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Modules over Rings
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Lecture 1 (October 16)

• Def.: Ring (morphism), left- right and bimodule (morphism)

• Ex. (rings): Z, krxs (polynomials), continuous, smooth or analytic
functions

• Ex. (morphism): initial and terminal morphism ZÑ R and RÑ 0

• Ex. (module): R over itself, vector spaces

• Prop.: HomRpM,Nq is naturally an abelian group and if R is
commutative, then it also is naturally an R-module.
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Lecture 2 (October 19)

• Opposite ring, anti-homomorphis, exchanging left- and right modu-
les

• Ex. (modules): M – HomRpR,Mq (if R commutative),

abelian groups as Z-modules, rings as Z-algebras

• Def.: R-algebra (e.g., krxs)

• Rem.: A is R-alg. fl Φ: RÑ A with Φprqa “ aΦprq

• Lem.: Modules over R fl morphisms RÑ EndpMq

• Def.: Polynomial ring/algebra pA,Xq over R

• Prop.: Universal property of pA,Xq

• Rem.: Evaluation homomorphism

• Lem.: Modules over RrXs fl R-modules ` R-linear map

• Def.: Group ring/group algebra RrGs
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Lecture 3 (October 23)

• Lem.: RrGs is a ring (an R-algebra if R “ Rop)

• Def.: Representation ρV :“ pρ, V q of G on a k-vector space V

• Rem.: pV, ρq fl left action on V by linear maps;

canonical and trivial rep., rep. of Z and Z2

• Lem.: Rep. of G (over k) fl krGs-modules

• Def.: Morphisms of representations, submodules (of generalR-modules)

• Rem.: Subgroups, ideals and subrep. are submodules; kernels and

images are submodules; quotient modules, relation to ideals

• Lem.: Restriction of scalars (pull-back)

• Def.: Generated submodule, generating system, finitely generated

and cyclic module

• Prop.: Fundamental Homomorphism Theorems
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Lecture 4 (October 26)

• Def.: Annihilator, faithful module, torsion element,

torsion submodule TorpMq, torsion free module

• Prop.: M{TorpMq is torsion free if R is an integral domain.

• Def.: Direct product pM, pπi : M ÑMiqiPIq and direct sum

pN, pιi : Mi Ñ NqiPIq of a family pMiqiPI of R-modules

• Uniqueness up to unique isomorphism, existence

• Sum of submodules, direct (internal) sum of submodules

• Direct sum of representations and of krGs-modules

• Example via Chinese Remainder Theorem: Z6 – Z2 ‘ Z3

• Def.: Tensor product M bA N of A-modules (A commutative)

• Lem./Prop.: Uniqueness and existence of the tensor product
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Lecture 5 (October 30)

Note: The section on the tensor product followed closely Section VII.10 in
the book “Algebra” of Jantzen and Schwermer, cf. http://www.springerlink.
com/content/978-3-540-21380-2.

• Lem./Prop.: Uniqueness and existence of the tensor product

• Rem.: Notation pM bA N,bAq for “the” tensor product,

universal properties in terms of bijections of Hom-sets,

tensor product of module morphisms,

properties of the tensor product: 0bM – 0, AbAM –M ,

M bN – N bM and M b pN b P q – pM bNq b P

• Ex.: AnbAA
m – Anm, ArXsbAArY s – ArX, Y s, ZnbZm – Zgcdpn,mq

TorpAbZ Qq – 0 and TorpAq bZ Q – 0

• Tensor products over non-commutative rings, tensor products of
bimodules

• Def.: Linearly independent elements of a module, basis, free module
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Lecture 6 (November 2)

• Rem.: Modules over fields are free, but not over Z (e.g. Zn),
M is free iff M – ‘xPXR for some X,

|X| “ n ă 8 ñ M – Rn,

Homomorphism between free modules as matrices

• Prop.: Different bases of a free module M over a commutative ring

have the same cardinality (called rank of M).

• Rem.: For R non-commutative Rn – Rm œ m “ n (in general)

• Prop.: Each module is quotient of a free module.

