Übung zu Algebraische und Geometrische Strukturen in der Mathematik, SoSe 2014

1. Übungsblatt

Präsenzübungen

Aufgabe P1

Wir betrachten auf $\mathbb{Q}^2 = \{a + \varepsilon b \mid a, b \in \mathbb{Q}\}$ (also dem von den beiden linear unabhängigen Elementen 1 und ε aufgespannten Vektorraum) die folgenden Operationen:

$$(a+\varepsilon b) + (a'+\varepsilon b') := (a+a') + \varepsilon (b+b') \tag{1}$$

$$(a + \varepsilon b) \cdot (a' + \varepsilon b') := (aa' + 2bb') + \varepsilon (ab' + a'b) \tag{2}$$

- 1. Zeigen Sie, dass die Operationen (1) und (2) \mathbb{Q}^2 zu einem Körper machen, in dem $0 + \varepsilon 0$ das neutrale Element der Addition ist und $1 + \varepsilon 0$ das neutale Element der Multiplikation.
- 2. Wir betrachten nun die Teilmenge

$$\mathbb{Q}(\sqrt{2}) := \{ a + \sqrt{2}b \mid a, b \in \mathbb{Q} \}$$

von \mathbb{R} . Zeigen Sie, dass $\mathbb{Q}(\sqrt{2})$ ein Teilkörper von \mathbb{R} ist. Bestimmen Sie explizit das multiplikative Inverse von $1+\sqrt{2}$.

3. Zeigen Sie, dass der Körper aus 1. isomorph ist zu $\mathbb{Q}(\sqrt{2})$.

Aufgabe P2

Zeigen Sie, dass die Restklassenringe $\mathbb{Z}/2\mathbb{Z}$ und $\mathbb{Z}/3\mathbb{Z}$ Körper sind, nicht aber $\mathbb{Z}/4\mathbb{Z}$ und auch nicht $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (bei letzterem bezüglich der komponentenweise Addition und Multiplikation). Kann es denn überhaupt einen Körper mit 4 Elementen geben?

Aufgabe P3

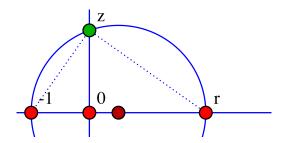
Welche der Folgenden Teilmengen von $\mathbb C$ sind auch Teilkörper (Sie dürfen $\sqrt{2} \notin \mathbb Q$ ohne Beweis verwenden)?

- 1. $\{0\}$ und $\mathbb{C}\setminus\{0\}$
- 2. \mathbb{Q} , $\sqrt{2} \cdot \mathbb{Q}$, $\mathbb{Q} \cap \sqrt{2} \cdot \mathbb{Q}$, $\mathbb{Q} + \sqrt{2} \cdot \mathbb{Q}$ und $\mathbb{Q} \cup \sqrt{2} \cdot \mathbb{Q}$
- 3. \mathbb{R} , $\sqrt{2} \cdot \mathbb{R}$, $\mathbb{R} \cap \sqrt{2} \cdot \mathbb{R}$, $\mathbb{R} + \sqrt{2} \cdot \mathbb{R}$ und $\mathbb{R} \cup \sqrt{2} \cdot \mathbb{R}$

Bitte wenden!

Aufgabe P4

Überlegen Sie sich anhand des folgenden Bildes und entsprechender Sätze aus der Elementargeometrie, dass zu einer positiven Zahl $r \in \mathbb{R}^+$ die positive Quadratwurzel $\sqrt{r} \in \mathbb{R}^+$ mit Zirkel und Lineal kontruierbar ist.



Konstruieren Sie mit Zirkel und Lineal eine Quadratwurzel aus der komplexen Zahl 1+i.

Hausübungen

Aufgabe H1 (4P)

Wir betrachten auf $\mathbb{Q}^2 = \{a+ib \mid a, b \in \mathbb{Q}\}$ (also dem von den beiden linear unabhängigen Elementen 1 und i aufgespannten Vektorraum) die folgenden Operationen:

$$(a+ib) + (a'+ib') := (a+a') + i(b+b')$$
(3)

$$(a+ib) \cdot (a'+ib') := (aa'-bb') + i(ab'+a'b) \tag{4}$$

(dieses ist offenbar die Konstruktion von \mathbb{C} aus \mathbb{R} , nur eingeschränkt auf Koeffizienten aus \mathbb{Q}). Zeigen Sie, dass die Operationen (3) und (4) \mathbb{Q}^2 zu einem Körper machen, in dem 0+i0 das neutrale Element der Addition ist und 1+i0 das neutale Element der Multiplikation. Zeigen Sie außerdem, dass dieser Körper nicht isomorph zu dem aus Aufgabe P1 Teil 1. sein kann.

Aufgabe H2 (4P)

Konstruieren Sie die folgenden Zahlen mit Zirkel und Lineal aus $\{0,1\}$:

$$(1+i)^2$$
, $\frac{1}{1+i}$, z , $\sqrt[4]{3}$,

wobei z eine Quadratwurzel aus 1+2i ist. Geben Sie dabei jeweils die einzelnen Konstruktionsschritte an

Aufgabe H3 (4P)

Zeigen Sie, dass man mit Zirkel und Lineal Winkel stets addieren kann, man also aus $e^{2\varphi\pi i}$ und $e^{2\varphi'\pi i}$ die Zahl $e^{2(\varphi+\varphi')\pi i}$ konstruieren kann.