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To see a world in a grain of sand, 
And a heaven in a wild flower, 

Hold infinity in the palm of your hand, 
And eternity in an hour. 

---- William Blake,  “Auguries of Innocence”
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String theory has been very successful in inspiring new 
mathematics especially in the field of geometry.  To 
name a few:  mirror symmetry, quantum cohomology, 
Gromov-Witten theory, topological string, elliptic 
genus, ......, etc.

Part 1.  Geometry and CFT

Question: why can string theory provide so many new 
insights which is not available otherwise ?



A quick answer: 

String theory emphasis the study of loop space instead 
of the original manifold. The loop space contain many 
new structures which can not be seen from the original 
manifold. 

Question: what are the structures on loop space? 



There are perhaps many different answers to this 
question. 

One answer suggested by string theory is  that the loop 
space has a natural algebraic structure which is called 
(super-)conformal field theory (CFT).  

We list a few constructions which are inspired by this 
suggestion.



1. Malikov-Schetchman-Vaintrob’s Chiral de Rham complex 
    = a sheaf of vertex operator algebras on smooth manifold 
    ~ a shadow of certain structure on formal loop space. 

3. Chas-Sullivan:  
string topology = certain algebra structure on the homology of 
the free loop space (BV-algebra, homological CFT).

2.Kapranov-Vasserot: 
      free loop space (Algebra-geometric version)
          =  factorization monoid 
          =  a non-linear version of factorization algebra. 
              factorization algebra = a global version of  VOA.



A direct construction of CFT is, however, less interesting to 
many geometers because CFT itself is a mysterious object and 
its connection to geometry is not very clear. 

Most of math works (until recent years) are focusing on 
studying some interesting ingredients of a special kind of CFT 
called non-linear sigma model. Examples of these ingredients 
are super-conformal algebras, chiral rings, A-branes, B-branes, 
partition functions, etc. They are directly connected to mirror 
symmetry, quantum cohomology, Qcoh(X), Fukaya category, 
elliptic genus, etc. This approach has been very successful so 
far. 



The disadvantage of studying only ingredients is that we 
might lose the global picture. What global picture we gain 
if we look at  an entire CFT instead of its ingredients?

It is already apparent in the study of mirror symmetry and 
works by string theorists that the paradigm of geometry 
established before the advent of string theory is 
inadequate. 

An “Auguries of Innocence” (K., 5/2007):

CFT provides an entirely new foundation of geometry!



There are two evidences for such a new geometry from CFT:
 
1. The closed CFT is indeed a stringy generalization of 
commutative ring. More precisely, the closed CFT is a 
commutative associative algebra in certain braided tensor 
category. 

2. D-branes have been used by physicists to probe the 
geometry of target manifold. As boundary conditions for open 
strings, they indeed behave like generalized points or sub-
varieties. Algebraically, they are certain ``chiral modules” over 
closed CFT.



X Y

[X,X]
[X,Y]

[Y,Y]

Boundary condition: X, Y are chiral modules over a closed CFT;
Open CFTs: [X,X], [Y,Y];            [X,Y] is a [Y,Y]-[X,X]-bimdule.

Conjecture:  an open CFT determines a closed CFT by taking center.



Classical AG Stringy generalization 

a commutative ring  A a closed CFT  C

Spec(A) = the set of 
prime ideals of A

Spec(C) = the category 
of D-branes



This geometry has the following new features:  

1. Categorical instead of set-theoretical: CFT or QFT in general 
emphasizes the space as a network of interesting subspaces 
instead of the usual sheaf-theoretical point of view.  

2. Holographic Principle: intuitively, if the boundary condition 
is just a point, the based loop space has certain generalized 
algebra structure (open CFT) and determines the free loop 
space as its ``center”. 



