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Abstract

This thesis is dedicated to the study of K-theoretical properties of D-branes and

Ramond-Ramond fields.

We construct abelian groups which define a homology theory on the category of

CW-complexes, and prove that this homology theory is equivalent to the bordism

representation of KO-homology, the dual theory to KO-theory. We construct an iso-

morphism between our geometric representation and the analytic representation of

KO-homology, which induces a natural equivalence of homology functors. We apply

this framework to describe mathematical properties of D-branes in type I String the-

ory.

We investigate the gauge theory of Ramond-Ramond fields arising from type II String

theory defined on global orbifolds. We use the machinery of Bredon cohomology and

the equivariant Chern character to construct abelian groups which generalize the

properties of differential K-theory defined by Hopkins and Singer to the equivariant

setting, and can be considered as a differential extension of equivariant K-theory for

finite groups. We show that the Dirac quantization condition for Ramond-Ramond

fieldstrengths on a good orbifold is dictated by equivariant K-theory and the equiv-

ariant Chern character, and study the group of flat Ramond-Ramond fields in the

particular case of linear orbifolds in terms of our orbifold differential K-theory.
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Introduction

“The most powerful method of advance that can be suggested at present is to employ

all the resource of pure mathematics in attempts to perfect and generalise the

mathematical formalism that forms the existing basis of theoretical physics, and after

each success in this direction, to try to interpret the new mathematical features in

terms of physical entities”

P.A.M. Dirac, 1931

Since the dawn of science, the interaction between physics and mathematics has

always been an interesting and debated one, given the apparent difference between

these two disciplines. Indeed, on one hand, physics deals with natural phenomena as

they happen in an “objective reality”, external to the observer, and the aim of physics

is then to understand and formulate the laws they obey. On the other hand, mathe-

matics appears to deal with a reality which is internal to the human being, populated

by objects which need only obey the laws of logic and consistency. Furthermore, their

methodology seems rather different: physics proceeds by experiments and particular

cases, while mathematics proceeds by deduction and chains of logical statements. As

it always happens when different disciplines come in contact, the interaction of these

two human activities is bound to enlarge our knowledge of the reality we live in,

and of the nature of the human being himself. In this respect, the 20th century has

been of a crucial importance. In particular, most part of it has been dominated by

the influence of the advances in modern mathematics, such as differential geometry,

functional analysis, and algebra in the formulation and understanding of fundamen-

tal physical theories, such as General Relativity, Quantum Mechanics, and Quantum

Field Theory. This influence was so prominent and surprising that Eugene Wigner

was lead to celebrate it in the now classic paper “The Unreasonable Effectiveness of

Mathematics in the Natural Sciences” [93]. This fruitful interaction has become even

stronger in the late part of the last century. Interestingly, though, we have somehow

witnessed the shift of influence from mathematics to physics, in such a way that we

are lead to wonder about the “unreasonable effectiveness of physics on mathematics”.
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The description of Jones’ polynomials via quantum field theoretical techniques, which

earned Edward Witten a Fields Medal in 1990, is only the most evident result of the

above interaction. This is not something new: after all, differential calculus was born

mainly out of the necessity to solve problems in mechanics. However, mathematics

in the 20th century, in particular in its second half, has evolved independently of any

application, following more abstract and formal principles. This makes the possibility

of its relation with physics even more exciting and surprising.

Despite the difficulties and controversies surrounding it, it is undeniable that String

theory has played a major role in these developments, generating an incredible num-

ber of interesting problems in different fields of mathematics, in particular algebra,

geometry and topology. The rich structure of String theory has lead mathematical

physicists and pure mathematicians to work on the same problems, albeit with dif-

ferent attitudes and motivations, allowing both communities to better appreciate the

extent of their own subject of study.

The present work of thesis belongs to the above trend, finding its place at the inter-

face of geometry, topology, and String theory. Loosely speaking, the “middle point”

is represented by the circle of ideas surrounding K-theory, a generalized cohomology

theory developed by Atiyah, Hirzebruch, and Grothendieck, among others, which can

be defined in terms of complex vector bundles on topological spaces. The relevance of

K-theory in String theory rests on the fact that D-branes, extended objects present

in the theory, have charges which are not classified by the homology cycle of their

worldvolumes, as expected, but rather by the K-theory of their normal bundles in

the spacetime manifold. In the first part of this thesis, we will exploit the fact that

a more natural description of D-branes can be given in terms of K-homology, which

is the generalized homology theory dual to K-theory. The interesting mathematical

aspect concerning K-homology is the fact that it can very naturally be constructed

by using both a geometric and an analytic representation, respectively in terms of

Spinc-manifolds and vector bundles, and of Fredholm modules. In particular, Baum

and Douglas [14] showed that an isomorphism can be constructed at the level of the

representative cycles, and that such an isomorphism induces a natural equivalence

between the geometric and analytic K-homology functors. The authors then showed

that the existence of such an isomorphism is equivalent to the Index Theorem of

Atiyah and Singer for the canonical Dirac operator, and conjectured that this is the

case for any flavour of K-theory.

In this thesis we will support this conjecture, by constructing a natural equivalence
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between geometrical and analytical KO-homology, the dual theory to the K-theory of

real vector bundles, elucidating its relation with a suitable Index Theorem.

The difficult aspect of the above analysis lies in the fact that the index homomorphism

takes values in abelian groups with torsion, which does not allow a local description

in terms of characteristic classes. Since KO-homology describes D-branes in type I

superstring theory, we will be able to construct D-branes with torsion charges which

are not associated to any spacetime form field.

Indeed, D-branes can also be realised as currents for Ramond-Ramond fields. These

“dual” objects are gauge fields locally described by differential forms of different de-

grees, depending on the type of String theory considered. Their fieldstrengths satisfy

generalized Maxwell equations, and they interact with D-branes via the usual integral

coupling. Since D-brane charges are classified by K-theory/K-homology, it is cer-

tainly expected that K-theory plays some role in the Ramond-Ramond gauge theory

behaviour. This is indeed the case: the suitable mathematical formalism to describe

these fields in nontrivial backgrounds is known as differential K-theory, which is an

example of generalized differential cohomology theories recently developed in [54]. In

particular, the main ingredient is the Chern character homomorphism from K-theory

to the even part of the deRham cohomology ring of the spacetime manifolds, which

roughly realizes the Ramond-Ramond current generated by D-branes.

