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Modules over Rings



Lecture 1 (October 16)

Def.: Ring (morphism), left- right and bimodule (morphism)

Ex. (rings): Z, k[z] (polynomials), continuous, smooth or analytic
functions

Ex. (morphism): initial and terminal morphism Z — R and R — 0

Ex. (module): R over itself, vector spaces

Prop.: Homp(M, N) is naturally an abelian group and if R is
commutative, then it also is naturally an R-module.



Lecture 2 (October 19)

e Opposite ring, anti-homomorphis, exchanging left- and right modu-
les

e Ex. (modules): M =~ Hompg(R, M) (if R commutative),
abelian groups as Z-modules, rings as Z-algebras

e Def.: R-algebra (e.g., k[z])

e Rem.: Ais R-alg. 2 &: R — A with ®(r)a = a®d(r)

e Lem.: Modules over R £ morphisms R — End(M)

e Def.: Polynomial ring/algebra (A, X) over R

e Prop.: Universal property of (A, X)

e Rem.: Evaluation homomorphism

e Lem.: Modules over R[X] £ R-modules + R-linear map

e Def.: Group ring/group algebra R|G]



Lecture 3 (October 23)

e Lem.: R[G] is a ring (an R-algebra if R = RP)
e Def.: Representation py := (p, V') of G on a k-vector space V'

e Rem.: (V,p) 2 left action on V' by linear maps;
canonical and trivial rep., rep. of Z and Z,

e Lem.: Rep. of G (over k) 2 k[G]-modules
e Def.: Morphisms of representations, submodules (of general R-modules)

e Rem.: Subgroups, ideals and subrep. are submodules; kernels and
images are submodules; quotient modules, relation to ideals

e Lem.: Restriction of scalars (pull-back)

e Def.: Generated submodule, generating system, finitely generated
and cyclic module

e Prop.: Fundamental Homomorphism Theorems



Lecture 4 (October 26)

e Def.: Annihilator, faithful module, torsion element,
torsion submodule Tor(M), torsion free module

e Prop.: M/Tor(M) is torsion free if R is an integral domain.

e Def.: Direct product (M, (m;: M — M;);cr) and direct sum
(N, (t;: M; — N)iey) of a family (M;)er of R-modules

e Uniqueness up to unique isomorphism, existence

e Sum of submodules, direct (internal) sum of submodules

e Direct sum of representations and of k[G]-modules

e Example via Chinese Remainder Theorem: Zg =~ Zo @ Zs

e Def.: Tensor product M ®4 N of A-modules (A commutative)

e Lem./Prop.: Uniqueness and existence of the tensor product



Lecture 5 (October 30)

Note: The section on the tensor product followed closely Section VII.10 in
the book “Algebra” of Jantzen and Schwermer, cf. http://www.springerlink.
com/content/978-3-540-21380-2.

Lem./Prop.: Uniqueness and existence of the tensor product

Rem.: Notation (M ®4 N,®4) for “the” tensor product,
universal properties in terms of bijections of Hom-sets,
tensor product of module morphisms,
properties of the tensor product: 0Q M =~ 0, A®s M =~ M,
MON=2NRIMand M@ (N®P)=(MR®N)® P

Ex.: An®AAm = Anm, A[X]@AA[Y] = A[X, Y], Zn®Zm = chd(n,m)
Tor(A®z Q) = 0 and Tor(A) ®z Q = 0

Tensor products over non-commutative rings, tensor products of
bimodules

e Def.: Linearly independent elements of a module, basis, free module


http://www.springerlink.com/content/978-3-540-21380-2
http://www.springerlink.com/content/978-3-540-21380-2

Lecture 6 (November 2)

e Rem.: Modules over fields are free, but not over Z (e.g. Z,),
M is free iff M =~ ®,ex R for some X,
| X|=n<ow= M=R",

Homomorphism between free modules as matrices

Prop.: Different bases of a free module M over a commutative ring
have the same cardinality (called rank of M).

e Rem.: For R non-commutative R" =~ R™ = m = n (in general)

Prop.: Each module is quotient of a free module.

Prop.: f: M — F surjective and F' free = M = ker f @ F’

Cor.: N submod. of M with M /N free = N complemented

Def.: Sequence, chain complex, exact sequence, short exact sequence



Lecture 7 (November 6)

Prop.: Equivalent conditions for a split short exact sequence

Examples of short exact sequences: vector spaces (always split), abe-
lian groups (not always split), k[Z]-modules (not always split) and
k[G] modules for G finte gp. (always split)

Def.: Push-forward, pull-back of morphisms

e Lem.: Hom(M, ) preserves “left exactness” of short exact sequences.



e Prop.: Equivalent conditions for Hom(M, ) to preserve “right

exactness”:

1. For each diagram
M

N1—>N2—>0

with exact bottom row there exists a lift (i.e. a morphism along
the dotted arrow making the diagram commute).