• Prop.: f : M Ñ F surjective and F free ñ M – ker f ‘ F

• Cor.: N submod. of M with M{N free ñ N complemented

• Def.: Sequence, chain complex, exact sequence, short exact sequence
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Lecture 7 (November 6)

• Prop.: Equivalent conditions for a split short exact sequence

• Examples of short exact sequences: vector spaces (always split), abe-
lian groups (not always split), krZs-modules (not always split) and
krGs modules for G finte gp. (always split)

• Def.: Push-forward, pull-back of morphisms

• Lem.: HompM, ¨q preserves “left exactness” of short exact sequences.
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• Prop.: Equivalent conditions for HompM, ¨q to preserve “right

exactness”:

1. For each diagram
M

��}}

N1
//N2

// 0

with exact bottom row there exists a lift (i.e. a morphism along
the dotted arrow making the diagram commute).

2. Each short exact sequence N 1 Ñ N ÑM splits

3. The exists Q such that M ‘Q is free

4. For each short exact sequence T 1
ι
ÝÑ T

π
ÝÑ the sequence

HompM,T 1q
ι˚
ÝÑ HompM,T q

π˚
ÝÑ HompM,T 2q

is also exact.

• Def.: Projective module
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Lecture 8 (November 6)

• Prop.: Equivalent conditions for Homp¨ ,Mq to preserve “right

exactness”:

1. For each diagram
0 //N1

//

��

N2

}}

M

with exact top row there exists a lift.

2. Each short exact sequence M Ñ N Ñ N2 splits

3. For each short exact sequence T 1
ι
ÝÑ T

π
ÝÑ T 2 the sequence

HompT 2,Mq
π˚
ÝÑ HompT,Mq

ι˚
ÝÑ HompT 1,Mq

is also exact.

• Def.: Injective module

• Prop.: Baer’s Criterion for injectivity of a module
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From now on: M :“ Rop-module.

• Prop.: M bR ¨ preserves “right exactness” of short exact sequences.

M projective ñ M bR ¨ also preserves “left exactness”.

• Def.: M is flat if M bR ¨ also preserves “left exactness”, i.e., if

ι : N 1
Ñ N injective ñ idM bι injective.

• Def.: divisible module (if m ÞÑ r ¨m is surjective for all r P R).

• Prop.: Over a pid (principal ideal domain) divisibility and flatness

are equivalent.
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Finiteness and Simplicity

Note: Large parts of the material of this section is taken from Chapter
VII and VIII of the book “Algebra” of Jantzen and Schwermer.
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Lecture 9 (November 13)

Unless stated otherwise: R : ring, M,N : R-modules

• Prop.: TFAE (for M an R-module)

a) Each increasing sequence N1 Ď N2 Ď ¨ ¨ ¨ of submodules beco-
mes stationary.

b) Each non-empty set of submodules has a maximal element.

c) Each submodule is finitely generated.

• Def.: Noetherian module and ring

• Ex.: pids and finite-dimensional k-algebra modules are Noetherian.

• Prop.: Noetherian is an extension property, i.e., if N 1 Ñ N Ñ N2 is

a short exact sequence, then N is Noeth. iff N 1, N2 are so.

• Prop.: If R is Noetherian, then M Noeth. ô M fin. gen.

• Hilbert’s Basis Theorem: R noetherien ñ RrXs Noetherian.

14



• Def.: Finitely cogenerated:
Ş

iPI Ni “ t0u ñ
Ş

iPF Ni “ t0u for some

|F | ă 8.

• Prop.: (dually to above) TFAE

a) Each decreasing sequence N1 Ě N2 Ě ¨ ¨ ¨ of submodules beco-
mes stationary.

b) Each non-empty set of submodules has a minimal element.

c) Each submodule is finitely cogenerated.

• Def.: Artinian module and ring

• Prop.: Artinian is an extension property.

• Each left Artinian ring is also left noetherian, but Z is not Artinian!

• Ex.: finite-dimensional k-algebra modules are Artinian.
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Lecture 10 (November 16)

• Def.: simple and indecomposable module (and representation).

• Ex.: simple and indecomposable modules over R “ k a field, G “ Z,

R “ krZs and krGs for |G| ă 8

• Lem.: M simple ô M “ xxy for all x PM . For arbitrary M , x PM

and ϕprq :“ r ¨m we have xxy simple ô kerpϕq maximal ideal.

• Lem.: M : simple, N : arbitrary

a) each ϕ : M Ñ N is either injective or zero

b) each ϕ : N ÑM is either surjective or zero

c) each 0 ‰ ϕ P EndRpMq is invertible.