In the second part of this thesis, we will generalize the arguments leading to the

above conclusions to the case of type II String theory on orbifolds. An orbifold can

be loosely described as a singular object which is locally isomorphic to the quotient

of an Euclidean space by a finite subgroup of the group of linear transformations. De-

spite the presence of the singularities, String theory behaves well on such objects: in

particular, D-branes can be introduced, and their charges are classified by equivariant

(or orbifold) K-theory, as proposed by [94]. We will analyse the Ramond-Ramond

gauge theory arising from the closed type II String theory on global orbifolds, and

demonstrate the role played by equivariant K-theory. In particular, we will construct

some abelian groups satisfying all the expected properties to be considered a general-

ization of differential K-theory for global orbifolds. This will require the introduction

of an equivariant cohomology theory not very popular in the physical literature, devel-

oped by Bredon in [22], which nevertheless, as we will argue, captures all the relevant

physical properties of Ramond-Ramond fields on orbifolds.

3



Plan of the Work

We will know give a brief description of the contents of this thesis, trying to highlight

the main new results in mathematics and String theory.

In Chapter 1 we introduce some generalities about String theory, focusing on

the structure of its quantum spectrum and on the low energy limit. We have tried

throughout to express all the relevant notions in a precise mathematical framework

whenever possible, and we have avoided details of the constructions involved, referring

the reader to the extensive literature on the subject. In this way, the basic concepts

relevant to this work of thesis should be accessible to a mathematically minded audi-

ence acquainted with the basics of field theory and quantum mechanics.

In Chapter 2 we introduce D-branes as boundary conditions for open String theory,

emphasising the geometric and topological properties of such objects. Indeed, we will

focus mainly on properties of D-branes that are expected in any topological nontrivial

background, such as the behaviour of the Chan-Paton vector bundle. The main

properties of supersymmetric D-branes are briefly reviewed via the analysis of the

spinor bundle on the D-brane worldvolume, which is a recurrent ingredient throughout

this thesis. We will introduce the gauge theory of Ramond-Ramond fields, and discuss

Ramond-Ramond charges and the anomalous couplings with D-branes. Also in this

case, we will avoid the rather lengthy computations regarding the inflow mechanism,

since these techniques will not play any relevant role in this work of thesis. Finally, we

state Sen’s conjectures on D-brane decay and mention Witten proposal on D-brane

charge classification.

Chapter 3 consists of a quick introduction to topological K-theory. For a given

CW-complex X, we define the group K0(X) as the Grothedieck group associated to the

monoid of vector bundles over X, and define the higher K-groups via suspension. We

describe the multiplicative structure possessed by K-theory, and discuss the Atiyah-

Bott-Shapiro isomorphism in some details. We then restrict ourselves to the category

of Spinc-manifolds, discussing the concept of K-orientation, Thom isomorphisms, and

the Chern character. Finally, we illustrate how the K-theoretical machinery is used in

the classification of D-brane charges in type II and type I String theory. This chapter

is of great importance, since the concepts therein will be tacitly assumed throughout

the rest of the thesis.

Chapter 4 consists mostly of original material regarding KO-homology. After a

brief introduction on dual theories and spectral KO-homology, we will recall the basic

notions about the theory of real C∗-algebras, emphasising the differences with the
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analogous results in the theory of ordinary complex C∗-algebras. We will then intro-

duce Kasparov’s formalism for KKO-theory, which is based on the notions of Hilbert

modules and generalized Fredholm modules, and define analytic KO-homology for a

topological space X via the C∗-algebra of real functions on X. We proceed to con-

struct geometric KO-homology in terms of Spin manifolds and real vector bundles. By

comparison with the bordism description of spectral K-homology developed in [58],

we prove that our construction is a generalized homology theory dual to KO-theory,

and discuss the various relevant homological properties. We then introduce the main

mathematical result of this chapter, given by the construction of an isomorphism µ

between the geometric and analytic representation of KO-homology which induces a

natural equivalence between the geometric and analytic KO-homology functors. To

this aim we introduce some index homomorphism on geometric and analytic KO-

homology, and prove that the Index theorem for a suitable Dirac operator implies

that µ is indeed an isomorphism. We point out that the proof of the above theorem

appears also in [15], albeit it is completely different from the one we present here,

which is more suitable for the applications we present later. We also construct a

homological real Chern character, and use it to give an alternative derivation of coho-

mological index formulas for the canonical C`n-linear Atiyah-Singer operator. From

the physical point of view, we introduce the concept of wrapping charge of a wrapped

D-brane, showing that in type I String theory it is a genuinely different notion from

that of an ordinary D-brane. Finally, we construct nontrivial generators for the KO-

homology of a point, and interpret these in terms of wrapped D-branes.

In Chapter 5 we give a detailed account on (generalized) differential cohomology

theories. We motivate this mathematical formalism by discussing the properties of

ordinary electromagnetism with Dirac quantization of charges in topologically non-

trivial backgrounds. We give a rather extensive treatment of both Cheeger-Simons

groups and Deligne, in order to build a solid intuition for these mathematical objects.

We then discuss the Moore and Witten argument regarding the charge quantization

of Ramond-Ramond fields, as proposed in [74]. We conclude the chapter by explain-

ing the construction of differential K-theory of Hopkins and Singer, which will be

generalized later in the thesis.

In Chapter 6 we present new physical and mathematical results regarding String

theory on global orbifolds. We first give a brief introduction to equivariant cohomol-

ogy theories on the category of G-CW complexes, and consider equivariant K-theory

as an example. We then proceed to define Bredon cohomology in terms of natural

transformations between functors on the orbit category of a finite group. This is the
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main ingredient used to constructed the equivariant Chern character defined in [67],

which has the unique property of inducing an isomorphism on rational equivariant

K-theory. One of the main new physical result of this chapter is to demonstrate that

the Dirac quantization of Ramond-Ramond fields on orbifolds is dictated by the above

Chern character, which, after a process of delocalization, can be used to describe the

couplings of Ramond-Ramond field on global orbifold with fractional D-branes, which

we will describe in terms of equivariant K-homology. We check this statement on lin-

ear orbifolds, which are the usual cases studied in the physics literature. Our approach

has the main advantage of being applicable to the case of nonabelian orbifolds and for

quotients of general Spin manifolds by finite groups. From the mathematical point of

view, we construct abelian groups which have all the desired properties for a gener-

alization of differential K-theory to global orbifolds. This is mathematically needed,

since the general results of Hopkins and Singer in [54] hold only for generalized co-

homology theories on the category of manifolds. Far from reaching the generality of

[54], we find this an important step towards the general construction of differential

extensions of equivariant generalized cohomology theories. We will use our equivari-

ant (or orbifold) differential cohomology theory to describe Ramond-Ramond fields

on orbifolds, and study in particular flat Ramond-Ramond potentials.