Hints from string topology (Chas-Sullivan) which can be 
viewed as a homological CFT (Godin): 

Let N be a submanifold of M,            be the space of 
singular chains on the path space        .  As a dg algebra,      
       is quasi-equivalent to the open string topology 
introduced by Sullivan.  Then we have
                          
                 
when M is simple connected and closed and N is: 
1.  N is a point in M (Burghelea, Goodwillie, ... 80’s), 
2.  N=M (Jones, 80’s)
3.  many other cases (Blumberg-Cohen-Teleman, 2009)

             is nothing but a derived center of    . 

satisfying the following axioms:

1. modular-invariance of Acl:

2. Cardy condition:

A ∼=Morita B iff Z(A) ∼=algebra Z(B)

(Aop, Acl
ιcl−op−−−→ Z(Aop))

C∗(PN,N) PN,N
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To see a world in a grain of D-brane, 
And a heaven in a wild flower, 

Hold infinity in the palm of your hand, 
And eternity in an hour. 

---- William Blake,  “Auguries of Innocence”



3. a unification of algebraic geometry with metric.

A CFT is a module over Virasoro algebra (super-conformal 
algebra) which can be viewed as Laplacian (Dirac 
operator）on loop space. Therefore, this new geometry should 

contain spectral geometry as an ingredient. In particular, a 
proper completion of super-CFT leads to Connes’ (pre-)spectral 
triple. 



A few approaches to new geometry associated to D-branes: 

1.  Douglas’ D-geometry. 
2.  Gómez-Sharpe’s generalized scheme theory.
3. Aspinwall’s stringy geometry as the moduli space of D0-
branes.
4. Liu-Yau’s non-commutative algebraic geometry formulation 
of D-branes largely motivated by moduli problems. 
5.  Derived Algebraic Geometry



Derived Algebraic Geometry:

Take an associative algebra A, then take the Hochschild 
cohomology HH*(A) (derived center of A) as the replacement 
of commutative ring. Such HH*(A) is also a closed topological 
conformal field theory. 

DAG is parallel to our program of SAG. 

In general, A = A-infinity algebra, monoidal category, tensor-
infinity category, E_n-algebra, ..., etc. 



To physicists: 

The physical demand for a new geometry is due to the vision  
that space-time is emergent. One should be able to recover the 
space-time from the observable algebras.

It is believed that gravity can be rederived from Holographic 
Principle. For us, Holographic Principle just says that a 
boundary theory uniquely determine the bulk theory. 
Conversely, a bulk theory does not determine boundary theory 
uniquely. This ambiguity of non-uniqueness is nothing but the 
spectrum of an entirely new/old geometry. 



Part II.  The Definition of CFT:

1987, Kontsevich and Segal independently gave a 
definition of CFT as a symmetric projective monoidal 
functor from the category RSb of finite ordered set 
with hom-set being the moduli space of Riemann 
surfaces with parametrized boundaries to the category 
of complete locally convex topological vector spaces. 



Mathematics: 1987, Kontsevich and Segal gave a
definition of CFT, which is a projective functor between
two categories:

F

 1

1

H⊗3
cl −→ H⊗2

cl

A two-dimensional Topological field theory (TFT)
= A commutative associative algebra
+ invariant bilinear form + (dimHcl < ∞)
= A finite dimensional commutative Frobenius algebra.

Idea: 1. Find the algebraic structure on Hcl given by
genus-0 surfaces with only one out-going boundary.
2. Find additional structures (e.g. bilinear forms).
3. Find all consistency conditions.

– Typeset by FoilTEX – 2

An element in the Hom set of RSb :



Two disadvantages of Kontsevich-Segal’s definition: 

1. The quantum fields in physics usually are associated to a 
point in the space-time. They do not live in Kontsevich-Segal’s 
definition in an obvious way.  This suggests to change RSb  to 
RSp (Riemann surfaces with parametrized punctures). 

2. A complete topological vector space is very hard to 
construct.  A dense subspace of it is much easier to deal with. 
This suggests to use the category GVS of graded vector spaces 
instead. 



What is a conformal field theory ?

