and Z<sub>2</sub>
- Lem.: Rep. of G (over k)  $\cong$  k[G]-modules
- Def.: Morphisms of representations, submodules (of general *R*-modules)
- Rem.: Subgroups, ideals and subrep. are submodules; kernels and images are submodules; quotient modules, relation to ideals
- Lem.: Restriction of scalars (pull-back)
- Def.: Generated submodule, generating system, finitely generated and cyclic module
- Prop.: Fundamental Homomorphism Theorems

#### Lecture 4 (October 26)

- Def.: Annihilator, faithful module, torsion element, torsion submodule Tor(M), torsion free module
- Prop.:  $M/\operatorname{Tor}(M)$  is torsion free if R is an integral domain.
- Def.: Direct product  $(M, (\pi_i \colon M \to M_i)_{i \in I})$  and direct sum  $(N, (\iota_i \colon M_i \to N)_{i \in I})$  of a family  $(M_i)_{i \in I}$  of *R*-modules
- Uniqueness up to unique isomorphism, existence
- Sum of submodules, direct (internal) sum of submodules
- Direct sum of representations and of k[G]-modules
- Example via Chinese Remainder Theorem:  $\mathbb{Z}_6 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3$
- Def.: Tensor product  $M \otimes_A N$  of A-modules (A commutative)
- Lem./Prop.: Uniqueness and existence of the tensor product

# Lecture 5 (October 30)

Note: The section on the tensor product followed closely Section VII.10 in the book "Algebra" of Jantzen and Schwermer, cf. http://www.springerlink.com/content/978-3-540-21380-2.

- Lem./Prop.: Uniqueness and existence of the tensor product
- Rem.: Notation (M ⊗<sub>A</sub> N, ⊗<sub>A</sub>) for "the" tensor product, universal properties in terms of bijections of Hom-sets, tensor product of module morphisms, properties of the tensor product: 0 ⊗ M ≃ 0, A ⊗<sub>A</sub> M ≃ M, M ⊗ N ≃ N ⊗ M and M ⊗ (N ⊗ P) ≃ (M ⊗ N) ⊗ P
- Ex.:  $A^n \otimes_A A^m \cong A^{nm}, A[X] \otimes_A A[Y] \cong A[X,Y], \mathbb{Z}_n \otimes \mathbb{Z}_m \cong \mathbb{Z}_{gcd(n,m)}$ Tor $(A \otimes_\mathbb{Z} \mathbb{Q}) \cong 0$  and Tor $(A) \otimes_\mathbb{Z} \mathbb{Q} \cong 0$
- Tensor products over non-commutative rings, tensor products of bimodules
- Def.: Linearly independent elements of a module, basis, free module

#### Lecture 6 (November 2)

- Rem.: Modules over fields are free, but not over Z (e.g. Z<sub>n</sub>), M is free iff M ≅ ⊕<sub>x∈X</sub>R for some X, |X| = n < ∞ ⇒ M ≅ R<sup>n</sup>, Homomorphism between free modules as matrices
- Prop.: Different bases of a free module *M* over a *commutative* ring have the same cardinality (called *rank* of *M*).
- Rem.: For R non-commutative  $R^n \cong R^m \Rightarrow m = n$  (in general)
- Prop.: Each module is quotient of a free module.
- Prop.:  $f: M \to F$  surjective and F free  $\Rightarrow M \cong \ker f \oplus F$
- Cor.: N submod. of M with M/N free  $\Rightarrow N$  complemented
- Def.: Sequence, chain complex, exact sequence, *short* exact sequence

# Lecture 7 (November 6)

- Prop.: Equivalent conditions for a *split* short exact sequence
- Examples of short exact sequences: vector spaces (always split), abelian groups (not always split),  $k[\mathbb{Z}]$ -modules (not always split) and k[G] modules for G finte gp. (always split)
- Def.: Push-forward, pull-back of morphisms
- Lem.: Hom $(M, \cdot)$  preserves "left exactness" of short exact sequences.