We conclude the work with Appendices which aim to settle the notations for some

of the standard notions used throughout the thesis.
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“Freedom is the freedom to say that two

plus two make four. If that is granted,

all else follows.”

G.Orwell, 1984



Chapter 1

Generalities on String Theory

In this chapter we will collect some basic results in String theory that will be used as

the starting point for the rest of the thesis.We will review some well known aspects

of the perturbative formulation of bosonic and supersymmetric string theories. We

direct the reader to [49],[79],[33] for more information about these constructions.

1.1 The Bosonic String

The action functional for a string propagating in spacetime is a direct generalization

of the functional describing the motion of relativistic point particle. In the case of a

point particle, the action functional for a given curve γ : [0, 1] → M, where M is a

d-dimensional Lorentzian manifold, is given by

S[γ] :=

∫
γ

µg|γ (1.1.1)

where µg|γ is the invariant volume form for the spacetime metric restricted to the

curve γ. The action S computes the length of the curve γ, the worldline of the point

particle, and its stationary points are the geodesics for the metric g on M.

It is natural to generalize this action for an extend p-dimensional object propa-

gating in M as the “volume” of the surface swept by the object while propagating.

In other words, given f : Σ → M, where Σ is a p-dimensional manifold, called the

worldsheet, and f is a smooth immersion, we have that

S[f ] :=

∫
Σ

µf∗g (1.1.2)

The case of a free string propagating in M is given by p=2, and by Σ ' S1 × R for

closed string, and Σ ' [0, 1]× R for open strings.
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The Bosonic String

The functional S is called the Nambu-Goto action and in a local system of coordinates

{σi} over Σ, the functional S can be represented as

S[f ] =

∫
Σ

dpσ

√
−det(gµν

∂xµ

∂σi
∂xν

∂σj
) (1.1.3)

where xµ(σ) are local representatives for the function f .

Unfortunately, this action is non-polynomial in the xµ and its derivatives, making its

quantization difficult to define unambiguously, even in flat spacetime.

For this reason, it is generally preferred to use the classically equivalent Polyakov

action given by

S[f, γ] := k

∫
Σ

µγ < γ, f ∗g > (1.1.4)

In the above expression, γ is a Lorentzian metric on Σ, <,> denotes ||df ||2, defined

by considering df as an element in Ω1(Σ; f ∗TM), and using both γ on T∗Σ and g

on TM, and k is called the tension. Notice that now the intrinsic metric γ is a

dynamical variable, while the metric tensor g is considered as a “background”, i.e.

it is a nondynamical quantity. When also γ is held fixed, the action S describes a

nonlinear sigma model, and its stationary points when p=2 are called harmonic maps.

In the local system of coordinates as above the Polyakov action can be represented as

S[f, γ] = k

∫
Σ

dpσ
√
−det(γ)γij(gµν

∂xµ

∂σi
∂xν

∂σj
) (1.1.5)

By construction, the Polyakov action is invariant under Diff+(Σ), the group of ori-

entation preserving diffeomorphisms, and under ISO(g), the group of isometries of g.

Moreover, only in the peculiar case p=2 the functional S is invariant under C∞+ (Σ),

the group of smooth positive functions on Σ, acting as Weyl rescaling of the metric

γ, i.e. transformations of the type γ → ρ · γ.

Hence the full group of symmetries of the string action is given by Diff+(Σ) n
C∞+ (Σ)× ISO(g), where n means semidirect product.

The invariance under diffeomorphims and Weyl scalings is crucial in giving the Polyakov

action a more tractable form, allowing to use canonical quantization techniques, and

as this is possible only for p=2, this is seen as a reason to rule out higher dimensional

extended objects other than strings.

Indeed, a 2-dimensional manifold is always locally conformally flat, i.e. there always

exist local coordinates (u, v) in which the metric γ can be expressed as ρ·ηab, where ηab

is the usual Minkowski metric in 2 dimensions. Diffeomorphisms and Weyl invariance

then allow to “pick a gauge”, called the conformal gauge, in which the functional S is

the action functional for a vibrating string in a curved spacetime.
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The Supersymmetric String

When M is the d-dimensional Minkowski spacetime, the equations of motion of the

string in the conformal gauge can be completely solved, and its canonical quantization

carried on thanks to an additional symmetry enjoyed by the string functional.

Indeed, conformal transformations of the Minkowski metric in two dimensions do not

spoil the (local) conformal gauge, implying that String theory (at any fixed γ) is a two

dimensional conformal field theory, hence completely integrable by symmetry consid-

erations alone, as the conformal algebra in two dimensions is infinite dimensional.

Conformal invariance is so important that it is required to hold also at the quantum

level, where an anomaly could possibly spoil it: the cancellation of such a conformal

anomaly, indeed, fixes the spacetime dimensionality to d=26, called the critical di-

mension.

Remark During this thesis, we will mainly consider both the worldsheet and space-

time manifolds as being equipped with a Riemannian as opposed to a Lorentzian

metric tensor. Even if this is not per se physically realistic, in most of the cases one

can perform a Wick rotation on the spacetime manifold and obtain the relativistic

description we have introduced so far.

Moreover, we will also consider different topologies for the worldsheet, and in partic-

ular we will regard Σ as a Riemann surface of genus g: this is essentially due to how

interactions are introduced in String theory at the quantum level. This perturbative

formulation of String theory also forces the use of Riemannian worldsheets, as opposed

to Lorentzian, since a compact manifold admits a Lorentzian metric if and only if the

Euler number vanishes. For example, the transition amplitude for the propagation of

a quantum string will be given by

A ∼
∑

topologies of Σ

∫
Met(Σ)

Dγ

∫
Map(Σ,M)

Df e−S[f,γ]

where Dγ and Df are “path integral measures” over a space of metrics and maps,

respectively. More precisely, the above expression should be “gauge fixed”: indeed,

the path integral over the space of metrics reduces to an integral over a finite dimen-

sional moduli space.

1.2 The Supersymmetric String

Despite the rich structure of its symmetries, the bosonic string has some fundamental

flaws. The most relevant ones, apart from the high dimensionality of the spacetimes

10
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allowed, are the presence of a tachyonic state, which is a strong signal towards insta-

bility of the quantum theory, and the absence of fermions, which is not a feature of

an inconsistent theory, but nevertheless fermions are required for physical reasons.