2. Each short exact sequence N — N — M splits
3. The exists ) such that M @ Q is free

4. For each short exact sequence T" = T 5 the sequence
Hom(M,T") % Hom (M, T) = Hom(M,T")

is also exact.

e Def.: Projective module
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Lecture 8 (November 6)

e Prop.: Equivalent conditions for Hom(-, M) to preserve “right
exactness”:

1. For each diagram
00— N1 — N2

M
with exact top row there exists a lift.
2. Each short exact sequence M — N — N” splits

3. For each short exact sequence 7" — T 5 T" the sequence
Hom(T", M) => Hom(T, M) 5> Hom(T", M)

is also exact.
e Def.: Injective module

e Prop.: Baer’s Criterion for injectivity of a module
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From now on: M := R°P-module.

e Prop.: M ®p - preserves “right exactness” of short exact sequences.
M projective = M ®p - also preserves “left exactness”.

e Def.: M is flat if M ®p - also preserves “left exactness”, i.e., if

v: N' — N injective = idj; ®¢ injective.

e Def.: divisible module (if m — r - m is surjective for all r € R).

e Prop.: Over a pid (principal ideal domain) divisibility and flatness
are equivalent.
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Finiteness and Simplicity

Note: Large parts of the material of this section is taken from Chapter
VII and VIII of the book “Algebra” of Jantzen and Schwermer.
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Lecture 9 (November 13)
Unless stated otherwise: R : ring, M, N : R-modules

e Prop.: TFAE (for M an R-module)
a) Each increasing sequence Ny € Ny € - -+ of submodules beco-
mes stationary.
b) Each non-empty set of submodules has a maximal element.

¢) Each submodule is finitely generated.

Def.: Noetherian module and ring

Ex.: pids and finite-dimensional k-algebra modules are Noetherian.

Prop.: Noetherian is an extension property, i.e., if N' —- N — N" is
a short exact sequence, then N is Noeth. iff N/, N” are so.

Prop.: If R is Noetherian, then M Noeth. < M fin. gen.

Hilbert’s Basis Theorem: R noetherien = R[X| Noetherian.
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Def.: Finitely cogenerated: (),.; Ni = {0} = [,cr Vi = {0} for some
|F| < 0.

Prop.: (dually to above) TFAE

a) Each decreasing sequence N; 2 Ny 2 - -+ of submodules beco-
mes stationary.

b) Each non-empty set of submodules has a minimal element.

¢) Each submodule is finitely cogenerated.
Def.: Artinian module and ring
Prop.: Artinian is an extension property.
Each left Artinian ring is also left noetherian, but Z is not Artinian!

Ex.: finite-dimensional k-algebra modules are Artinian.
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Lecture 10 (November 16)

Def.: simple and indecomposable module (and representation).

Ex.: simple and indecomposable modules over R = k a field, G = Z,
R = k[Z] and k[G] for |G| < o

Lem.: M simple < M = (z) for all z € M. For arbitrary M, x € M
and (1) := r-m we have () simple < ker(¢) maximal ideal.

e Lem.: M : simple, N : arbitrary

a) each ¢: M — N is either injective or zero
b) each ¢: N — M is either surjective or zero

c) each 0 # ¢ € Endg(M) is invertible.

Lem. (Schur): k : alg. closed field, A : k-alg. M : simple A-module
with dimy (M) < co. Then

k — Endy(M), A~ A-id is an isomormism.
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Def.: composition series: M = My > M; o --- > M, = 0 with
M;/M; 1 simple. M of finite length < 3 composition series.

Lem.: M of finite length < M Artinian and Noetherian.
Def.: Equivalence and refinements of sequences of submodules.

Lem. (Schreier): Each two sequences have refinements that are equi-
valent.

Prop. (Jordan-Hélder): Each two composition series are equivalent.
Cor.: M: finite length, N < M = [(M) =I(N) + I(M/N)

Cor.: R: of finte length ofer itself = each simple R-modules is quo-
tient of R for each composition series R =Ry >---2> R, =0
we have M =~ R;/R;,; for some i.

Cor.: k : field, k € R, dimg(R) < 00 = 3 up to isomorphism only
finitely many simple R-modules.

