Sheet 6 – Solutions

Exercise 25

 φ_1 can be taken to be $(x, y, z) \mapsto x + z$, since then $\varphi_1(N) = \gcd(2, 5)\mathbb{Z} = \mathbb{Z}$ is maximal. Thus $a_1 = 1$, $x_1 = (-4, 4, 5)$ and $v_1 = (-4, 4, 5)$ is a valid choice. Then $\ker(\varphi_1) = \{(n, m, -n) \mid n, m \in \mathbb{Z}\}, \mathbb{Z}^3 = \ker(\varphi_1) \oplus (-4, 4, 5)\mathbb{Z}$ and

$$\ker(\varphi_1) \cap N = \{ (10 \cdot n, -8 \cdot n, -10 \cdot n) \}.$$

By induction we now have to apply the procedure to $\ker(\varphi_1)$ and $\ker(\varphi_1) \cap N$. Since $\gcd(10, 8, -10) = 2$ we have that $\psi(\ker(\varphi_1) \cap N) \subseteq 2\mathbb{Z}$ for all $\psi \in \operatorname{Hom}(\ker(\varphi_1), \mathbb{Z})$ and thus $a_2 = 2$ and we can take φ_2 to be $(x, y, z) \mapsto x + y$ and $x_2 = (10, -8, -10)$ and $v_2 = (5, -4, -5)$. Then $\ker(\varphi_2) = \{(n, -n, m) \mid n, m \in \mathbb{Z}\}$, thus $\ker(\varphi_1) \cap \ker(\varphi_2) = (1, -1, -1)\mathbb{Z}$ and $N \cap \ker(\varphi_1) \cap \ker(\varphi_2) = 0$. We thus may extend $\{v_1, v_2\}$ to a basis of \mathbb{Z}^3 , e.g., by setting $v_3 = (1, -1, -1)$ and chose $a_3 = 0$. Eventually, we get

$$N = (-4, 4, 5) \mathbb{N} \oplus 2(5, -4, -5) \mathbb{Z} \oplus 0(1, -1, -1) \mathbb{Z},$$

so that $\{(-4, 4, 5), 2(5, -4, -5)\}$ is a basis of N.

Exercise 26

- Vector spaces and linear maps. Isomorphisms are bijective linear maps (since inverse maps of bijective linear maps are again linear).
- Metric spaces and continuous maps. Isomorphisms are continuous bijective maps that are also open (i.e., map open sets to open sets).
- Ordered sets and order preserving maps (i.e., $x \leq y$ implies $f(x) \leq f(y)$). Isomorphisms are *not* the bijective order preserving maps (i.e. the set with four elements has the total order and one with one maximal element, one minimal and two incomparable elements between these two; these two ordered sets are not isomorphic (why?) but there is a bijective order preserving map between them).

Exercise 27

- a) Yes, since \mathbb{Z} is cyclic each homomorphism $\mathbb{Z} \to G$ is uniquely determined by its image at one and each $g \in G$ occurs as such.
- b) No, for instance $\operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z})$ is empty.

Exercise 28

a) In **Gp** the group \mathbb{Z} is a generator. Indeed, if $f(x) \neq g(x)$, then x determines the homomorphism $u_x \colon \mathbb{Z} \to G$ $n \mapsto g^n$ and since $u_x(1) = x$ we have $f(u_x(1)) \neq g(u_x(1))$. By definition, in **Set** each point is a generator (this is of course unique up to isomorphisms). However, in **Set** each object is a generator.

b) We have already seen, that in **Set** generators are not isomorphic. If **1** is the category with one object and one (identity) morphism, then this object is a generator since there do not exists non-equal morphisms. But **1** embeds into **Gp** by sending the object to \mathbb{Z}_2 and \mathbb{Z}_2 is not a generator of **Gp** (why?).

Exercise 29

Let $F, G, H: \mathcal{C} \to \mathcal{D}$ be functors and $\alpha: F \Rightarrow G, \beta: G \Rightarrow H$ be natural transformations. Then we define the source of α to be F and the target of α to be G. The identity natural transformation $\mathrm{id}_F: F \Rightarrow F$ is simply given by $x \mapsto \mathrm{id}_{F(x)}$. The composition $F \circ G$ is defined by $x \mapsto \beta(x) \circ \alpha(x)$. That these assignments satisfy the necessary condition follows from the commutativity of

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\downarrow^{\alpha(x)} \qquad \downarrow^{\alpha(y)}$$

$$G(x) \xrightarrow{G(f)} G(y)$$

$$\downarrow^{\beta(x)} \qquad \downarrow^{\beta(y)}$$

$$H(x) \xrightarrow{H(f)} H(y)$$

for each $f \in Hom_{\mathcal{C}}(x, y)$.

Exercise 30

- a) Since the composition in **Set** is associative, one verifies $h^X(g \circ f) = h^X(g) \circ h^X(f)$ for composable morphisms $Y \xrightarrow{f} Z \xrightarrow{g} U$ in \mathcal{C} . The rest is obvious.
- b) By definition a natural transformation $\alpha \colon h^X \Rightarrow F$ is the same thing as an assignment of a map $\alpha(Y) \colon \operatorname{Hom}_{\mathcal{C}}(X,Y) \to F(Y)$. For each $\varphi \colon X \to Y$, this has to make the diagram

$$\begin{array}{ccc} \operatorname{Hom}_{\mathcal{C}}(X, X) & \stackrel{\varphi_{*}}{\longrightarrow} \operatorname{Hom}(X, Y) \\ \alpha(X) & & & \downarrow \alpha(Y) \\ F(X) & \stackrel{F(\varphi)}{\longrightarrow} F(Y) \end{array}$$

commute, thus

$$\alpha(Y)(\varphi) = \alpha(Y)(\varphi_*(\mathrm{id}_X)) = F(\varphi)(\alpha(X)(\mathrm{id}_X)).$$

c) The functor $X \mapsto h^X$,

$$\left(X \stackrel{\varphi}{\leftarrow} Y\right) \mapsto \left(f^* \colon h^X \to h^Y\right)$$

with $f^*(Z)$: Hom $(X, Z) \to$ Hom $(Y, Z), \varphi \mapsto \varphi \circ f$ is an embedding, since by part b) we have Hom $(X, Y) \cong$ Hom (h^X, h^Y) .