Liang Kong∗

1

m

n

z → −1

z

References

[Ru1] Ingo Runkel, talk given in Hausdorff Research Institute (Bonn) in 2008.

[Ru2] Ingo Runkel, talk given in UC, Berkeley in January 2009.

∗Email: kong@mpim-bonn.mpg.de

What is a conformal field theory ?

Liang Kong∗

1

m

n

z → −1

z

References

[Ru1] Ingo Runkel, talk given in Hausdorff Research Institute (Bonn) in 2008.

[Ru2] Ingo Runkel, talk given in UC, Berkeley in January 2009.

∗Email: kong@mpim-bonn.mpg.de

What is a conformal field theory ?

Liang Kong∗

1

m

n

z → −1

z

References

[Ru1] Ingo Runkel, talk given in Hausdorff Research Institute (Bonn) in 2008.

[Ru2] Ingo Runkel, talk given in UC, Berkeley in January 2009.

∗Email: kong@mpim-bonn.mpg.de

What is a conformal field theory ?

Liang Kong∗

1

m

n

z → −1

z

References

[Ru1] Ingo Runkel, talk given in Hausdorff Research Institute (Bonn) in 2008.

[Ru2] Ingo Runkel, talk given in UC, Berkeley in January 2009.

∗Email: kong@mpim-bonn.mpg.de

An element in the Hom set of RSp :

The definition of CFT

A morphism in RSp:

Liang Kong (Institute for Advanced Study, Tsinghua University, Beijing 100084)CFT, D-branes and a new geometry 2010 30 / 60



The definition of CFT

Sewing operation:

z !→ −1
z

1
r r

Liang Kong (Institute for Advanced Study, Tsinghua University, Beijing 100084)CFT, D-branes and a new geometry 2010 31 / 60

Sewing operations are not always well-defined:



The category GVS:

1. An object   is a graded vector space over  with 
homogeneous spaces being finite dimensional:

2.                                          where 

3.
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CFTp is a projective symmetric monoidal functor F 
from RSp to GVS. 

Since the compositions in both categories are only 
partially defined.  A functor from RSp to GVS requires 
the following condition: 

If two morphisms S and T in RSp is composable, i.e. 
S # T exists, then F(S)  F(T) exists and 
F(S # T) = F(S)  F(T). 

What is a conformal field theory ?
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Open-closed CFT: 



Part III. A classification of rational open-closed  CFTs: 

Theorem (Huang):    The structure of 
   (F({1}), F(genus-0 surfaces with only one out-going puncture)) 
     + F being holomorphic 
     + additional natural conditions such as integer grading, etc 
   = a vertex operator algebra (VOA). 

Theorem (Huang): The category of modules over a rational 
VOA is a modular tensor category. 



Basic structures of a modular tensor category    :    

1.  tensor product funtor:                      .

2.  associativity: 

3.  tensor unit:          , 

4.  braiding: 

5.  rigidity:

Similar to VOA, if H is self-dual (i.e., H is equipped with a non-degenerate invariant bilinear
form), then it gives a real-analytic genus-0 CFT.

In general, if V L and V R are not holomorphic, one cannot construct the entire CFT
structure on the self-dual conformal full field algebra V L ⊗ V R due to the lack of a modular
invariance property on V L⊗V R. However, if a VOA V is rational3, it was proved by Huang
[H2] that CV , the category of V -modules, is a modular tensor category [T][BK] on which all
mapping class groups act. If V L and V R are rational, then the VOA V L⊗V R is also rational
[DMZ][HK2]. In this case, it is reasonable to expect that we might be able to obtain a CFT
of all genera by extending V L ⊗ V R by certain modules over V L ⊗ V R viewed as a VOA.
Namely, we will look for a CFT H as a module over the VOA V L ⊗ V R. Such a CFT, if it
exists, will be called a CFT over V L ⊗ V R. In this case, we can use the powerful tools of
tensor category to give a categorical formuation of CFT over V L ⊗ V R.