A way out of these two problems is the so called Neveu-Schwarz-Ramond (NSR) for-

mulation of String theory, which consists in introducing additional fermionic degree

on the woldsheet.

More precisely, the Polyakov action can be at first generalized as

S[f, γ, ψ] := k

∫
Σ

µγ
{
< γ, f ∗g > +ψ̄/Dψ

}
(1.2.1)

where ψ is a section of S ⊗ f ∗TM, with S the spin bundle over Σ for a given spin

structure, and /D is the Dirac operator associated to γ, coupled to f ∗TM.

Notice first that Σ is a spin manifold, being 2-dimensional, and it admits, at any genus

g, 22g inequivalent spin structures which can be distinguished by a ± sign along the

homology cycles of Σ. Moreover in even dimensions the spin bundle S decomposes

according to the chirality operator as S+ ⊕ S−.

One also requires ψ to be a Majorana spinor field to ensure that the full action is real.

Majorana spinors exist on worldsheets with Lorentzian signature, but not on those

with Euclidean signature. Anyway, in the Euclidean case one can use an ordinary

chiral spinor field ψ+, and choose ψ− to be its complex conjugate, in order to preserve

the degrees of freedom.

More concretely, ψ+ will be a section of K1/2, the square root of the canonical bundle

on Σ, and ψ− a section of K̄
1/2

for the same spin structure.

In the free (closed) superstring case, the topology of Σ admits a single homology

cycle, and hence there are two spin structures, which are conventionally referred to

as Ramond(R) and Neveu-Schwarz (NS), and can be characterized by

ψ±(τ, σ + 2π) = +ψ±(τ, σ) R: periodic conditions

ψ±(τ, σ + 2π) = −ψ±(τ, σ) NS: anti-periodic conditions

On a flat spacetime, the free superstring can be quantized using canonical quantiza-

tion: the main difference with the bosonic string is given by the appearance of new

sectors, NS and R, given by the boundary conditions for the spinor fields ψ.

In particular, the states in the Fock space FNS for Neveu-Schwarz degrees of freedom

can be shown to be spacetime bosons, while the states in the Fock space FR for Ra-

mond degrees of freedom can be shown to be spacetime fermions.

Unfortunately, both the above spaces contain negative norm states that are not elim-

inated by any kind of symmetry, in contrast to what happens in the bosonic string
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case thanks to the Virasoro algebra constraints. To ensure this, one modifies the

action (1.2.1) by introducting a gravitino, a spin 3/2 field, and an interaction term in

order for the action to be invariant under local worldsheet supersymmetry. In analogy

with the bosonic case, the modified superstring action will define a superconformal

field theory: the preservation of the super conformal symmetry at the quantum level

requires the spacetime dimensionality d to be 10.

Even with these modifications, the theory is still inconsistent, as there is still a tachy-

onic state in the NS sector, with no supersymmetric partner state, making it impos-

sible to have spacetime supersymmetry.

To overcome this final problem, Gliozzi-Scherk and Olive proposed a procedure for a

truncation of the RNS String theory that produces a spectrum with spacetime super-

symmetry. This truncation is called the GSO projection, which can be thought as a

projection on the space of invariant states for the operator (−1)F , which assigns to

each state the number of fermions present modulo 2.

This operator can be carefully defined in both the Ramond and Neveu-Schwarz sector,

obtaining that the free open GSO projected string is N=1 supersymmetric, while the

free closed GSO projected string is N=2 supersymmetric.

Remark In the functional integration formulation, the GSO projection corresponds

to a weighted sum over the spin structures of the worldsheet, with the weight choosen

in such a way that the resulting amplitudes are invariant under the action of the

modular group of Σ.

1.3 Quantum aspects

In this section we will briefly recall the (massless) content of the supersymmetric

string space of states, in flat 10-dimensional Minkowski spacetime [49, 33].

Denote by Fk and F̃k the Fock spaces for the bosonic degrees of freedom at momentum

k for left and right movers, obtained upon a holomorphic decomposition of the fields

in local complex worldsheet coordinates.

Then the full RNS Fock space for open and closed strings is given by

Fopen :=
⊕
k

FRNS
k

Fclosed :=
⊕
k

FRNS
k ⊗ F̃RNS

k k ∈ R10 (1.3.1)
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where

FRNS
k := Fk ⊗ (FR ⊕ FNS)

and the same for F̃RNS
k .

After imposing the physical constaints required by the superconformal symmetry, we

will obtain two positive-definite Hilbert spaces for open and closed strings, denoted

by Fphys
open and F

phys
closed, respectively.

By (1.3.1), the open string Fock space contains two sectors, Ramond and Neveu-

Schwarz. The ground state in the Ramond sector satisfies a massless Dirac equation,

suggesting that it is single particle state for a spacetime fermion field, while the ground

state in the Neveu-Schwarz sector is a bosonic tachyon, obtained by a spacetime scalar

field.

Moreover, the first excited state is a massless vector state, with its degree of freedom

suggesting it is a one particle state for a Yang-Mills field [79, 49].

These, and an infinite tower of massive states, are contained in the left-moving sector,

but by (1.3.1) this suffices to construct the Hilbert space of the open string.

For the closed string, instead, we need to consider a tensor product for left and right

movers Hilbert spaces: we will have four sectors, characterized by the spin structure

choice for left and right-moving degrees of freedom.

The ground state in the NS-NS sector is a tachyon, as for the open string, while

the massless states contains, in the same sense as before, a graviton, associated to a

symmetric spacetime tensor of type (2,0), the B-field, coming from a spacetime two

form, and a dilaton, a spacetime scalar field. In particular, the graviton state satisfies

linearized Einstein equations, hence its name.

The R-NS (and NS-R) ground state is a massless state, which is reducible into a spinor

state coming from a spinor field λ, called the dilatino, and a gravitino state, coming

from a spinor-vector field. These are the superpartners of the dilaton and graviton,

respectively.

Finally, the ground state in the R-R sector is massless, and can be reduced in states

that are one particle states for spacetime differential forms of degree 0,. . . ,10, called

Ramond-Ramond fields. In a certain sense, this is the “most important” sector for

the content of this thesis: indeed, most of the next chapters will be devoted to ex-

plore the rich mathematical properties of these objects, and the interaction with their

“sources”, called D-branes.

Of course, all the sectors described above contain also a (infinite) number of massive

excited states.
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As was pointed out in the previous section, the theory is still inconsistent, due to

the presence of the tachyon state in the NS sector, and does not present spacetime

supersymmetry, required by the consistency of the coupling of the massless gravitino

appearing in the spectrum.

