Sheet 11 – Solutions

Exercise 47

The group ring has by definition one generator whose n-th power is 0, thus isomorphic to R.

- a) $(1-t)N = (1-t)(1+t+\dots+t^{n-1}) = (1+t+\dots+t^{n-1}) (t+t^2+\dots+t^n) = 1-t^n.$
- b) \mathbb{Z} is Noetherian, thus is $\mathbb{Z}[t]$. Since in $\mathbb{Z}[t]$ each prime element is irreducible (by Gauß' Theorem), $\mathbb{Z}[t]$ is in particular factorial, thus admits a unique prime decomposition (up to units).
- c) If f = h(1-t), then $fN = h(1-t)N = h(1-t^n)$. On the other hand, if $fN = g(1-t^n)$, then we may write (up to units)

$$f_1 \cdots f_m \cdot N_1 \cdots N_n = g_1 \cdots g_k \cdot L_1 \cdots L_l \tag{1}$$

where $L = (1 - t^n)$. With Q = (1 - t) we have $Q_1 \cdots Q_q \cdot N_1 \cdots N_n = L_1 \cdots L_l$ and the uniqueness of the prime factor decomposition there exists for each $1 \leq i \leq n$ some $1 \leq j \leq l$ with $N_i = L_j$ up to units and the product of the remaining factors of L give (1 - t) up to units. Thus (1) implies

$$f = c \cdot g \cdot (1 - t).$$

d) From c) it follows that the sequence is exact. Since each R is free (thus projective) it remains to verify that ε is an R-module morphism. On monomials we have $\varepsilon(t^n) = \varepsilon(t)^n = 1$, whence $\varepsilon(t^m \cdot t^n) = \varepsilon(t)$ and the rest follows from the linearity of ε .

In order to show the claim we observe that $R \otimes_R \mathbb{Z} \cong \mathbb{Z}$, the isomorphism sending $x \in \mathbb{Z}$ to $1 \otimes x \in R \otimes_R \mathbb{Z}$ and

$$(1+t+\cdots+t^{n-1})\otimes x = 1\otimes x + t.(1\otimes x) + \cdots + t^{n-1}(1\otimes x) = n(1\otimes x) = 1\otimes nx$$

to nx. Thus the tensored sequence becomes

 $\cdots \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0 \to \cdots$

and the homology of this gives the desired result.

Exercise 48

If $A \to I$ is an injection into an injective (equivalently divisible) abelian group, then I/A is also divisible (hence injective) and $0 \to A \to I \to I/A \to 0 \to \cdots$ is an injective resolution of A. Thus $R^i F \equiv 0$ for each left exact functor F and i > 1 (similar to the case of R-modules for R a pid).

Exercise 49

This will be done step by step in the exercises, the complete proof can be fond in the mentioned lecture notes.

Exercise 50

- a) It is clear that the horizontal and vertical differentials square to 0 and since $d_v d_h = 0 = -d_h d_v X_{\bullet\bullet}$ forms indeed a double complex. Since $d_v(..., 1, 1) = (..., 2, 2) = d_h(..., 1, 1)$ it follows that $(d_v + d_h)(..., 1, 1) = 0$.
- b) The 0-boundaries are certainly contained in $\prod_{\mathbb{N}_0} 2 \cdot \mathbb{Z}_4$. To get a sequence $(x_n)_{n \in \mathbb{N}_0}$ in $\prod_{\mathbb{N}_0} 2 \cdot \mathbb{Z}_4$ as image of an element of $(\text{Tot } X_{\bullet \bullet})_1 = \prod_{\mathbb{N}_0} \mathbb{Z}_4$ one starts with a sequence of zeros from below until one hits the first $x_i \neq 0$. Then one continuous with 1's until one hits the next $x_i \neq 2$, then one switches back to zeros and so on...
- c) $(d_v + d_h)((x_i)_{i \in \mathbb{N}_0})$ vanishes if and only if the difference of x_i and x_{i+1} is in $\{0, 2\}$ (i.e. all x_i are even or all x_i are odd). Thus mod $\prod_{\mathbb{N}_0} 2 \cdot \mathbb{Z}_4$ it is either 0 or $(\dots, 1, 1)$.
- d) Since the rows are exact, $|X_{\bullet\bullet}|$ is exact by the Acyclic Assembly Lemma.