Sheet 10 – Solutions

Exercise 43

- a) Yes, subgroups of free groups are free.
- b) Yes, likewise.
- c) No, the homology of $\cdots \to 0 \to \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \to 0 \to \cdots$ is \mathbb{Z}_n .

Exercise 44

a)

$$d(d(x,y)) = d(-d(x), f(x) + d(y)) = (d^2(x), f(-d(x)) + d(f(x) + d(y))) = 0$$

b) If $h_{n-1} + f_n \colon C_{n-1} \oplus C_n \to D_n$ extends $f_n \colon C_n \to D_n$ and is a chain map, then $h_n :=: C_n \to D_{n+1}$ satisfies

$$d(h+f)(x,y) = dhx + dfy \stackrel{!}{=} (h+f)(d(x,y)) = -hdx + fx + fdy,$$

which is equivalent to

$$dhx + hdx = fx.$$

Thus the data needed for an extension is exactly the same as data of a chain homotopy to 0.

- c) That the morphisms commute with the differential is the case by construction. Obviously $D_{\bullet} \to E(f)_{\bullet}$ is a monomorphism and $E(f)_{\bullet} \to C[-1]_{\bullet}$ is an epimorphism. Since $E(f)_{\bullet} \to C[-1]_{\bullet}$ is simply the projection to the second factor in each degree it is also clear that the sequence is exact at $E(f)_{\bullet}$.
- d) From the very definition it follows that $H_n(C[-1]_{\bullet}) = H_{n-1}(C_{\bullet})$.
- e) The connecting homomorphism is constructed from the diagram

$$0 \longrightarrow D_{n} \longrightarrow C_{n-1} \oplus D_{n} \longrightarrow C_{n-1} \longrightarrow 0$$

$$\downarrow^{d} \qquad \downarrow^{d} \qquad \downarrow^{d} \qquad \downarrow^{d}$$

$$0 \longrightarrow D_{n-1} \longrightarrow C_{n-2} \oplus D_{n-1} \longrightarrow C_{n-2} \longrightarrow 0$$

by taking an element $c \in \ker(C_{n-1} \xrightarrow{d} C_{n-2})$, choosing a pre-image — in this case of the form $(c, x) \in C_{n-1} \oplus D_n$ with some arbitrary $x \in D_n$ —, applying the middle differential to this — yielding $(-dc, f(c) + dx) \in C_{n-2} \oplus D_{n-1}$ —, choosing a pre-image of this — can be taken to be $f(c) + dx \in D_{n-1}$ and then taking the class $[f(c) + dx] = [f(x)] \in \operatorname{coker}(d)$. This shows the claim.

f) f_{\bullet} is a quasi-isomorphism $\Leftrightarrow H_i(f_{\bullet})$ iso $\forall i$ $\Leftrightarrow \delta \colon H_i(C[-1]_{\bullet}) \to H_i(D_{\bullet})$ iso $\forall i$ (by part d)) $\Leftrightarrow \delta$ always injective and surjective $\Leftrightarrow H_i(E(f)_{\bullet}) = 0 \; \forall i$ (by exactness of the sequence (2)).

Exercise 45

a) If n = 1, then we have the short exact sequence $K \to P_0 \to M$, inducing the long exact sequence

$$\cdots \to L_i F(P_0) \to L_i F(M) \to L_{i-1} F(K) \to L_{i-1} F(P_0) \to \cdots$$

Since $L_iF(P)$ vanish for $i \ge 1$ and P projective, this shows $L_2F(M) \cong L_1(K)$. Iterating this argument (one can also do a formal induction) then shows the claim.

b) If $P_{\bullet} \to M$ is a projective resolution, then the sequence

$$0 \to K := \ker(P_n \to P_{n-1}) \to P_n \to P_{n-1} \to \dots \to P_0 \to M \to 0$$

is exact. Thus $LF_n(M) \cong L_1(K)$ which vanishes by assumption.