• Prop.: Equivalent conditions for  $\text{Hom}(M, \cdot)$  to preserve "right exactness":

1. For each diagram



with exact bottom row there exists a lift (i.e. a morphism along the dotted arrow making the diagram commute).

- 2. Each short exact sequence  $N' \to N \to M$  splits
- 3. The exists Q such that  $M \oplus Q$  is free
- 4. For each short exact sequence  $T' \xrightarrow{\iota} T \xrightarrow{\pi}$  the sequence

$$\operatorname{Hom}(M,T') \xrightarrow{\iota_*} \operatorname{Hom}(M,T) \xrightarrow{\pi_*} \operatorname{Hom}(M,T'')$$

is also exact.

• Def.: Projective module

# Lecture 8 (November 6)

- Prop.: Equivalent conditions for  $\operatorname{Hom}(\cdot, M)$  to preserve "right exactness":
  - 1. For each diagram



with exact top row there exists a lift.

- 2. Each short exact sequence  $M \to N \to N''$  splits
- 3. For each short exact sequence  $T' \xrightarrow{\iota} T \xrightarrow{\pi} T''$  the sequence

$$\operatorname{Hom}(T'', M) \xrightarrow{\pi^*} \operatorname{Hom}(T, M) \xrightarrow{\iota^*} \operatorname{Hom}(T', M)$$

is also exact.

- Def.: Injective module
- Prop.: Baer's Criterion for injectivity of a module

From now on:  $M := R^{\text{op}}$ -module.

- Prop.:  $M \otimes_R \cdot$  preserves "right exactness" of short exact sequences. M projective  $\Rightarrow M \otimes_R \cdot$  also preserves "left exactness".
- Def.: M is flat if  $M \otimes_R \cdot$  also preserves "left exactness", i.e., if

 $\iota: N' \to N$  injective  $\Rightarrow \mathrm{id}_M \otimes \iota$  injective.

- Def.: divisible module (if  $m \mapsto r \cdot m$  is surjective for all  $r \in R$ ).
- Prop.: Over a pid (principal ideal domain) divisibility and flatness are equivalent.

# **Finiteness and Simplicity**

Note: Large parts of the material of this section is taken from Chapter VII and VIII of the book "Algebra" of Jantzen and Schwermer.

# Lecture 9 (November 13)

Unless stated otherwise: R : ring, M, N : R-modules

- Prop.: TFAE (for *M* an *R*-module)
  - a) Each increasing sequence  $N_1 \subseteq N_2 \subseteq \cdots$  of submodules becomes stationary.
  - b) Each non-empty set of submodules has a maximal element.
  - c) Each submodule is finitely generated.
- Def.: Noetherian module and ring
- Ex.: pids and finite-dimensional k-algebra modules are Noetherian.
- Prop.: Noetherian is an extension property, i.e., if  $N' \to N \to N''$  is a short exact sequence, then N is Noeth. iff N', N'' are so.
- Prop.: If R is Noetherian, then M Noeth.  $\Leftrightarrow$  M fin. gen.
- Hilbert's Basis Theorem: R noetherien  $\Rightarrow R[X]$  Noetherian.

- Def.: Finitely cogenerated:  $\bigcap_{i \in I} N_i = \{0\} \Rightarrow \bigcap_{i \in F} N_i = \{0\}$  for some  $|F| < \infty$ .
- Prop.: (dually to above) TFAE
  - a) Each decreasing sequence  $N_1 \supseteq N_2 \supseteq \cdots$  of submodules becomes stationary.
  - b) Each non-empty set of submodules has a minimal element.
  - c) Each submodule is finitely cogenerated.
- Def.: Artinian module and ring
- Prop.: Artinian is an extension property.
- Each left Artinian ring is also left noetherian, but  $\mathbb{Z}$  is not Artinian!
- Ex.: finite-dimensional k-algebra modules are Artinian.