• Lem. (Schur): k : alg. closed field, A : k-alg. M : simple A-module

with dimkpMq ă 8. Then

k Ñ EndApMq, λ ÞÑ λ ¨ id is an isomormism.
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• Def.: composition series: M “M0 ĄM1 Ą ¨ ¨ ¨ ĄMr “ 0 with

Mi{Mi`1 simple. M of finite length ô D composition series.

• Lem.: M of finite length ô M Artinian and Noetherian.

• Def.: Equivalence and refinements of sequences of submodules.

• Lem. (Schreier): Each two sequences have refinements that are equi-
valent.

• Prop. (Jordan-Hölder): Each two composition series are equivalent.

• Cor.: M : finite length, N ďM ñ lpMq “ lpNq ` lpM{Nq

• Cor.: R: of finte length ofer itself ñ each simple R-modules is quo-

tient of R for each composition series R “ R0 Ą ¨ ¨ ¨ Ą Rr “ 0

we have M – Ri{Ri`1 for some i.

• Cor.: k : field, k Ď R, dimkpRq ă 8 ñ D up to isomorphism only

finitely many simple R-modules.

• Cor.: G : finite group ñ D up to isomorphism only finitely many

simple krGs-modules.

17



Lecture 11 (November 20)

• Def.: Semi-simple module (direct sum of free R-modules)

• Ex.: vector spaces, Z2, Z2 ˆ Z2 are semi-simple, Z and Z4 are not.

• Lem.: N ďM , pMiqiPI : family of submodules of M

a)
ř

iPIMi direct ô
ř

jPF Mj direct for each F Ď I finite

b) Each Mi simple and N `
ř

iPIMi “M ñ DJ Ď I s.th.

M “ N ‘
à

jPJ

Mj.

• Prop.: TFAE:

a) M is semi-simple.

b) M is sum of simple modules.

c) Each submodule of M has a complement.

• Cor.: Submodules and quotients of semi-simple modules are so.
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• Def.: Simple and semi-simple ring.

• Ex.: Fields are semi-simple, products of semi-simple rings are so.

• Ex.: R “MnpDq for D a division ring is semi-simple and each

semi-simple ring is isomorphic to a product of such.

• Note: R pid, not a filed ñ R not semi-simple

• Prop.: R semi-simple

a) Each R-module is semi-simple

b) There are (up to isom.) only finitely many simple R-modules.

• Def.: radpMq :“
Ş

tN ďM | N is maximal submoduleu

• Rem.:

a) If no maximal submod. exist, then radpMq “ 0.

b) radpMq “
Ş

tkerpαq | α : M Ñ E, with E simpleu.

c) M semi-simple ñ radpMq “ 0.

d) radpZq “ 0.
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Lecture 12 (November 23)

• Lem.: morphisms, direct sums and quotients are compatible with

the radical, radpM/ radpMqq “ 0.

• Cor.: M Artinian ñ M{ radpMq is semi-simple.

From now on let R be a pid and M,N be R-modules of finite rank.

• M free, N ďM ñ N is free.

• Thm. (Elementary Divisor Theorem): n “ rkpMq, N ďM .

Then D basis v1, ..., vn of M and a1, ..., an s.th. a1 | ¨ ¨ ¨ | an
and V “

ř

RaiVi.

• Cor.: M – R{pa1q ‘ ¨ ¨ ¨ ‘R{pamq for some a1, ..., am P R s.th.

ai R R
˚ and a1 | ¨ ¨ ¨ | am.

• Rem.: P : rep. system of prime elt.’s modulo units ñ

M – Rn0 ‘
à

pPP

à

rą0

pR{pprqqnpp,rq

with only finitely many npp, rq non-zero and n0 and npp, rq unique.
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Lecture 13 (November 27)

• Def.: Categories

• Ex.: Set (sets), Gp (groups), R-Mod (R-modules), R-S-Bimod,

AlgR, Top, H, ˚, pair groupoid PX of a set X, category from

a poset

• Def.: Cop, C
š

D, C ˆD

• Def.: Functors

• Ex.: Forgetful functors, duals and double duals of vector spaces,
š

, bR, HomCpX, ¨q : C Ñ Set, HomCp¨ , Xq : C Ñ Setop.
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Lecture 14 (November 30)

• Def.: Isomorphism of categories (note: is a very rigid concept)

• Ex.: R-Mod– Mod-Rop; krXs ´Mod – k-Mod`lin. End.