From now on, we will study CFTs over V L ⊗ V R and assume that V L, V R are both
rational. We will first recall the notion of a modular tensor category.

Let C be a tensor category. We write 1 ∈ C for the unit object; ⊗ : C × C → C for the
tensor bifunctor; lA : 1 ⊗ A ∼= A and rA : A ⊗ 1 ∼= A for A ∈ C for unit isomorphisms;
αA,B,C : (A⊗ B)⊗ C ∼= A⊗ (B ⊗ C) for A, B, C ∈ C for the associator. If C is braided, we
write cA,B : A⊗B → B ⊗ A, for A, B ∈ C, for the braiding isomorphisms.

If C is rigid, each object U is equipped with a left dual ∨U and a right dual U∨. A ribbon
category is a rigid braided tensor category with a twist isomorphism θU : U → U for each
U ∈ C satisfying certain balancing properties [BK]. In particular, in a ribbon category, one
can take ∨U = U∨. In this case, we will write the dualities as

U∨ U
= dU : U∨⊗U → 1 ,

U U∨
= d̃U : U ⊗U∨ → 1 ,

U U∨

= bU : 1→ U ⊗U∨ ,
U∨ U

= b̃U : 1→ U∨⊗U ,

(0.6)

We also define dim(U) := d̃U ◦ bU and DC :=
√∑

i dim2 Ui.

A modular tensor category C is a semisimple abelian finite C-linear ribbon category with
a simple unit 1 and satisfying an additional non-degenerate condition on braiding (given
below). We denote the set of equivalence classes of simple objects in C by I, elements in I
by i, j, k ∈ I and their representatives by Ui, Uj, Uk. We also set U0 = 1. We define numbers
si,j ∈ C by

si,j = UiUj . (0.7)

We also define dim(U) := d̃U ◦ bU . We have si,j = sj,i and s0,i = dim Ui. The non-degeneracy
condition on the braiding of a modular tensor category is that the |I|×|I|-matrix s is in-
vertible.

3V is rational if it satisfies the conditions specified in [H2]
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i.e. A = ⊕nA(n).

Let V be a rational VOA. We use CV to denote the category of V -modules and Z(CV ) the
quantum double of CV . Let F : Z(CV ) → CV be the forgetful functor and F∨ : CV → Z(C)
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U ∈ C satisfying certain balancing properties [?]. In particular, in a ribbon category, one
can take ∨U = U∨. In this case, we will write the dualities as

U∨ U
= dU : U∨⊗U → 1 ,

U U∨
= d̃U : U ⊗U∨ → 1 ,

U U∨

= bU : 1→ U ⊗U∨ ,
U∨ U

= b̃U : 1→ U∨⊗U ,

(0.1)

We also define dim(U) := d̃U ◦ bU and dim C :=
∑

i dim2 Ui.

For A ∈ C, we also choose a basis {b(i;α)
A } of HomC(A, Ui) and the dual basis {bA

(i;β)} of

HomC(Ui, A) for i ∈ I such that b(i;α)
A ◦ bA

(i;β) = δαβ idUi . We use the graphical notation

b(i;α)
A = α

Ui

A

, bA
(i;α) = α

Ui

A

. (0.2)

Let C be a tensor category. An algebra in C or a C-algebra is a triple A = (A, m, η)
where A is an object of C, m (the multiplication) is a morphism A⊗A → A such that
m ◦ (m⊗ idA) ◦αA,A,A = m ◦ (idA⊗m), and η (the unit) is a morphism 1 → A such that
m ◦ (idA⊗ η) = idA ◦ rA and m ◦ (η⊗ idA) = idA ◦ lA. In the same way that one defines an
algebra in C one can define a coalgebra A = (A, ∆, ε) where ∆ : A → A⊗A and ε : A → 1
obey the co-associativity and the counit condition.

Definition 0.1 A Frobenius algebra A = (A, m, η, ∆, ε) is an algebra and a coalgebra such
that the coproduct is an intertwiner of A-bimodules, i.e. (idA⊗m) ◦ (∆⊗ idA) = ∆⊗m =
(m⊗ idA) ◦ (idA⊗∆).