#### Lecture 10 (November 16)

- Def.: simple and indecomposable module (and representation).
- Ex.: simple and indecomposable modules over R = k a field,  $G = \mathbb{Z}$ ,  $R = k[\mathbb{Z}]$  and k[G] for  $|G| < \infty$
- Lem.: M simple  $\Leftrightarrow M = \langle x \rangle$  for all  $x \in M$ . For arbitrary  $M, x \in M$ and  $\varphi(r) := r \cdot m$  we have  $\langle x \rangle$  simple  $\Leftrightarrow \ker(\varphi)$  maximal ideal.
- Lem.: M : simple, N : arbitrary
  - a) each  $\varphi \colon M \to N$  is either injective or zero
  - b) each  $\varphi \colon N \to M$  is either surjective or zero
  - c) each  $0 \neq \varphi \in \text{End}_R(M)$  is invertible.
- Lem. (Schur): k: alg. closed field, A: k-alg. M: simple A-module with  $\dim_k(M) < \infty$ . Then

 $k \to \operatorname{End}_A(M), \quad \lambda \mapsto \lambda \cdot \operatorname{id}$  is an isomormism.

- Def.: composition series:  $M = M_0 \supset M_1 \supset \cdots \supset M_r = 0$  with  $M_i/M_{i+1}$  simple. M of finite length  $\Leftrightarrow \exists$  composition series.
- Lem.: M of finite length  $\Leftrightarrow M$  Artinian and Noetherian.
- Def.: Equivalence and refinements of sequences of submodules.
- Lem. (Schreier): Each two sequences have refinements that are equivalent.
- Prop. (Jordan-Hölder): Each two composition series are equivalent.
- Cor.: M: finite length,  $N \leq M \Rightarrow l(M) = l(N) + l(M/N)$
- Cor.: R: of finte length ofer itself  $\Rightarrow$  each simple R-modules is quotient of R for each composition series  $R = R_0 \supset \cdots \supset R_r = 0$ we have  $M \cong R_i/R_{i+1}$  for some *i*.
- Cor.: k: field,  $k \subseteq R$ ,  $\dim_k(R) < \infty \Rightarrow \exists$  up to isomorphism only finitely many simple *R*-modules.
- Cor.: G: finite group  $\Rightarrow \exists$  up to isomorphism only finitely many simple k[G]-modules.

# Lecture 11 (November 20)

- Def.: Semi-simple module (direct sum of free *R*-modules)
- Ex.: vector spaces,  $\mathbb{Z}_2$ ,  $\mathbb{Z}_2 \times \mathbb{Z}_2$  are semi-simple,  $\mathbb{Z}$  and  $\mathbb{Z}_4$  are not.
- Lem.:  $N \leq M$ ,  $(M_i)_{i \in I}$ : family of submodules of M
  - a)  $\sum_{i \in I} M_i$  direct  $\Leftrightarrow \sum_{j \in F} M_j$  direct for each  $F \subseteq I$  finite
  - b) Each  $M_i$  simple and  $N + \sum_{i \in I} M_i = M \Rightarrow \exists J \subseteq I$  s.th.

$$M = N \oplus \bigoplus_{j \in J} M_j.$$

- Prop.: TFAE:
  - a) M is semi-simple.
  - b) M is sum of simple modules.
  - c) Each submodule of M has a complement.
- Cor.: Submodules and quotients of semi-simple modules are so.