• Def.: Natural transformation α : F ñ G btw. functors, natural

isomorphism

• Ex.: pι : V Ñ V ˚˚q : idk-Mod ñ p¨q˚˚, morphisms betw. seq. of obj.

• Def.: Equivalence of categories (note: this means “essentially equal”)

• Def.: fully faithful and essentially surjective functor

• Prop.: F : C Ñ D is an equivalence if and only F is fully faithful

and essentially surjective.

• Ex.: k-Modfin
» pnatural numbers + Matricesq.
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Lecture 15 (December 4)

• Categorical description of products and coproducs as functors
ź

,
ž

:
ź

C Ñ C

Expression of the universal property of
ś

and
š

as

HomCp
ž

pciq, dq – Homś

Cppciq,∆pdqq

and
HomCpd,

ź

pciqq – Homś

Cp∆pdq, pciqq.

• Def.: Adjoint functors (F % G :ô existence of natural bijections

HomDpF pxq, yq – HomCpx,Gpyqq).

• Ex.: Forgetful and free R-module functors; forgetful FieldsÑ Set

does not have left adjoint; I : AbÑ Gp has

G ÞÑ Gab :“ G{rG,Gs as left adjoint; scalar extension (induc-

tion) and coinduction S-ModÑ R-Mod.
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• Def.: unit and counit of an adjunction F % G

• Prop.: F % G ô D η : idC ñ G ˝ F and ε : F ˝Gñ idD such that

Gpεq ˝ ηpGq “ idG and εpF q ˝ F pηq “ idF .
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Lecture 16 (December 7)

• Def.: Representable functor hX : C Ñ Set; representing object

• Lem. (Yoneda): The natural transformations from a representable
functor hX to F : C Ñ Set are in bijection with F pXq (Exercise!).

• Rem.: Embedding of C into FunpC,Setq; uniqueness of representing

object

• Prop.: Left adjoint functors commute with taking products and

coproducts.

• Prop.: Uniqueness of left- and right adjoint functors (up to natural

isomorphism).

• Def.: universal initial und terminal morphism.

• Adjoint functors in terms of universal initial and terminal mor-
phisms.
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Lecture 17 (December 11)

• Def.: Additive Category (Hom-sets abelian groups, comp. bilinear,

existence of finite products and coproducts); additive functor

• Rem.: Existence of initial and terminal object (agree to give the zero

object 0); isomorphism btw. product and coproduct.

• Def.: Kernel and cokernel of a morphism in an additive category.

• Def.: Monomorphism and epimorphism in an arbitrary category.

• Lem.: kernels are mono; cokernels are epi.

• Def.: Abelian category (additive + each morphism has kernel and

cokernel, + ι “ kerpcokerpιqq for ι mono, p “ cokerpkerppqq for

p epi)

• Def.: Image and coimage of a morphism.

• Rem.: Uniqueness of image and coimage; (short) exact sequences in

arbitrary abelian categories.
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• Ex.: fin. generated free abelian groups (not abelian), R-Mod

(abelian), C abelian ñ Cop abelian.

27



Lecture 18 (December 14)

• Def.: Additive functor, exact, left-, right- and half-exact functor

• Ex.:
š

,
ś

exact; M bR ¨ exact ô M flat;

HompM, ¨q exact ô M proj.; Homp¨ ,Mq exact ô M inj.

• Def.: Projective, injective objects in arbitrary categories

• Rem.: In Set all objects are injective (also projective iff AOC holds).

• Def.: Limit of a functor J Ñ C (for J small), pull-back

• Rem.: Pull-back pictorially:

U
D!
%% ""

))

X ˆZ Y

��

// Y

��

X // Z
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• Rem.: pull-back unique up to isom.; pull-back in Set, Ab, Top,

R-Mod given by tpx, yq | fpxq “ gpyqu; pull-back is a functor

CJ Ñ C; pull-back diagram; compatibility of those

• Ex.: X ˆ˚ Y – X ˆ Y if C has terminal object ˚.

• Def.: push-out (dually to pull-back)

• Rem.: push-outs in Set and Ab, amalgamated sum (product).
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Lecture 19 (December 18)

Throughout: C,D denote abelian categories, F,G additive functors.