Cor.: G : finite group = 3 up to isomorphism only finitely many
simple k[G]-modules.
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Lecture 11 (November 20)

Def.: Semi-simple module (direct sum of free R-modules)

Ex.: vector spaces, Zs, Zo X Zo are semi-simple, Z and Z, are not.

Lem.: N < M, (M;)es: family of submodules of M
a) Dler M; direct < 3, . M; direct for each F' < [ finite
b) Each M; simple and N + > .., M; = M = 3J < I s.th.

M=Na&@ M.
jeJ

Prop.: TFAE:

a) M is semi-simple.
b) M is sum of simple modules.

¢) Each submodule of M has a complement.

Cor.: Submodules and quotients of semi-simple modules are so.
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Def.: Simple and semi-simple ring.
Ex.: Fields are semi-simple, products of semi-simple rings are so.

Ex.: R = M, (D) for D a division ring is semi-simple and each
semi-simple ring is isomorphic to a product of such.

Note: R pid, not a filed = R not semi-simple
Prop.: R semi-simple

a) Each R-module is semi-simple

b) There are (up to isom.) only finitely many simple R-modules.
Def.: rad(M) := (){N < M | N is maximal submodule}

Rem.:

a) If no maximal submod. exist, then rad(M) = 0.
b) rad(M) = ({ker(a) | «: M — E, with E simple}.
¢) M semi-simple = rad(M) = 0.
d) rad(Z) = 0.
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Lecture 12 (November 23)

e Lem.: morphisms, direct sums and quotients are compatible with
the radical, rad(M/rad(M)) = 0.

e Cor.: M Artinian = M /rad(M) is semi-simple.
From now on let R be a pid and M, N be R-modules of finite rank.
o M free, N < M = N is free.

e Thm. (Elementary Divisor Theorem): n = rk(M), N < M.
Then 3 basis vy, ..., v, of M and ay,...,a, s.th. a; | -+ | a,

and V =) Ra;V;.

e Cor: M ~R/(a1)®---® R/(ay,) for some ay, ..., a,, € R s.th.
a;¢ R*and ay | -+ | ap.

e Rem.: P: rep. system of prime elt.’s modulo units =

M = R™ @D D(R/(p))"""

peP r>0

with only finitely many n(p,r) non-zero and ny and n(p,r) unique.
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Lecture 13 (November 27)

Def.: Categories

Ex.: Set (sets), Gp (groups), R-Mod (R-modules), R-S-Bimod,
Alggr, Top, ¥, =, pair groupoid Py of a set X, category from
a poset

Def.: C?, CI[D,C xD

Def.: Functors

Ex.: Forgetful functors, duals and double duals of vector spaces,
[[, ®&, Home(X,-): C — Set, Home(-, X): C — Set.
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Lecture 14 (November 30)

e Def.: Isomorphism of categories (note: is a very rigid concept)
e Ex.: R-Mod=~ Mod-R°?; k[ X] — Mod =~ k-Mod-+lin. End.

e Def.: Natural transformation «: F' = G btw. functors, natural
isomorphism

o Ex.: (¢: V- V*): idk-moa = (+)™*, morphisms betw. seq. of obj.
e Def.: Equivalence of categories (note: this means “essentially equal”)
e Def.: fully faithful and essentially surjective functor

e Prop.: F': C — D is an equivalence if and only F' is fully faithful
and essentially surjective.

e Ex.: k-Mod™ =~ (natural numbers + Matrices).
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Lecture 15 (December 4)

e Categorical description of products and coproducs as functors

[T1I: e ¢

Expression of the universal property of [] and [ as
Home([ [(ci),d) = Hompje((c;), A(d))

and

Home(d, | [(¢;)) = Homypje(A(d), (c;))-

e Def.: Adjoint functors (F' 4 G :< existence of natural bijections
Homp(F(z),y) = Home(z, G(y))).

e Ex.: Forgetful and free R-module functors; forgetful Fields — Set
does not have left adjoint; 7: Ab — Gp has
G — G* := G/|G, G] as left adjoint; scalar extension (induc-
tion) and coinduction S-Mod — R-Mod.
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e Def.: unit and counit of an adjunction F' -4 G

e Prop. F 4G < dn: ide = Go F and ¢: F o G = idp such that
G(e) on(G) = idg and e(F) o F(n) = idp.
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Lecture 16 (December 7)

e Def.: Representable functor h* : C — Set; representing object

e Lem. (Yoneda): The natural transformations from a representable
functor h* to F': C — Set are in bijection with F(X) (Exercise!).

e Rem.: Embedding of C into Fun(C, Set); uniqueness of representing
object

e Prop.: Left adjoint functors commute with taking products and
coproducts.