This enforces the use of the GSO projection, both for the open and closed string.

We are left then with three different spacetime supersymmetric string theories, called

type IIA, type IIB, and type I, which uses unoriented worldsheets. Moreover, the “I”

and “II” refers to the fact that the theory is spacetime supersymmetric with one and

two supercharge generators, respectively.

Type IIA and type IIB are superstring theories constructed from GSO projecting the

Fock space of closed strings: in this case, the GSO projection requires a choice of

chirality for the R ground state in the left and right moving sector, but by spacetime

parity symmetry the theories obtained by the same choice of chirality coincide. In-

deed, under exchange of left and right movers, type IIA is a non-chiral theory, while

type IIB is chiral. Moreover, it’s a theory of oriented closed strings.

The GSO projection modifies, among other things, the content of the massless R-R

sector: in type IIA there will be one particle states coming from differential form of

odd degree, while in type IIB there are states associated to differential forms of even

degree. Moreover, in type IIB the 5-form fieldstrenght is required to be selfdual.

Type I is a superstring theory constructed from open and closed strings, and will be

discussed further on, when we will introduce additional degrees of freedom for open

strings, called “Chan-Paton” factors, which are essential in obtaining massless Yang-

Mills states, i.e the standard model gauge interactions.

To end, we should mention the Heterotic String theory, which is a hybrid theory ob-

tained by combining right movers of type II String theory with bosonic left movers.

We will not discuss this theory in this thesis.

Remark As pointed out at the beginning of this section, the discussion above refers

to the spectrum of a string propagating in 10-dimensional Minkowski spacetime. This

is one of the very few cases in which the quantization of the theory can be done “ac-

curately”, even if in particular gauges and with a particular choices of spacetime

coordinates, and the spectrum can be found explicitly1. In particular, the associated

classical fields for the various particle states can be inferred thanks to the Poincaré

symmetry of Minkowski spacetime. It is generally “assumed” that the field content

1In case of interests, the choice of a gauge does no affect the quantum theory, as gauge invariance

is restored at the quantum level.
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of the effective theory does not change for a more generic choice of spacetime mani-

fold: this is a point of view we will adopt in the development of the following chapters.

1.4 Background fields and low energy limit

As we mentioned in the previous section, the closed string Fock space contains states

in its NS-NS sector that can be associated to a symmetric, an antisymmetric and

scalar massless field. These fields can arise as a modification of the Polyakov action,

describing a string propagating in background fields. By background field we mean a

(spacetime) field which is not affected by the presence of the propagating string, and

that does not represent a dynamical variable; moreover, background fields are not

integrated over in the path integral.

The bosonic part of the modified action is given by

1

8πls
2

{∫
Σ

µγ < γ, f ∗g > +

∫
Σ

f ∗B +

∫
Σ

µγ Rγf
∗Φ

}
(1.4.1)

where g is the metric tensor on the spacetime M, B is locally an element in Ω2(M; R),

Φ ∈ C∞(M; R), and Rγ is the Ricci scalar for the worldsheet metric. Moreover we

have expressed the tension k in term of the worldsheet length scale ls.

Notice that the first term in the modified string action “coincides” with the definition

(1.1.4), in the sense that in the formulation of the string dynamics as a nonlinear

sigma model we have tacitly assumed the presence of a gravitational background.

The second term contains the B-field, and for closed strings, i.e in the case ∂Σ = Ø,

it is invariant under the gauge transformation B→ B + dλ, with λ ∈ Ω1(M; R).

The last term plays an important role, as for any Riemann surface Σ of genus g one

has

χ(Σ) =

∫
Σ

µγ Rγ

where χ(Σ) = 2(1− g) is the Euler number of Σ, a topological invariant.

This makes the expansion in powers of l, called the low energy expansion, somehow

complicated, as the term containing the dilaton is directly dependent on the loop

order.

Moreover, the action (1.4.1) is invariant underDiff+(Σ) andDiff(M), but not under

Weyl rescaling. Indeed, enforcing these (super) symmetries constrains the choice for

the above background fields, providing equations they have to obey at the lowest

order in l, which are essentially given by the vanishing of β-functions governing the
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Weyl scaling of the model described by (1.4.1).

These equations can be obtained as Euler-Lagrange equations for the following action

[79, 49]

2

∫
M

µg e
−2Φ(Rg + 4〈DΦ,DΦ〉 − 1

2
H ∧ ?H) (1.4.2)

where D the usual covariant derivative, H is the 3-form field strength for the B-field,

and ? denotes the Hodge operator on M. Moreover, the critical dimension d of M is

again 10.

The important aspect about the above action is that it corresponds to (part of) the

bosonic part of N=2 supergravity. More precisely, the above action has to be com-

plemented with an additional set of fields coming from the low energy approximation

of String theory, but that cannot be incorporated as background fields. These are

essentially the field strengths for the Ramond-Ramond fields, giving a type IIA or

type IIB supergravity theory. We will discuss these additional contributions in the

next chapters, as they play a prominent role in the study of Ramond-Ramond fields

as a (generalized) gauge theory.

We conclude this section by briefly mentioning the main differences between the per-

turbative analysis around general field configurations in String theory and quantum

field theory. In quantum field theory, one usually starts with a set of canonical fields

φ and a classical action S[φ] which is independent of any quantum parameter, such

as }. In the functional integral formalism, perturbation theory in the loop expansion

is carried out by choosing a classical field configuration φ0, and expanding the fields

around this configuration as φ = φ0 +
√

}ϕ. The Feynman rules are then obtained

by expanding the action S[φ] in powers of
√

}: the propagator for the field ϕ and

the interaction vertices will then depend upon the choice of the background field φ0.

As φ0 is a classical solution, all the Feynman graphs usually referred to as tadpoles,

corresponding to the linear term in
√

}, vanish. This works also in the other way, in

the sense that the vanishing of all the tadpoles graphs allows one to infer that φ0 is

a classical solution.

As stated, this procedure has no analogue in String theory, simply because there is

no equivalent for the canonical fields φ: indeed, the S-matrix in String theory is not

obtained by an action governing string interactions, but it is defined perturbatively

through a generalization of Feynman diagrams. Hence it is not possible to check di-

rectly that a given configuration for the fields g, B and Φ (and possibly other fields)

is a background configuration, as the string action does not include their equations

of motion. One can then think of using the vanishing of tadpole graphs as a criterion
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to decide when a set of fields defines a background solution.