• Def.: enough projectives, enough injectives

• Prop.: F % G and F exact ñ G preserves injectives; F % G and G

exact ñ F preserves projectives

• Cor.:
ś

ci injective ô each ci injective (dual for projectives).

• Ex.: R-Mod has enough proj. and inj.; Abfin has no proj. or inj.;

Abf.g has enough proj. but no inj.

• Def.: Projective resolution of an object M in C:

Pi Ñ Pi´1 Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 ÑM Ñ 0

exact with each Pi projective (dually: injective resolution).

• Lem.: C has enough projectives ñ each object has proj. resolution.

• Def.: ChC; cycles, boundaries and homology HipC‚, d‚q of a chain

complex; pC‚, d‚q acyclic chain complex
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• Rem.: Hi is a functor ChC Ñ C; P‚ ÑM proj. resolution ñ

H0pP‚q –M ; acyclic vs. exact chain complex; relation to

topology; cohomology

• Def.: Quasi-Isomorphism: f‚ : C‚ Ñ C 1‚ with HipF‚q iso @ i.
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Lecture 20 (December 21)

• Def.: Chain homotopy hi : Ci Ñ Di`1 between f‚, g‚ : C‚ Ñ D‚;

homotopy equivalent chain complexes.

• Rem.: Relation to equivalences of categories.

• Prop.: Chain homotopic maps induce the same morphisms on homo-

logy; homotopic chain complexes have isomorphic homology.

• Lem. (Fundamental Lemma of Homological Algebra): Uniqueness

of projective/injective Resolutions up to chain homotopy

• Def.: Left- and right-derived functor LiF pMq and RiF pMq of an

additive functor F on an object M of C.

• Rem.: Left-derived functors vanish on projective objects (dually

right-derived on injectives); uniqueness up to isomorphism of

LiF pMq and RiF pMq; functoriality

• Lem.: F right exact ñ L0F “ F ; F left-exact ñ R0F “ F
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Lecture 21 (January 8)

• Snake Lemma: If

M 1 //

f 1
��

M //

f
��

M2 //

f2
��

0

0 //N 1 //N //N2

has exact rows, then there is an exact sequence

ker f 1 Ñ ker f Ñ ker f2
B
ÝÑ coker f 1 Ñ coker f Ñ coker f2.

• Rem.: Naturality of the connecting homomorphism B

• Prop.: 0 ÑM 1
‚ ÑM‚ ÑM2

‚ Ñ 0 exact ñ D long exact seq.

¨ ¨ ¨ Ñ HipM‚q Ñ HipM
2
‚ q

B
ÝÑ Hi´1pM

1
‚q Ñ HipM‚q Ñ ¨ ¨ ¨

• Prop.: 0 ÑM 1 ÑM ÑM2 Ñ 0 exact ñ D long exact sequence for

33



left and right derived functors:

0 Ñ R0F pM 1
q Ñ ¨ ¨ ¨ Ñ RiF pMq Ñ RiF pM2

q
B
ÝÑ Ri`1F pM 1

q Ñ ¨ ¨ ¨

¨ ¨ ¨ Ñ LiF pM
2
q
B
ÝÑ Li´1F pM

1
q Ñ Li´1F pMq Ñ ¨ ¨ ¨ Ñ L0F pM

2
q Ñ 0

• Rem.: vanishing of L1F (resp. R1F ) is equivalent to exactness;

naturality of B

• Def.: Tor is the derived functor of Y ÞÑ X b Y (for X fixed); Ext is

the derived functor of Y ÞÑ HompY,Xq (for X fixed).
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Lecture 21 (January 11)

• Ex.: TorZ0 pZm,Znq – TorZ1 pZm,Znq – Zpm,nq and TorZi ” 0 for i ą 1

since Z is pid; TorZ1 pZ,Znq “ 0; similar for Ext;

R “ Zrts{p1´ tnq: exercises.

• Def.: double complex X‚‚, total degree, morphism of double

complex, total complexes |X‚‚| and TotX‚‚

• Def./Ex.: pP bQq‚‚ and HompP,Qq for P‚ and Q‚,

ĄTor
R

n pX, Y q :“ Hip|P bQ|q (symmetric Tor).