e Prop.: Uniqueness of left- and right adjoint functors (up to natural
isomorphism).

e Def.: universal initial und terminal morphism.

e Adjoint functors in terms of universal initial and terminal mor-
phisms.
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Lecture 17 (December 11)

Def.: Additive Category (Hom-sets abelian groups, comp. bilinear,
existence of finite products and coproducts); additive functor

e Rem.: Existence of initial and terminal object (agree to give the zero
object 0); isomorphism btw. product and coproduct.

e Def.: Kernel and cokernel of a morphism in an additive category.
e Def.: Monomorphism and epimorphism in an arbitrary category.
e Lem.: kernels are mono; cokernels are epi.

e Def.: Abelian category (additive + each morphism has kernel and
cokernel, + ¢ = ker(coker(¢)) for « mono, p = coker(ker(p)) for

p epi)

e Def.: Image and coimage of a morphism.

e Rem.: Uniqueness of image and coimage; (short) exact sequences in
arbitrary abelian categories.
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e Ex.: fin. generated free abelian groups (not abelian), R-Mod
(abelian), C abelian = C°" abelian.
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Lecture 18 (December 14)

Def.: Additive functor, exact, left-, right- and half-exact functor

Ex.: [],]] exact; M ®p - exact < M flat;
Hom(M, ) exact < M proj.; Hom(-, M) exact < M inj.

Def.: Projective, injective objects in arbitrary categories

Rem.: In Set all objects are injective (also projective iff AOC holds).
e Def.: Limit of a functor J — C (for J small), pull-back

Rem.: Pull-back pictorially:

U~
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Rem.: pull-back unique up to isom.; pull-back in Set, Ab, Top,
R-Mod given by {(z,y) | f(x) = g(y)}; pull-back is a functor
C7 — C; pull-back diagram; compatibility of those

Ex.: X x,Y =~ X x Y if C has terminal object =.
Def.: push-out (dually to pull-back)

Rem.: push-outs in Set and Ab, amalgamated sum (product).
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Lecture 19 (December 18)

Throughout: C, D denote abelian categories, F, G additive functors.

Def.: enough projectives, enough injectives

Prop.: ' 4 G and F exact = G preserves injectives; F' - G and G
exact = [’ preserves projectives

Cor.: [ [ ¢; injective < each ¢; injective (dual for projectives).

Ex.: R-Mod has enough proj. and inj.; Ab™ has no proj. or inj.;
Ab'® has enough proj. but no inj.

Def.: Projective resolution of an object M in C:

exact with each P; projective (dually: injective resolution).
Lem.: C has enough projectives = each object has proj. resolution.

Def.: Che; cycles, boundaries and homology H;(C,,d.) of a chain
complex; (Cl,,d,) acyclic chain complex
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e Rem.: H; is a functor Ch¢e — C; P, — M proj. resolution =
Hy(P.) = M; acyclic vs. exact chain complex; relation to
topology; cohomology

e Def.: Quasi-Isomorphism: f,: C, — C, with H;(F,) iso V i.
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Lecture 20 (December 21)

e Def.: Chain homotopy h;: C; — D, 1 between f,, ge: Co — Ds;
homotopy equivalent chain complexes.

e Rem.: Relation to equivalences of categories.

e Prop.: Chain homotopic maps induce the same morphisms on homo-
logy; homotopic chain complexes have isomorphic homology.

e Lem. (Fundamental Lemma of Homological Algebra): Uniqueness
of projective/injective Resolutions up to chain homotopy

e Def.: Left- and right-derived functor L;F'(M) and R;F (M) of an
additive functor F' on an object M of C.

e Rem.: Left-derived functors vanish on projective objects (dually

right-derived on injectives); uniqueness up to isomorphism of
L;F(M) and R;F(M); functoriality

e Lem.: F right exact = LoF = F'; I left-exact = RyF = F
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Lecture 21 (January 8)

e Snake Lemma: If

M’ M M 0

b b

0 N’ N N’

has exact rows, then there is an exact sequence

ker f — ker f — ker f” % coker f' — coker f — coker f”.

e Rem.: Naturality of the connecting homomorphism 0

e Prop.: 0 > M, - M, — M! — 0 exact = 7 long exact seq.