We will use the following graphical representation for the morphisms of a Frobenius
algebra,

m =

A A

A

, η =
A

, ∆ =

A A

A

, ε =
A

. (0.3)

A Frobenius algebra A in C is called symmetric if it satisfies
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U ∈ C satisfying certain balancing properties [?]. In particular, in a ribbon category, one
can take ∨U = U∨. In this case, we will write the dualities as

U∨ U
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A } of HomC(A, Ui) and the dual basis {bA

(i;β)} of
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A ◦ bA
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b(i;α)
A = α

Ui

A

, bA
(i;α) = α

Ui

A
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where A is an object of C, m (the multiplication) is a morphism A⊗A → A such that
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A Frobenius algebra A in C is called symmetric if it satisfies

A

A∨

=

A

A∨

. (0.7)
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mcl

=
∑

α

Acl
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Ui × Uj

Acl

Acl

α

α

mcl (0.8)

holds for all i, j ∈ I.
Theorem: An open-closed CFT over V is equivalent to a triple (Aop|Acl, ι) where

1. Acl is a commutative symmetric Frobenius algebra in Z(CV ),

2. Aop is a symmetric Frobenius algebra in CV ,

3. ιcl−op : Acl → Z(Aop) is an algebra homomorphism.

satisfying the following axioms:

1. modular-invariance of Acl:

2. Cardy condition:
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For a tensor category C, the monoidal center Z(C) of C is a 
braided tensor category.

       Z(A)=HomA|A(A, A)     ----->     Z(C):=FunC|C(C,C)

A forgetful functor F: Z(C) --> C, R= the right adjoint of F.

For an algebra A in C, the center Z(A) of A is defined as an 
object in Z(C). 

                       Z(A) = HomA|A(A, A)  in Z(C)



A classification of rational CFT

The center of a monoidal category

For a tensor category C, one can define its monoidal center Z(C):

Z(C) = {(X,X ⊗− cX
∼=−−−→ −⊗X)|cX⊗Y = cX ◦ cY , cX(1) = idX}.

Z(C) is a braided tensor category with tensor product ⊗ given by

(X, cX)⊗ (Y, cY ) := (X ⊗ Y, cX ◦ cY ).

and the braiding given by

(X, cX)⊗ (Y, cY )
cX(Y )−−−−→ (Y, cY )⊗ (X, cX).

The forgetful functor F : Z(C) → C is monoidal and its right adjoint F∨

(if exists) is lax and colax monoidal.

Liang Kong (Institute for Advanced Study, Tsinghua University, Beijing 100084)CFT, D-branes and a new geometry 2010 43 / 60



A classification of rational CFT

The center of an algebra

1. An algebra (A, m, η) in a braided tensor category is called
commutative if m ◦ cA,A = m.

2. Given an algebra A in C, the center Z(A) of A is an object in Z(C)
with Z(A) ι−→ A in C which is terminal among all pairs (Z, ξ) satisfying

Z ⊗A
ξ1 !!

zA

""

A⊗A
m

##!!
!!

!!
!!

!

A⊗ Z
1ξ !! A⊗A

m !! A

In the case of MTC,
Z(A) := Cl(F∨(A))

where F∨(A) is an algebra and Cl(−) is the left center.

Liang Kong (Institute for Advanced Study, Tsinghua University, Beijing 100084)CFT, D-branes and a new geometry 2010 44 / 60



Theorem(genus=0)/Conjecture(genus>0) (Kong):  
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f : A → B f∗ : B → A m ◦ cA,A = m
Z(C) Z(A)
dim Aop #= 0
m ◦∆ ∝ idA

ε ◦ η ∝ id1

(A|Z(A), idZ(A))
A = 1 ∈ CV

Z(1) = ⊕iU∨
i ⊗C Ui
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holds for all i, j ∈ I.
Theorem: An open-closed CFT over V is equivalent to a triple (Aop|Acl, ιcl−op) where

1. Acl is a commutative symmetric Frobenius algebra in Z(CV ),

2. Aop is a symmetric Frobenius algebra in CV ,

3. ιcl−op : Acl → Z(Aop) is an algebra homomorphism.
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With these ingredients, we can now give the first definition of a Cardy C|C2
±-algebra, which

was introduced in [?, def. 5.14], cf. remark ?? below.