• Acyclic Assembly Lemma (exactness of |X‚‚| and TotX‚‚ from row
or column exactness)
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Lecture 21 (January 15)

• Rem.: Acyclic Assembly Lemma also works if diagonals are

appropriately bounded.

• Prop.: Tor – ĄTor.

• Prop.: same as above for Ext.

• Def.: the bar complex

¨ ¨ ¨ Ñ βn`1pR;Mq
ř

p´1qidi
ÝÝÝÝÝÑ βnpR;Mq

ř

p´1qidi
ÝÝÝÝÝÑ βn´1pR;Mq Ñ ¨ ¨ ¨

with βnpR;Mq :“ Rb
pn`1q
Z bZ M , r.pr0| ¨ ¨ ¨ |rn`1q :“ prr0|r1| ¨ ¨ ¨ |rn`1q

and
dipr0| ¨ ¨ ¨ |rn`1q :“ r0| ¨ ¨ ¨ |riri`1| ¨ ¨ ¨ |rn`1

• Prop.: β‚pR;Mq is a resolution of M as R-module.

36



Lecture 22 (January 18)

• Lem.: Extension of scalars of free modules is free.

• Cor.: Conditions s.th. β‚pR;Mq is free (e.g. R,M free Z-mod).

• Ex.: Description of Ext1
RpM,Nq in terms of cocycles

f : R ˆM Ñ N s.th rfps,mq ` fpr, smq “ fprs,mq

and coboundaries.

• Def.: extension of modules, equivalence of extensions (ExnpM,Nq:

equiv. classes of extensions of length n)

• Prop.: In R-mod: Ex1
pM,Nq – Ext1

RpM,Nq if M,R are free Z-mod.
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Lecture 23 (January 22)

Throughout G denotes a group and M a ZrGs-module (shortly denoted
G-module). If not specified otherwise, Z is the trivial G-module.

• Rem.: Ex1
pM,Nq – Ext1

RpM,Nq is true in R-Mod in general.

Moreover, ExnpM,Nq can be endowed with structure such

that ExnpM,Nq – ExtnRpM,Nq is an isomorphism of functors

to Ab.

• Def.: Invariants MG and coinvariants MG of M , functors

p¨q
G, p¨qG : ZrGs-ModÑ Ab.

• Lem.: p¨qG – HomZrGspZ, ¨q and p¨qG – ZbZrGs p¨q

• Def.:

HnpG,Mq :“ pLnp¨qGqpMq is the n-th group homology

Hn
pG,Mq :“ pRnp¨q

G
qpMq is the n-th group cohomology
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• Ex.: Homology and cohomology of Zn and of Z (via ad-hoc

choices of resolutions)

• Rem.:HR
n pG,Mq andHn

RpG,Mq ifM is (moreover) anRrGs-module.

• Lem.: If m :“ ordpGq ă 8, k : field with charpkq - m, then

Hn
k pG,Mq “ 0 for n ě 1 and each krGs-module M .
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Lecture 24 (January 25)

• Thm. (Maschke): If m :“ ordpGq ă 8, k : field with charpkq - m,

then each krGs-module M is semi-simple.

• Functoriality of the group homology and cohomology: Hn and Hn

are actually functors on the category GpMod of pairs pG,Mq of
a group G and a G-module M with pα, fq : pG,Mq Ñ pH,Mq :ô
f : M Ñ α˚N .

• Hn and Hn do in general not admit long exact sequences in G.

• Def.: Extensions AÑ pGÑ G of groups (with A abelian) and

induced G-module structure on A.

• Ex.: A: G-module ñ AÑ A¸GÑ G is extension (the “trivial”)

• Prop.: Splittings of A¸GÑ G (or crossed homomorphisms) are up

to equivalence classified by H1pG,Aq.

• Thm.: Extensions AÑ pGÑ G are (up to equivalence) classified

by H2pG,Aq.
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Lecture 25 (January 29)

• Thm.: Extensions AÑ pGÑ G are (up to equivalence) classified

by H2pG,Aq (proof thereof).

• Lem.: HnpG,Aq – Hn
RpG,Aq.

• Ex. (from Topology): The universal covering of a topological group

as a central extension π1pGq Ñ rGÑ G (and description of a

cocycle thereof).

• Ex.: Classification of the groups G of order 255 (there is only Z255)
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