Sheet 9

Exercise 39

Show that in **Set**, **Ab** and **R-Mod** a pull-back of $f: X \to Z$ and $g: Y \to Z$ is given by

$$X \times_Z Y := \{ (x, y) \in X \times Y \mid f(x) = g(y) \},\$$

along with the canonical maps $X \times_Z Y \to X$ and $X \times_Z Y \to Y$.

Exercise 40

Show that in **R-Mod** the sequence $A \to B \to C$ is short exact if and only if the diagram

is a pull-back and a push-out.

Exercise 41

Let G be a group and A, B be subgroups such that $G = \langle A \cup B \rangle$. Show that the inclusions $A \to G$ and $B \to G$ give a push-out of the inclusions $A \cap B \to A$ and $A \cap B \to B$.

Exercise 42

In this exercise we will see that the category **R-Mod** has enough injectives. This we will do as follows:

- a) Show that the functor $Ab \to Mod-R$, $A \mapsto Hom_{Ab}(R, A)$ is right adjoint to the forgetful functor $Mod-R \to Ab$.
- b) Show that the R^{op} -module $\text{Hom}_{\mathbf{Ab}}(R, \mathbb{Q}/\mathbb{Z})$ is injective.
- c) Show that a product of injective R^{op} -modules is injective if each factor is so.
- d) Set $I_0 := \operatorname{Hom}_{\mathbf{Ab}}(R, \mathbb{Q}/\mathbb{Z})$ and

$$I(M) := \prod_{\operatorname{Hom}_{\mathbf{Mod}-\mathbf{R}}(M,I_0)} I_0.$$

Show that M injects into I(M).

Conclude that **R-Mod** has enough injectives.