It is remarkable, then, that asking for the action (1.4.1) to define a conformal field

theory of a given central charge, which is the case in which one is assured that there

exists a Hilbert space of states (no nonnegative and zero length vectors), forces the

tadpole graphs (of certain fields) to vanish, giving us the equations of motion that

the background fields have to satisy.

1.5 Some comments on the B-field

As we have seen in the previous section, an additional term containing a two form

B can be consistently added to the (bosonic) string action. We have also mentioned

that the action so extended enjoys a “gauge symmetry” with respect to the field

B. This gauge simmetry gives the B-field a very rich mathematical interpretation:

indeed, even if the B-field “plays no active role” for the extent of this thesis, we find

it neverthless important to give some informations about its mathematical nature.

We start by noticing that the description of the B field as a two form on the spacetime

M need not hold globally, as the B field is defined up to the transformation B→ B+dλ,

since the action (1.4.1) is invariant under this process. A local description, then, can

be obtained as follows.

Let {Uα} be a open cover of M enjoying the property that Uα and all its intersections

are contractible sets. Such a cover is called a good cover, and any manifold can be

equipped with one.2 Moreover, denote with Uαβ...τ the intersection Uα∩Uβ ∩· · ·∩Uτ .

As in any open set Uα the form Bα is only defined up to the transfomation above, we

have that on any Uαβ the following equation holds

Bβ − Bα = dλαβ λαβ ∈ Ω1(Uαβ; R) (1.5.1)

These equations imply that on a triple overlap Uαβγ one has

d(λαβ + λβγ + λγα) = 0 (1.5.2)

Then by Poincaré’s lemma one has that

λαβ + λβγ + λγα = dfαβγ fαβγ ∈ C∞(M ; R) (1.5.3)

for some smooth real function fαβγ.

Finally, on a quadruple intersections Uαβγσ

fβγσ − fαγσ + fαβσ − fβγα = 2π ωαβγσ (1.5.4)

2Just consider a cover made of geodesically complete open sets for some Riemannian metric.
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for some real numbers ωαβγσ.

Notice, at this point, that the local field strengths defined as Hα := dBα can be

“glued” together to form a globally defined three form on M. If we require H to have

integral periods, then one can choose ωαβγσ to be integer numbers. According to this

description, then, a B-field configuration is defined as a triple (Bα, λαβ, fαβγ) satisying

the above equations.

In a mathematical language, the triple above defines a (abelian) gerbe with connection,

which is a generalization of the idea of principal bundle with connection. As in the

case of a connection on a principal bundle, the field strength H is related to the

cohomology of the manifold M: indeed, the class [H] represented by H in H3(M; R) is

the image of the class [ωαβγσ] ∈ Ȟ
3
(M; R) under the isomorphism between DeRham

cohomology and Cěch cohomology with coefficients in the sheaf of locally constant

real functions.

For the rest of this thesis, we will always assume that the B-field is “turned off”,

meaning that we will always work under the hypothesis that B = 0. We will mention,

though, the major modifications that the presence of a nontrivial B-field induces.

Notice, at this point, that the above definition of a gerbe has been given in a particular

choice of a good cover: this raises the question of the independence of this definition

from any particular choice.

A more elegant formulation, which manifestly does not rely on any particular local

choice, will be the subject of the next chapters.
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Chapter 2

D-branes and Ramond-Ramond

fields

In this chapter we will introduce D-branes and analyze the main features of open

strings in the presence of such objects. We will review the generalized electromag-

netic theory of Ramond-Ramond fields, and discuss their anomalous coupling with

D-branes. Finally, we will discuss Sen’s conjectures, and motivate the relevance of

K-theory in the description of D-brane charges.

2.1 D-branes as boundary conditions

As we have mentioned in the previous chapter, the bosonic string propagating in a

flat 26-dimensional Minkowski spacetime describes a two dimensional conformal field

theory, in which the spacetime cartesian coordinates are fields defined over a surface

of a given genus. We have also seen that String theory can be defined, apart from

instabilities and other unpleasant effects, both for closed and open strings: in the

latter case, the worldsheet Σ has a nonempty boundary ∂Σ. Since Σ has a boundary,

we are faced with the task of specifying boundary conditions for the conformal fields

defined on Σ. Moreover, one has to require that these boundary conditions preserve

the conformal invariance of the worldsheet theory.

For a general conformal field theory, the classification of local boundary conditions

preserving conformal invariance is very complicated to obtain; moreover, very often

the boundary conditions have no geometrical interpretation, making it more difficult

to understand their relation with the fundamental strings described in the previous

chapter.

For this reason, we will for the moment focus on those boundary conditions that have
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D-branes as boundary conditions

a clear geometrical interpretation, postponing the discussion of more general cases to

the next chapters.

Consider the Polyakov action (1.1.4) in the case in which Σ is a Riemann surface of

genus g with boundary ∂Σ. Recall that the dynamical variables are given by maps

from the worldsheet to the spacetime M, and the worldsheet metric γ.

At this point we can consider the action restricted to a subspace of Maps(Σ,M)

specified by the condition

f(∂Σ) ⊂ Q (2.1.1)

where Q ⊂ M is a submanifold of the target spacetime.

We have then for the moment the following geometrical working definition

Definition A D-brane is a (physical) object whose dynamical evolution is described

by a submanifold Q of the spacetime containing the woldlines of the end points of open

strings.

In the above definition we are also supposing that the manifold Q is chosen in such a

way that the worldsheet field theory is still conformal, and are usually referred to as

D-submanifold.

The “D” in D-brane refers to the fact that some of the coordinates representatives

for the map f are locally subject to Dirichlet boundary conditions. More precisely,

consider a set of coordinates {xµ} in M in such a way that Q can locally be represented

by the condition xα = 0, α = p + 1, . . . , 26, with p = dim Q, and choose coordinates

{σ, τ} on Σ such that τ is the coordinate along the boundary, for σ = 0, π.

Then condition (2.1.1) implies that

xµ(τ, σ)|σ=0 = xµ(τ, σ)|σ=0 = 0, µ = p+ 1, . . . , 26 (2.1.2)

which are referred to as Dirichlet boundary conditions.

Usually, (2.1.2) are supplemented with local Neumann conditions for the fields repre-

senting the coordinates on Q. Briefly, these can be enforced by requiring that

df |(∂Σ)⊥p
= 0, p ∈ ∂Σ (2.1.3)

where (∂Σ)⊥p denotes the space of normal vectors to the boundary in p. In other

words, the end points are free to move on the submanifold Q.