> Hy(Ma) — Hi(M]) 5 H; o (M) — Hy(M.) — -
e Prop.:0—> M — M — M" — 0 exact = 7 long exact sequence for
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left and right derived functors:
0 RF(M)— - — RF(M) > RF(M") S R F(M') — -
> LIE(M") S L, F(M') — Li 1 F(M) — -+ — LyF(M") — 0

e Rem.: vanishing of L1 F (resp. R'F) is equivalent to exactness;
naturality of ¢

e Def.: Tor is the derived functor of Y — X ® Y (for X fixed); Ext is
the derived functor of Y — Hom(Y, X) (for X fixed).
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Lecture 21 (January 11)

Ex.: Tor((Zy, Zy) = Tor}(Zy,, Z,) = Zy.,y and Tor] = 0 for i > 1
since Z is pid; Tor?(Z, Z,) = 0; similar for Ext;
R =7Z[t]/(1 — t"): exercises.

Det.: double complex X,,, total degree, morphism of double
complex, total complexes | X,..| and Tot X,

Def./Ex.: (P ® Q).. and Hom(P, Q) for P, and Q.,
r/f?)}f(X, Y) := H;(|P®Q|) (symmetric Tor).

Acyclic Assembly Lemma (exactness of | X,.| and Tot X,, from row
or column exactness)
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Lecture 21 (January 15)

e Rem.: Acyclic Assembly Lemma also works if diagonals are
appropriately bounded.

e Prop.: Tor ~ Tor.
e Prop.: same as above for Ext.
e Def.: the bar complex

-1 idi -1 idi
o By (R; M) PAGDIN B (R; M) 2 Bt (R; M) — - --

(n+1

: )
with B,(R; M) := R® Qg M, r.(ro| -+ |rns1) := (rro|r| -+ |Tns1)
and

di(rol -+ [rns1) == rol -~ [ririga] - [

e Prop.: B.(R; M) is a resolution of M as R-module.
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Lecture 22 (January 18)

Lem.: Extension of scalars of free modules is free.

Cor.: Conditions s.th. S.(R; M) is free (e.g. R, M free Z-mod).

Ex.: Description of Ext},(M, N) in terms of cocycles

f:RxM— N sth rf(s,m)+ f(r,sm)= f(rs,m)

and coboundaries.

Def.: extension of modules, equivalence of extensions (Ex"(M, N):
equiv. classes of extensions of length n)

Prop.: In R-mod: Ex' (M, N) = Ext},(M, N) if M, R are free Z-mod.
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Lecture 23 (January 22)

Throughout G denotes a group and M a Z[G]-module (shortly denoted
G-module). If not specified otherwise, Z is the trivial G-module.

e Rem.: Ex'(M, N) = Extp,(M, N) is true in R-Mod in general.
Moreover, Ex"(M, N) can be endowed with structure such

that Ex"(M, N) = Extz(M, N) is an isomorphism of functors
to Ab.

e Def.: Invariants M¢ and coinvariants Mg of M, functors
()%, (Ng: Z[G]-Mod — Ab.

e Lem.: ()% =~ Homy(Z, ) and (-)¢ = Z ®yq ()

o Def.:

H,(G,M) := (L,(-)g)(M) is the n-th group homology
H"(G,M) := (R,(-)°)(M) is the n-th group cohomology



e Ex.: Homology and cohomology of Z,, and of Z (via ad-hoc
choices of resolutions)

e Rem.: HY(G, M) and HE(G, M) if M is (moreover) an R[G]-module.

e Lem.: If m := ord(G) < o0, k : field with char(k) { m, then
H(G,M) =0 for n > 1 and each k[G]-module M.
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Lecture 24 (January 25)

e Thm. (Maschke): If m := ord(G) < oo, k : field with char(k) { m,
then each k[G]-module M is semi-simple.

e Functoriality of the group homology and cohomology: H" and H,
are actually functors on the category GpMod of pairs (G, M) of
a group G and a G-module M with (o, f): (G,M) — (H,M) <
f: M — a*N.

e H" and H, do in general not admit long exact sequences in G.

e Def.: Extensions A — G — G of groups (with A abelian) and
induced G-module structure on A.

e Ex.: A: G-module = A - A x G — G is extension (the “trivial”)

e Prop.: Splittings of A x G — G (or crossed homomorphisms) are up
to equivalence classified by H(G, A).

e Thm.: Extensions 4 — G — G are (up to equivalence) classified
by H%(G, A).
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Lecture 25 (January 29)

e Thm.: Extensions 4 — G — G are (up to equivalence) classified
by H?*(G, A) (proof thereof).

o Lem.: H"(G,A) = Hi(G, A).

e Ex. (from Topology): The universal covering of a topological group

as a central extension m (G) — G — G (and description of a
cocycle thereof).

e Ex.: Classification of the groups G of order 255 (there is only Zass)
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