Definition 3.7 (Cardy C|C2
±-algebra I) A Cardy C|C2

±-algebra is a triple (Aop|Acl, ιcl-op),
where (Acl, mcl, ηcl, ∆cl, εcl) is a modular invariant commutative symmetric Frobenius C2

±-
algebra, (Aop, mop, ηop, ∆op, εop) is a symmetric Frobenius C-algebra, and ιcl-op : Acl → R(Aop)
an algebra homomorphism, such that the following conditions are satisfied:

(i) Centre condition:

Acl R(Aop)

R(Aop)

R(Aop)

ιcl-op

mR(Aop)

=

Acl

ιcl-op

R(Aop)

R(Aop)

R(Aop)

mR(Aop)

. (3.13)

(ii) Cardy condition:

ιcl-op ◦ ι∗cl-op =

R(Aop)

R(Aop)

R(Aop)

. (3.14)

Remark 3.8
(i) The name “Cardy C|C2

±-algebra” in definition ?? was chosen because many of the impor-
tant ingredients were first studied by Cardy: the modular invariance of the closed theory [?],
the consistency of the annulus amplitude [?], and the bulk-boundary OPE [?]. On the other
hand, the boundary-boundary OPE and the OPE analogue of the centre condition were first
considered in [?].

(ii) One can easily see that in the special case that C is the category Vectf (C) of finite-
dimensional C-vector spaces, a Cardy C|C2

±-algebra gives exactly the algebraic formulation
of two-dimensional open-closed topological field theory over C (cf. remark 6.14 in [?]), see
[?, sect. 4.8], [?, thm. 1.1], [?, thm. 4.5], [?, cor. 4.3], [?, sect. 2.2]. When passing to a general
modular tensor category C there are two important differences to the two-dimensional topo-
logical field theory. Firstly, the algebras Acl and Aop now live in different categories, which
in particular affects the formulation of the centre condition and the Cardy condition. Sec-
ondly, the modular invariance condition has to be imposed on Acl. In the case C = Vectf (C),
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A classification of rational CFT

Geometric meaning of these two conditions:
1 Modular invariance of 1-pt correlation functions on torus:

2 Cardy condition:

=

Liang Kong (Institute for Advanced Study, Tsinghua University, Beijing 100084)CFT, D-branes and a new geometry 2010 48 / 64



Relation to 2-d TFT:   when V =     ,

2-d open-closed CFT over V = 2-d open-closed TFT over  

A classification of rational CFT

2. Cardy condition:
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.

where ι∗cl−op is defined using the self-duality of Frobenius algebras.

When V = C, open-closed CFT over V = open-closed TFT.
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Other approaches: 

1. Fuchs-Runkel-Schweigert obtained similar results for open-
closed rational CFT independently in an approach based on 3-dim 
TFT. 

2. A similar classification result for CFT is obtained independently 
by Longo and Rehren in an approach based on Möbius covariant 
net on circle.
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U ∈ C satisfying certain balancing properties [?]. In particular, in a ribbon category, one
can take ∨U = U∨. In this case, we will write the dualities as

U∨ U
= dU : U∨⊗U → 1 ,

U U∨
= d̃U : U ⊗U∨ → 1 ,

U U∨

= bU : 1→ U ⊗U∨ ,
U∨ U

= b̃U : 1→ U∨⊗U ,

(0.1)

We also define dim(U) := d̃U ◦ bU and dim C :=
∑

i dim2 Ui.