- Def.: Simple and semi-simple ring.
- Ex.: Fields are semi-simple, products of semi-simple rings are so.
- Ex.:  $R = M_n(D)$  for D a division ring is semi-simple and each semi-simple ring is isomorphic to a product of such.
- Note: R pid, not a filed  $\Rightarrow R$  not semi-simple
- Prop.: R semi-simple
  - a) Each *R*-module is semi-simple
  - b) There are (up to isom.) only finitely many simple *R*-modules.
- Def.:  $rad(M) := \bigcap \{ N \leq M \mid N \text{ is maximal submodule} \}$
- Rem.:
  - a) If no maximal submod. exist, then rad(M) = 0.
  - b)  $\operatorname{rad}(M) = \bigcap \{ \ker(\alpha) \mid \alpha \colon M \to E, \text{ with } E \text{ simple} \}.$
  - c) M semi-simple  $\Rightarrow$  rad(M) = 0.
  - d)  $\operatorname{rad}(\mathbb{Z}) = 0.$

# Lecture 12 (November 23)

- Lem.: morphisms, direct sums and quotients are compatible with the radical, rad(M/rad(M)) = 0.
- Cor.: M Artinian  $\Rightarrow M/\operatorname{rad}(M)$  is semi-simple.

From now on let R be a pid and M, N be R-modules of finite rank.

- M free,  $N \leq M \Rightarrow N$  is free.
- Thm. (Elementary Divisor Theorem):  $n = \operatorname{rk}(M), N \leq M$ . Then  $\exists$  basis  $v_1, ..., v_n$  of M and  $a_1, ..., a_n$  s.th.  $a_1 \mid \cdots \mid a_n$ and  $V = \sum Ra_i V_i$ .
- Cor.:  $M \cong R/(a_1) \oplus \cdots \oplus R/(a_m)$  for some  $a_1, ..., a_m \in R$  s.th.  $a_i \notin R^*$  and  $a_1 \mid \cdots \mid a_m$ .
- Rem.:  $\mathcal{P}$ : rep. system of prime elt.'s modulo units  $\Rightarrow$

$$M \cong R^{n_0} \oplus \bigoplus_{p \in \mathcal{P}} \bigoplus_{r > 0} (R/(p^r))^{n(p,r)}$$

with only finitely many n(p, r) non-zero and  $n_0$  and n(p, r) unique.

Lecture 13 (November 27)

- Def.: Categories
- Ex.: Set (sets), Gp (groups), R-Mod (*R*-modules), R-S-Bimod,
   Alg<sub>R</sub>, Top, Ø, \*, pair groupoid P<sub>X</sub> of a set X, category from a poset
- Def.:  $\mathcal{C}^{\mathrm{op}}$ ,  $\mathcal{C} \coprod \mathcal{D}$ ,  $\mathcal{C} \times \mathcal{D}$
- Def.: Functors
- Ex.: Forgetful functors, duals and double duals of vector spaces,  $\coprod, \otimes_R, \operatorname{Hom}_{\mathcal{C}}(X, \cdot) \colon \mathcal{C} \to \operatorname{\mathbf{Set}}, \operatorname{Hom}_{\mathcal{C}}(\cdot, X) \colon \mathcal{C} \to \operatorname{\mathbf{Set}}^{\operatorname{op}}.$

#### Lecture 14 (November 30)

- Def.: Isomorphism of categories (note: is a very rigid concept)
- Ex.:  $\mathbf{R}$ - $\mathbf{Mod} \cong \mathbf{Mod}$ - $\mathbf{R^{op}}$ ;  $k[X] \mathbf{Mod} \cong \mathbf{k}$ - $\mathbf{Mod}$ +lin. End.
- Def.: Natural transformation  $\alpha \colon F \Rightarrow G$  btw. functors, natural isomorphism
- Ex.:  $(\iota: V \to V^{**}): \operatorname{id}_{\mathbf{k}-\mathbf{Mod}} \Rightarrow (\cdot)^{**}$ , morphisms betw. seq. of obj.
- Def.: Equivalence of categories (note: this means "essentially equal")
- Def.: fully faithful and essentially surjective functor
- Prop.:  $F: \mathcal{C} \to \mathcal{D}$  is an equivalence if and only F is fully faithful and essentially surjective.
- Ex.:  $\mathbf{k}$ -Mod<sup>fin</sup>  $\simeq$  (natural numbers + Matrices).