It is common use to refer to a D-brane represented by a p+1-dimensional manifold Q as

Dp-brane. More precisely, in the following we will refer to Q as the worldvolume of the

Dp-brane, suggesting a conceptual difference between a D-brane and the submanifold

it “wraps”, i.e. it is represented with. This difference will play an important role in
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the next chapters of this thesis.

We conclude this section by stressing out that the above boundary conditions do not

exhaust all the possible conditions for a boundary conformal field theory, and they

represent a particular well-behaved subset of boundary conditions. Neverthless, their

presence introduces remarkable additional features to String theory, as we will see in

the next sections. Also, notice that D-branes can be formally added also to the theory

of closed strings, since the condition (2.1.1) does not apply. In particular, D-branes

do not interact if no open strings are present.

2.2 The spectrum of open strings on Dp-branes

As usual in String theory, open strings in the presence of a Dp-brane can be quantized

only in very specific settings. Indeed, one usually considers open strings propagating

in flat d-dimensional Minkowski spacetime in the presence of hyperplanar D-branes,

i.e. D-branes whose worldvolume is specified by linear conditions in (spatial) cartesian

coordinates. Then, the spectrum content of the effective theory and its properties are

assumed to be the same for more general D-brane configurations.

Notice, at this point, that introducing a D-brane generally reduces the spacetime sym-

metries of the conformal field theory. For instance, in the flat case above, introducing

a fixed p+1-dimensional hyperplane in Minkowski spacetime destroys the translational

symmetry, and reduces the SO(1, d) action to that of SO(1, p)× SO(d− p− 1). This

is analogous to the fact that introducing an electron in spacetime breaks its transla-

tional symmetry, and is not surprising. The analogy is even deeper, in view of the

fact that D-branes can arise as solitonic solutions of a low energy effective theory.

Consider then a Dp-brane in d-dimensional Minkowski spacetime represented by the

hyperplane xµ = x̄µ, µ = p + 1, . . . , d, and where x0 is the time coordinate. In this

situation, the Fock space of the quantized open string contains, as in the case with-

out any D-brane, states that can be recognised as one particle states for a quantized

classical field. Moreover, these classical fields are constrained to “live” on the world-

volume representing the Dp-brane, in the sense that they can be naturally interpreted

as objects defined only on the brane itself.1 Notice, however, that statements about

the support of these fields are usually dependent on the quantization procedure, and

different procedures can yield in principle different answers.

1This is due essentially to the fact that they are states generated from the ground state by the

action of creation operators associated to the momenta corresponding to the coordinate describing

points on the brane.
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In the following, we will just list the first few states arising from the ground state,

referring the reader to [96] for more details.

As in the case of a bosonic open string without the presence of a D-brane, the ground

state contains tachyonic states, which arise by a scalar field on the brane, and consti-

tute a section of the normal bundle.

The next states are massless states, arising by a vector field on the D-brane, with

the degrees of freedom of a gauge field, i.e. they can be described by a 1-form A,

which can be shifted by an exact 1-form. This is usually interpreted as a Maxwell

field defined on the worldvolume of the Dp-brane. Actually, this field has a deeper

geometrical and topological description, as we will see in the next chapters.

Finally, there are massless states for each normal direction to the Dp-brane, coming

from scalar fields defined on the brane itself. These are usually interpreted as the

fields generating the excitations of the Dp-brane, describing fluctuations in the Dp-

brane position in spacetime.

In the case of general spacetimes and brane configurations, we will assume that the

picture described above is still valid locally for any given neighborhood of a point in

the Dp-brane worldvolume.

2.3 Chan-Paton factors and Adjoint bundles

In this section we will consider how the description in the previous section is modified

when we allow for the presence of n Dp-branes represented by the same worldvolume

Q. This is indeed possible, due to the fact D-branes represent boundary conditions

for the worldsheet conformal field theory, and hence they are distinguished by the

open string boundary. In this case, the n D-branes are said to be coincident.

Then, any quantum state of an open string constrained on the worldvolume of a set

of n coincident Dp-branes can be labelled by |k; ij >, where k is a given collection of

quantum numbers, and i, j = 1, . . . , n label the branes which the end points of the

strings are constrained to. Allowing a general superposition of this states, one has

that a general state assumes the form |k; a >=
∑

i,j λ
a
ij|k; ij >: the coefficients λaij

are called the Chan-Paton factors of the open strings.

For physical reasons ([79],[33]), the Chan-Paton factors λa = (λaij) are constrained

to be antihermitian, i.e. λa† = −λa; moreover, they are conserved in interactions.

Hence, the Fock space for an open string in the presence of n coincident Dp-branes is
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given by

FD
open ⊗ u(n)

where FD is the space of an open string in the presence of a single Dp-brane, and

u(n) is the Lie algebra of U(n). Consequently, all the massless fields described in the

previous section will take values, at least locally on the brane, in u(n).

As the Chan-Paton factors are conserved in interactions, their contribution in the

interaction amplitude at any level is of the form of a trace of matrix products. As

the trace of a matrix is preserved under the adjoint action of the group of invertible

matrices, the transformation λa → gλag†, with g ∈ U(n) is a symmetry of the system.2

Hence the Lie algebra u(n) can be seen as the adjoint representation for the matrix

group U(n).

Consider now a set of n Dp-branes wrapping a submanifold Q of the spacetime, and

let {Uα} be a good cover for Q. Recall that at low energy the spectrum produces a

u(n)-valued 1-form Aα, for any α. Consistently with the symmetry of Chan-Paton

factors and the properties of Aα, on a double intersection Uαβ we can have

Aβ = gαβ(p)Aαg
−1
αβ (p) + g−1

αβ (p)dgαβ(p) (2.3.1)

where gαβ : Uαβ → U(n) is a smooth function. At the same time, other fields will

obey similar properties. For instance, the u(n)-valued scalar field T describing the

tachyon will satisfy on Uαβ

Tβ = gαβ(p)Tαg
−1
αβ (p) (2.3.2)

The function gαβ must be the same as it arises from a symmetry of the transition

amplitude.

Consistency on triple overlaps requires that

Ad(gαβ)Ad(gβγ)Ad(gγα) = 1 (2.3.3)

The above condition implies that

gαβgβγgγα = ωαβγ1 (2.3.4)

where ωαβγ ∈ U(1), i.e. in the kernel of the adjoint representation. At this point one

can ask if it is possible to redefine the functions gαβ in such a way that ωαβγ = 1,

i.e. if the vector bundle Eadj, of which the tachyon field is a section, is the adjoint

bundle associated to a principle bundle P over Q defined by the transition functions

2U(n) is singled out because it preserves the antihermitian property of λa.

