Exercises for Algebra II, WS 12/13

Sheet 11

Exercise 47

Let $R = \mathbb{Z}[t]/(t^n - 1)$. Show that R is the group ring of \mathbb{Z}_n and that

$$\operatorname{Tor}_{k}^{R}(\mathbb{Z}, \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } k = 0\\ \mathbb{Z}_{n} & \text{if } k \text{ is odd} \\ 0 & \text{else} \end{cases}$$

through the following steps. Set $N = (1 + t + \dots + t^{t-1})$ and $\varepsilon(t) = 1$.

- a) Show that $(1 t)N = 1 t^n$.
- b) Show that $\mathbb{Z}[t]$ admits a unique prime decomposition (up to units).
- c) Use the latter to show that a multiple of N in $\mathbb{Z}[t]$ is a multiple of $1-t^n$ if and only if it is a multiple of 1-t.
- d) Show that $\cdots \xrightarrow{N} R \xrightarrow{1-t} R \xrightarrow{N} R \xrightarrow{1-t} R \xrightarrow{\varepsilon} \mathbb{Z}$ is a projective resolution of the trivial R-module \mathbb{Z} .

Exercise 48

Show that $\operatorname{Ext}_{\mathbb{Z}}^n(A,B)$ vanishes for $n\geq 2$ and each two abelian groups A and B.

Exercise 49

Go through the proof of the Acyclic Assembly Lemma (Lemma 6.6.4 in the lecture notes of Prof. Schweigert). In particular, verify that $d_h(x_{n_0}) = 0$, that $d_h(x_i + d_v(y_{i-1})) = 0$ and that $d(y_{n_0}, ..., y_0) = (x_{n_0}, ..., x_0)$. Moreover, verify part b) and give the reason why part b) works only for Tot $X_{\bullet \bullet}$ and part a) only works for $|X_{\bullet \bullet}|$.

Exercise 50

Let $X_{\bullet\bullet}$ be the double complex with $X_{i,j} = \mathbb{Z}_2$ if $j \geq 0$ and $X_{i,j} = 0$ if j < 0 and all differentials given by multiplication with 2.

- a) Show that $X_{\bullet\bullet}$ is a double complex and that (...,1,1,1) is a 0-cycle in Tot $X_{\bullet\bullet}$.
- b) Show that the 0-boundaries of Tot $X_{\bullet\bullet}$ are $\prod_{\mathbb{N}_0} (2 \cdot \mathbb{Z}_4)$.
- c) Show that $H_0(\operatorname{Tot} X_{\bullet \bullet}) \cong \mathbb{Z}_2$.
- d) Show that $|X_{\bullet \bullet}|$ is exact.