Lecture 15 (December 4)

• Categorical description of products and coproducs as functors  $\prod, \coprod : \ \prod \mathcal{C} \to \mathcal{C}$ 

Expression of the universal property of  $\prod$  and  $\coprod$  as

$$\operatorname{Hom}_{\mathcal{C}}(\coprod(c_i), d) \cong \operatorname{Hom}_{\prod \mathcal{C}}((c_i), \Delta(d))$$

and

$$\operatorname{Hom}_{\mathcal{C}}(d, \prod(c_i)) \cong \operatorname{Hom}_{\prod \mathcal{C}}(\Delta(d), (c_i)).$$

- Def.: Adjoint functors  $(F \dashv G : \Leftrightarrow$  existence of natural bijections  $\operatorname{Hom}_{\mathcal{D}}(F(x), y) \cong \operatorname{Hom}_{\mathcal{C}}(x, G(y))).$
- Ex.: Forgetful and free *R*-module functors; forgetful Fields → Set does not have left adjoint; *I*: Ab → Gp has *G* → *G*<sup>ab</sup> := *G*/[*G*, *G*] as left adjoint; scalar extension (induction) and coinduction S-Mod → R-Mod.

- Def.: unit and counit of an adjunction  $F \dashv G$
- Prop.:  $F \to G \Leftrightarrow \exists \eta : \operatorname{id}_{\mathcal{C}} \Rightarrow G \circ F \text{ and } \varepsilon \colon F \circ G \Rightarrow \operatorname{id}_{\mathcal{D}} \text{ such that}$  $G(\varepsilon) \circ \eta(G) = \operatorname{id}_{G} \text{ and } \varepsilon(F) \circ F(\eta) = \operatorname{id}_{F}.$

Lecture 16 (December 7)

- Def.: Representable functor  $h^X \colon \mathcal{C} \to \mathbf{Set}$ ; representing object
- Lem. (Yoneda): The natural transformations from a representable functor  $h^X$  to  $F: \mathcal{C} \to \mathbf{Set}$  are in bijection with F(X) (Exercise!).
- Rem.: Embedding of  $\mathcal{C}$  into Fun $(\mathcal{C}, \mathbf{Set})$ ; uniqueness of representing object
- Prop.: Left adjoint functors commute with taking products and coproducts.
- Prop.: Uniqueness of left- and right adjoint functors (up to natural isomorphism).
- Def.: universal initial und terminal morphism.
- Adjoint functors in terms of universal initial and terminal morphisms.

# Lecture 17 (December 11)

- Def.: Additive Category (Hom-sets abelian groups, comp. bilinear, existence of finite products and coproducts); additive functor
- Rem.: Existence of initial and terminal object (agree to give the zero object 0); isomorphism btw. product and coproduct.
- Def.: Kernel and cokernel of a morphism in an additive category.
- Def.: Monomorphism and epimorphism in an arbitrary category.
- Lem.: kernels are mono; cokernels are epi.
- Def.: Abelian category (additive + each morphism has kernel and cokernel, + \u03c0 = ker(coker(\u03c0)) for \u03c0 mono, p = coker(ker(p)) for p epi)
- Def.: Image and coimage of a morphism.
- Rem.: Uniqueness of image and coimage; (short) exact sequences in arbitrary abelian categories.

• Ex.: fin. generated free abelian groups (not abelian), **R-Mod** (abelian),  $\mathcal{C}$  abelian  $\Rightarrow \mathcal{C}^{\text{op}}$  abelian.