For A ∈ C, we also choose a basis {b(i;α)
A } of HomC(A, Ui) and the dual basis {bA

(i;β)} of

HomC(Ui, A) for i ∈ I such that b(i;α)
A ◦ bA

(i;β) = δαβ idUi . We use the graphical notation

b(i;α)
A = α

Ui

A

, bA
(i;α) = α

Ui

A

. (0.2)

Let C be a tensor category. An algebra in C or a C-algebra is a triple A = (A, m, η)
where A is an object of C, m (the multiplication) is a morphism A⊗A → A such that
m ◦ (m⊗ idA) ◦αA,A,A = m ◦ (idA⊗m), and η (the unit) is a morphism 1 → A such that
m ◦ (idA⊗ η) = idA ◦ rA and m ◦ (η⊗ idA) = idA ◦ lA. In the same way that one defines an
algebra in C one can define a coalgebra A = (A, ∆, ε) where ∆ : A → A⊗A and ε : A → 1
obey the co-associativity and the counit condition.

Definition 0.1 A Frobenius algebra A = (A, m, η, ∆, ε) is an algebra and a coalgebra such
that the coproduct is an intertwiner of A-bimodules, i.e. (idA⊗m) ◦ (∆⊗ idA) = ∆⊗m =
(m⊗ idA) ◦ (idA⊗∆).

We will use the following graphical representation for the morphisms of a Frobenius
algebra,
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A
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3

A classification of rational CFT

Constructions

A Frobenius algebra A = (A, m, η,∆, ε) is special if

m ◦∆ ∝ idA, ε ◦ η ∝ id1.

Theorem (K.-Runkel)
If A is a special symmetric Frobenius algebra in CV , then
(A|Z(A), idZ(A)) gives an open-closed CFT over V .

Example: A = 1 ∈ CV , Z(A) = ⊕iU∨
i ⊗C Ui.

For any V -module X, A = X ⊗X∨, Z(A) = Z(1) = ⊕iU∨
i ⊗C Ui.
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Part IV.   Boundary-bulk duality and defects

• Holographic Principle and boundary-bulk duality

• dualities = invertible defects



Holographic Principle: 
 
Theorem (Fjelstad-Fuchs-Runkel-Schweigert, K.-Runkel): 

Given an open-closed CFT                        over    ,  
if      is simple and                , then the bulk theory     is 
isomorphic to the center of       . 
 

 

What is a conformal field theory ?

Liang Kong∗
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〈c′, g ◦ f(a)〉 :=
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〈c′, g(Pnf(a))〉, Pn : B → B(n)

◦

An object A is a graded vector space over C with finite dimensional homogeneous spaces,
i.e. A = ⊕nA(n).

Let V be a rational VOA. We use CV to denote the category of V -modules and Z(CV ) the
quantum double of CV . Let F : Z(CV ) → CV be the forgetful functor and F∨ : CV → Z(C)
the right adjoint of F . Let Cl(A) denote the left center of an A in Z(CV ).

Let C be a tensor category. We write 1 ∈ C for the unit object; ⊗ : C × C → C for the
tensor bifunctor; 1⊗ A ∼= A ∼= A⊗ 1 and rA : A⊗ 1 ∼= A for A ∈ C for unit isomorphisms;
αA,B,C : (A⊗ B)⊗ C ∼= A⊗ (B ⊗ C) for A, B, C ∈ C for the associator. If C is braided, we
write cA,B : A⊗B → B ⊗ A, for A, B ∈ C, for the braiding isomorphisms.

If C is rigid, each object U is equipped with a left dual ∨U and a right dual U∨. A ribbon
category is a rigid braided tensor category with a twist isomorphism θU : U → U for each
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Conversely, in rational CFT, the bulk theory does not 
uniquely determine the boundary theory, but the 
boundary theories are unique up to Morita equivalence. 

