Exercises for Algebra II, WS 12/13

Sheet 10

Exercise 43

Let C_{\bullet} be a chain complex of abelian groups such that all groups C_n are free abelian groups. Are then the following assertions true or false?

- a) The group of cycles $Z_n(C_{\bullet})$ is free.
- b) The group of boundaries $B_n(C_{\bullet})$ is free.
- c) The homology group $H_n(C_{\bullet})$ is free.

Exercise 44

Let

$$\cdots \to M_{i+1} \xrightarrow{f_{i+1}} M_i \xrightarrow{f_i} M_{i-1} \xrightarrow{f_{i-1}} M_{i-2} \to \cdots$$

be an exact sequence. Show that f_i is an isomorphism if and only if f_{i-1} and f_{i+1} vanish.

Exercise 45

Let $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ a morphism of chain complexes of *R*-modules. We construct from this a new chain complex $E(f)_{\bullet}$ by setting

$$E(f)_n := C_{n-1} \oplus D_n$$
 and $d_n(c,d) := (-d_{n-1}(c), f_{n-1}(c) + d_n(d)).$

- a) Show that $E(f)_{\bullet}$ as defined above is in fact a chain complex.
- b) Show that f_{\bullet} is chain homotopic to 0 if and only if $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ extends to a morphism $E(\mathrm{id}_{C_{\bullet}}) \to D_{\bullet}$ of chain complexes (if we consider C_{\bullet} as a sub complex of $E(\mathrm{id}_{C_{\bullet}})$).
- c) Let $C[-1]_{\bullet}$ be the chain complex with $C[-1]_n := C_{n-1}$. Show that $D_{\bullet} \to E(f)_{\bullet}$, $d \mapsto (0, d)$ and $E(f)_{\bullet} \to C[-1]_{\bullet}$, $(c, d) \mapsto c$ are morphisms of chain complexes and that

$$D_{\bullet} \to E(f)_{\bullet} \to C[-1]_{\bullet}$$
 (1)

is a short exact sequence of chain complexes.

d) Let

$$\cdots \to H_{n+1}(E(f)_{\bullet}) \to H_n(C[-1]_{\bullet}) \xrightarrow{\delta} H_{n-1}(D_{\bullet}) \to H_{n-1}(E(f)_{\bullet}) \to \cdots$$
(2)

be the long exact sequence induced by (1). Show that $H_n(C[-1]_{\bullet}) \cong H_{n-1}(C_{\bullet})$ and that $\delta = H_{n-1}(f_{\bullet})$ with respect to this isomorphism.

e) Show that f_{\bullet} is a quasi-isomorphism if and only if $E(f)_{\bullet}$ is exact.

Exercise 46

Let $F: \mathcal{C} \to \mathcal{D}$ be a right exact additive functor between abelian categories. Suppose that \mathcal{C} and \mathcal{D} have enough projectives and that we are given an exact sequence

$$0 \to K \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

such that each P_i is projective.

- a) Show that for each i > n we have the identity $L_i F(M) \cong L_{i-n} F(K)$.
- b) Show that $L_1F = 0$ implies $L_iF = 0$ for all *i*.