# Lecture 18 (December 14)

- Def.: Additive functor, exact, left-, right- and half-exact functor
- Ex.:  $\coprod, \prod$  exact;  $M \otimes_R \cdot$  exact  $\Leftrightarrow M$  flat; Hom $(M, \cdot)$  exact  $\Leftrightarrow M$  proj.; Hom $(\cdot, M)$  exact  $\Leftrightarrow M$  inj.
- Def.: Projective, injective objects in arbitrary categories
- Rem.: In **Set** all objects are injective (also projective iff AOC holds).
- Def.: Limit of a functor  $\mathcal{J} \to \mathcal{C}$  (for  $\mathcal{J}$  small), pull-back
- Rem.: Pull-back pictorially:



- Rem.: pull-back unique up to isom.; pull-back in Set, Ab, Top,
   R-Mod given by {(x, y) | f(x) = g(y)}; pull-back is a functor
   C<sup>J</sup> → C; pull-back diagram; compatibility of those
- Ex.:  $X \times_* Y \cong X \times Y$  if  $\mathcal{C}$  has terminal object \*.
- Def.: push-out (dually to pull-back)
- Rem.: push-outs in **Set** and **Ab**, amalgamated sum (product).

# Lecture 19 (December 18)

Throughout:  $\mathcal{C}, \mathcal{D}$  denote abelian categories, F, G additive functors.

- Def.: enough projectives, enough injectives
- Prop.:  $F \dashv G$  and F exact  $\Rightarrow G$  preserves injectives;  $F \dashv G$  and G exact  $\Rightarrow F$  preserves projectives
- Cor.:  $\prod c_i$  injective  $\Leftrightarrow$  each  $c_i$  injective (dual for projectives).
- Ex.: R-Mod has enough proj. and inj.; Ab<sup>fin</sup> has no proj. or inj.;
   Ab<sup>f.g</sup> has enough proj. but no inj.
- Def.: Projective resolution of an object M in C:

$$P_i \to P_{i-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

exact with each  $P_i$  projective (dually: injective resolution).

- Lem.:  $\mathcal{C}$  has enough projectives  $\Rightarrow$  each object has proj. resolution.
- Def.: Ch<sub>C</sub>; cycles, boundaries and homology H<sub>i</sub>(C<sub>•</sub>, d<sub>•</sub>) of a chain complex; (C<sub>•</sub>, d<sub>•</sub>) acyclic chain complex

- Rem.:  $H_i$  is a functor  $\mathbf{Ch}_{\mathcal{C}} \to \mathcal{C}$ ;  $P_{\bullet} \to M$  proj. resolution  $\Rightarrow$  $H_0(P_{\bullet}) \cong M$ ; acyclic vs. exact chain complex; relation to topology; cohomology
- Def.: Quasi-Isomorphism:  $f_{\bullet} \colon C_{\bullet} \to C'_{\bullet}$  with  $H_i(F_{\bullet})$  iso  $\forall i$ .

#### Lecture 20 (December 21)

- Def.: Chain homotopy  $h_i: C_i \to D_{i+1}$  between  $f_{\bullet}, g_{\bullet}: C_{\bullet} \to D_{\bullet}$ ; homotopy equivalent chain complexes.
- Rem.: Relation to equivalences of categories.
- Prop.: Chain homotopic maps induce the same morphisms on homology; homotopic chain complexes have isomorphic homology.
- Lem. (Fundamental Lemma of Homological Algebra): Uniqueness of projective/injective Resolutions up to chain homotopy
- Def.: Left- and right-derived functor  $L_iF(M)$  and  $R_iF(M)$  of an additive functor F on an object M of C.
- Rem.: Left-derived functors vanish on projective objects (dually right-derived on injectives); uniqueness up to isomorphism of L<sub>i</sub>F(M) and R<sub>i</sub>F(M); functoriality
- Lem.: F right exact  $\Rightarrow L_0F = F$ ; F left-exact  $\Rightarrow R_0F = F$

Lecture 21 (January 8)

• Snake Lemma: If

$$M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$
$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''} \\ 0 \longrightarrow N' \longrightarrow N \longrightarrow N''$$

has exact rows, then there is an exact sequence

$$\ker f' \to \ker f \to \ker f'' \xrightarrow{\partial} \operatorname{coker} f' \to \operatorname{coker} f \to \operatorname{coker} f''.$$