Theorem (K.-Runkel):  

For two simple special symmetric Frobenius algebras,       

                                                                     .

satisfying the following axioms:

1. modular-invariance of Acl:

2. Cardy condition:

A ∼=Morita B iff Z(A) ∼=algebra Z(B)
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Parallel results of other QFTs: 

1. 3-d Turaev-Viro theory: (Kitaev-Mueger, Etingof-Nikshych-Ostrik)
boundary: A --- a finite fusion category, 
bulk:  Z(A) --- monoidal center.

2. open-closed TCFT (Costello),  
boundary:  A --- a Calabi-Yau category, 
bulk: Z(A)=HH*(A) --- a derived center.                

3.                  generalization of Deligne conjecture 
(Konstevich, Lurie),  
boundary: A --- an                    , 
bulk: Z(A) --- an                     .
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Geometric interpretation: 

a closed CFT = a free loop space LX, 

an open CFT = the space of paths with two ends 
ending on a fixed subspace (D-branes) of X.  

For a given closed CFT      ,  a D-brane is a pair 
                               such that              
gives an open-closed CFT. 
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A Frobenius algebra A in C is called symmetric if it satisfies
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. (0.7)

f : A → B f∗ : B → A m ◦ cA,A = m
Z(C) Z(A)
dim Aop #= 0
m ◦∆ ∝ idA

ε ◦ η ∝ id1

(A|Z(A), idZ(A))
A = 1 ∈ CV

Z(1) = ⊕iU∨
i ⊗C Ui
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α
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holds for all i, j ∈ I.
Theorem: An open-closed CFT over V is equivalent to a triple (Aop|Acl, ιcl−op) where

1. Acl is a commutative symmetric Frobenius algebra in Z(CV ),

2. Aop is a symmetric Frobenius algebra in CV ,

3. ιcl−op : Acl → Z(Aop) is an algebra homomorphism.
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X Y

[X,X]
[X,Y]

[Y,Y]

Boundary condition: X, Y are chiral modules over a closed CFT;
Open CFTs: [X,X], [Y,Y];            [X,Y] is a [Y,Y]-[X,X]-bimdule.

Conjecture:  an open CFT determines a closed CFT by taking center.



Conformal invariant D-branes:

Open-closed CFT over V means it satisfies a so-called V-
invariant boundary condition, which says that boundary is 
transparent to V. D-branes in this context is called V-
invariant D-branes. But they are too few to recover 
classical geometry. 

But we only need  Vir-invariant boundary condition, where 
Vir is the smallest sub-VOA of V containing only the 
Virasoro element (or the energy-momentum tensor).  That 
is why it is also called conformal invariant D-branes. Such 
D-branes are rich enough to recover all points in the target 
manifolds and much more. 



How the notion of manifold emerges? 

1. the moduli space of D0-branes; 
2. in the large volume limit (Kontsevich-Soibelman);
3. other classical limit.



How the notion of time emerges?

Connes observed that a type-III factor contains a God given 
1-dimensional (outer)-automorphism subgroup which 
should be interpreted as time flow. 

Question: will time emerges from the automorphism group 
of a CFT? 



Dualities=invertible defects:

The automorphism group of a bulk theory is equivalent to the 
Picard group of the invertible bimodules of a boundary theory.

Theorem:  

1. rational CFT case:   (Davydov-K.-Runkel)

2.  Turaev-Viro 3-d TFT:  
(Kitaev-K., Etingof-Nikshych-Ostrik, Drinfeld)
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Thank you !



classical 
geometry 

 classical 
algebra

stringy algebraic 
geometry (SAG)

stringy 
algebra

affine 
scheme: M

commutative 
ring loop space LM closed CFT C

points in M: 
x,y

prime 
ideals: x, y

sub-manifolds of M:  
X, Y

D-branes: X, Y

no structure 
b/w a, b

no 
structures 
b/w a,b

the path space 
between sub-

manifolds A and B

[X,Y]: [Y,Y]-
[X,X]-bimodule

Laplacian (Dirac) 
operators on LM

Virasoro algebra 
(super version)