- Rem.: Naturality of the connecting homomorphism  $\partial$
- Prop.:  $0 \to M'_{\bullet} \to M_{\bullet} \to M''_{\bullet} \to 0$  exact  $\Rightarrow \exists$  long exact seq.

$$\cdots \to H_i(M_{\bullet}) \to H_i(M_{\bullet}'') \xrightarrow{\partial} H_{i-1}(M_{\bullet}') \to H_i(M_{\bullet}) \to \cdots$$

• Prop.:  $0 \to M' \to M \to M'' \to 0$  exact  $\Rightarrow \exists$  long exact sequence for

left and right derived functors:

$$0 \to R^0 F(M') \to \cdots \to R^i F(M) \to R^i F(M'') \xrightarrow{\partial} R^{i+1} F(M') \to \cdots$$
$$\cdots \to L_i F(M'') \xrightarrow{\partial} L_{i-1} F(M') \to L_{i-1} F(M) \to \cdots \to L_0 F(M'') \to 0$$

- Rem.: vanishing of  $L_1F$  (resp.  $R^1F$ ) is equivalent to exactness; naturality of  $\partial$
- Def.: Tor is the derived functor of  $Y \mapsto X \otimes Y$  (for X fixed); Ext is the derived functor of  $Y \mapsto \text{Hom}(Y, X)$  (for X fixed).

# Lecture 21 (January 11)

- Ex.:  $\operatorname{Tor}_0^{\mathbb{Z}}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \mathbb{Z}_{(m,n)}$  and  $\operatorname{Tor}_i^{\mathbb{Z}} \equiv 0$  for i > 1since  $\mathbb{Z}$  is pid;  $\operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}_n) = 0$ ; similar for Ext;  $R = \mathbb{Z}[t]/(1-t^n)$ : exercises.
- Def.: double complex  $X_{\bullet\bullet}$ , total degree, morphism of double complex, total complexes  $|X_{\bullet\bullet}|$  and Tot  $X_{\bullet\bullet}$
- Def./Ex.:  $(P \otimes Q)_{\bullet \bullet}$  and  $\operatorname{Hom}(P, Q)$  for  $P_{\bullet}$  and  $Q_{\bullet}$ ,  $\widetilde{\operatorname{Tor}}_{n}^{R}(X, Y) := H_{i}(|P \otimes Q|)$  (symmetric Tor).
- Acyclic Assembly Lemma (exactness of  $|X_{\bullet\bullet}|$  and Tot  $X_{\bullet\bullet}$  from row or column exactness)

# Lecture 21 (January 15)

- Rem.: Acyclic Assembly Lemma also works if diagonals are appropriately bounded.
- Prop.: Tor  $\cong \widetilde{\text{Tor}}$ .
- Prop.: same as above for Ext.
- Def.: the bar complex

$$\cdots \to \beta_{n+1}(R;M) \xrightarrow{\sum (-1)^i d_i} \beta_n(R;M) \xrightarrow{\sum (-1)^i d_i} \beta_{n-1}(R;M) \to \cdots$$
with  $\beta_n(R;M) := R^{\otimes_{\mathbb{Z}}^{(n+1)}} \otimes_{\mathbb{Z}} M, r.(r_0|\cdots|r_{n+1}) := (rr_0|r_1|\cdots|r_{n+1})$ 
and
$$d_i(r_0|\cdots|r_{n+1}) := r_0|\cdots|r_ir_{i+1}|\cdots|r_{n+1}$$

• Prop.:  $\beta_{\bullet}(R; M)$  is a resolution of M as R-module.

#### Lecture 22 (January 18)

- Lem.: Extension of scalars of free modules is free.
- Cor.: Conditions s.th.  $\beta_{\bullet}(R; M)$  is free (e.g. R, M free  $\mathbb{Z}$ -mod).
- Ex.: Description of  $\operatorname{Ext}^1_R(M, N)$  in terms of cocycles

$$f: R \times M \to N$$
 s.th  $rf(s,m) + f(r,sm) = f(rs,m)$ 

and coboundaries.

- Def.: extension of modules, equivalence of extensions  $(\text{Ex}^n(M, N))$ : equiv. classes of extensions of length n
- Prop.: In *R*-mod:  $\operatorname{Ex}^{1}(M, N) \cong \operatorname{Ext}^{1}_{R}(M, N)$  if M, R are free  $\mathbb{Z}$ -mod.

#### Lecture 23 (January 22)

Throughout G denotes a group and M a  $\mathbb{Z}[G]$ -module (shortly denoted G-module). If not specified otherwise,  $\mathbb{Z}$  is the trivial G-module.

- Rem.: Ex<sup>1</sup>(M, N) ≃ Ext<sup>1</sup><sub>R</sub>(M, N) is true in R-Mod in general. Moreover, Ex<sup>n</sup>(M, N) can be endowed with structure such that Ex<sup>n</sup>(M, N) ≃ Ext<sup>n</sup><sub>R</sub>(M, N) is an isomorphism of functors to Ab.
- Def.: Invariants  $M^G$  and coinvariants  $M_G$  of M, functors

$$(\cdot)^G, (\cdot)_G \colon \mathbb{Z}[\mathbf{G}]\text{-}\mathbf{Mod} \to \mathbf{Ab}$$

- Lem.:  $(\cdot)^G \cong \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, \cdot)$  and  $(\cdot)_G \cong \mathbb{Z} \otimes_{\mathbb{Z}[G]} (\cdot)$
- Def.:

 $H_n(G, M) := (L_n(\cdot)_G)(M) \quad \text{is the } n\text{-th } group \ homology$  $H^n(G, M) := (R_n(\cdot)^G)(M) \quad \text{is the } n\text{-th } group \ cohomology$ 

- Ex.: Homology and cohomology of  $\mathbb{Z}_n$  and of  $\mathbb{Z}$  (via ad-hoc choices of resolutions)
- Rem.:  $H_n^R(G, M)$  and  $H_R^n(G, M)$  if M is (moreover) an R[G]-module.
- Lem.: If  $m := \operatorname{ord}(G) < \infty$ , k: field with  $\operatorname{char}(k) \nmid m$ , then  $H_k^n(G, M) = 0$  for  $n \ge 1$  and each k[G]-module M.

#### Lecture 24 (January 25)

- Thm. (Maschke): If  $m := \operatorname{ord}(G) < \infty$ , k: field with  $\operatorname{char}(k) \nmid m$ , then each k[G]-module M is semi-simple.
- Functoriality of the group homology and cohomology:  $H^n$  and  $H_n$  are actually functors on the category **GpMod** of pairs (G, M) of a group G and a G-module M with  $(\alpha, f): (G, M) \to (H, M) :\Leftrightarrow f: M \to \alpha^* N.$
- $H^n$  and  $H_n$  do in general *not* admit long exact sequences in G.
- Def.: Extensions  $A \to \hat{G} \to G$  of groups (with A abelian) and induced G-module structure on A.
- Ex.: A: G-module  $\Rightarrow A \rightarrow A \rtimes G \rightarrow G$  is extension (the "trivial")
- Prop.: Splittings of  $A \rtimes G \to G$  (or crossed homomorphisms) are up to equivalence classified by  $H^1(G, A)$ .
- Thm.: Extensions  $A \to \hat{G} \to G$  are (up to equivalence) classified by  $H^2(G, A)$ .

# Lecture 25 (January 29)

- Thm.: Extensions  $A \to \hat{G} \to G$  are (up to equivalence) classified by  $H^2(G, A)$  (proof thereof).
- Lem.:  $H^n(G, A) \cong H^n_R(G, A)$ .
- Ex. (from Topology): The universal covering of a topological group as a central extension  $\pi_1(G) \to \widetilde{G} \to G$  (and description of a cocycle thereof).
- Ex.: Classification of the groups G of order 255 (there is only  $\mathbb{Z}_{255}$ )