23



Chan-Paton factors and Adjoint bundles

gαβ. In this case, the u(n)-valued forms Aα can be seen as the local representatives

of a connection defined on the principal bundle P, hence as a Yang-Mills field over Q.

This “lifting” process is not always possible for general vector bundles: anyway, we

will always assume that this is possible. With this we mean that choosing functions

gαβ behaving as transition functions of a principal bundle is consistent with the path

integral for open strings in the presence of D-branes being well defined and gauge

invariant. In this case, the path integral is supplemented with a factor

hol∂Σ(f ∗A) (2.3.5)

which only makes sense when A is a connection on some principal bundle.

In the case in which a topologically nontrivial B-field is present, though, the equation

(2.3.1) has to be modified in order to take into account the gauge transformations for

the B-field discussed in section 1.5: this, in turn, forces a redefinition of the function

gαβ, which will now obey condition (2.3.4), with the cocycle ωαβγ directly determined

by the topological properties of the B-field. See [60] for more details.

Hence, in absence of a B-field, the bundle Eadj over Q is chosen to be decomposable

as

Eadj ' E ⊗ Ē

where E is a U(n)-vector bundle, and Ē is its complex conjugate. It is customary

to refer to the vector bundle E as the Chan-Paton bundle, as from this last we can

obtain the bundle of Chan-Paton factors Eadj.

We can then summarize the crucial aspects of this section by the following

Fact In the absence of a nontrivial B-field and in the low energy approximation, a

set of n coincident D-branes with worldvolume Q gives rise to a U(n)-vector bundle

E→ Q equipped with a linear connection.

Notice that the topology of the vector bundle E is not determined by the string

dynamics, and has to be specified a priori when introducing a set of D-branes. Also

for a single D-brane, we have to assign a line bundle over its worldvolume: in the case

of hyperplanar D-branes discussed in the previuos section, this is hidden by the fact

that any line bundle over such a hypersurface is topologically trivial.
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2.4 D-branes and Supersymmetry

In this section we will consider the effect of the presence of a D-brane in superstring

theories; we will focus, in particular, on the case of type IIA and IIB superstring

theories.

Recall that supestring theories, in the RNS formalism, are obtained by introducing

degrees of freedom on the worldsheet Σ which are sections of S(TΣ)⊗ f ∗TM, where

S(TΣ) is the spinor bundle associated to TΣ, and that the GSO projection ensures

spacetime supersymmetry. For this reason, we will require M to be a spin manifold,

where M is a 10-dimensional euclidean spacetime.

We have seen in the previous sections that the defining property of a Dp-brane with

worldvolume Q is that of constraining the maps f to satisfy f(∂Σ) ⊂ Q, and we

have argued that this requirement modifies the spectrum of the open bosonic string.

Indeed, the presence of a Dp-brane modifies also the fermionic sector for the open

supersymmetric string [90, 79].

Notice, first, that for open strings whose end points are constrained to the submanifold

Q, one has f ∗TM ' f ∗TM|Q, where TM|Q is the restriction of TM to Q. Moreover,

as Q is a submanifold of M, the following exact sequence holds

0→ TQ→ TM|Q → νQ → 0 (2.4.1)

and with a choice of a metric on TM it splits orthogonally as TM|Q ' TQ⊕νQ, where

νQ is the normal bundle to Q in M. Hence, the ground state in the Ramond sector

will give rise to a section of

S(TM|Q) ' S(TQ)⊗ S(νQ) (2.4.2)

i.e. a worldvolume spinor charged under an internal SO(9− p) symmetry, the struc-

ture group of νQ
3.

To be more precise, notice that in general neither S(TQ) nor S(νQ) are well defined

as vector bundles, even if their tensor product is. Anyway, we will for the moment

require that the normal bundle νQ admits a spin structure: together with the require-

ment that M is a spin manifold, one has that TQ also admits a spin structure, i.e. Q

is a spin manifold.

We refer the reader to Appendix B for more details on spin manifolds and Clifford

algebras.

3Actually, the decomposition (2.4.2) depends on the parity of the codimension of Q in M, since

in general C`(V ⊕W) ' C`(V)⊗̂C`(W), where ⊗̂ denotes the Z2-graded product.
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Because of the properties of a system of n coincident D-branes discussed in section

2.3, the worldvolume spinors obtained in the low energy approximation are sections

of S(TQ)⊗ S(νQ)⊗ Eadj, and hence they are charged under the gauge field localized

on the worldvolume. Then, it is natural to think that, in a certain sense, Dp-branes

in the low energy approximation are described by the p+1-dimensional gauge theories

localized on their worldvolume.

As we have mentioned in section 2.2, the introduction of a D-brane can reduce the

spacetime symmetries of the vacuum configuration, and hence affect the properties

of the open and closed string spectrum. As should be expected, a D-brane affects

also the amount of supersymmetry present in the theory. Indeed, the introduction of

a D-brane in an interacting String theory requires the presence of open string states

in the spectrum: this is due to the fact that a closed string, though not affected by

the boundary conditions, can break on the worldvolume of the D-brane into an open

string, and open strings have at most N=1 supersymmetry [79, 16, 90].

A D-brane is said to be supersymmetric if the spectrum of open and closed superstrings

in its presence is supersymmetric. Moreover, a D-brane is said to be stable if the spec-

trum does not contain a tachyonic state. In this sense, all D-branes in bosonic String

theory are unstable. Supersymmetry and stability of a D-brane are very difficult fea-

tures to determine for general brane configurations and in nontrivial backgrounds,

but are well understood in the case of hyperplanar D-branes in Minkowski spacetime.

Indeed, one can show that flat Dp-branes in type IIA on a Minkowski spacetime are

supersymmetric for p even, while pmust be odd in type IIB. This can be inferred by an-

alyzing the conserved supersymmetry in each case, and by using T-duality [79, 90, 16].

As usual, we will assume these properties of D-branes to hold for a more general type

II configurations.

As suggested by the terminology used above, a D-brane appears not only to be a

geometrical region enforcing the boundary conditions for the worldsheet conformal

field theory, but also to enjoy particle-like properties, like mass, charge, etc., detected

through the behavior of the strings propagating around it. Even if a full theory of

quantum D-branes, which would be the right framework to describe quantum prop-

erties like decay, etc., has not yet been developed, the superstrings in the presence of

a D-brane give useful information about the dynamics of these extended objects.

Remark The definition of supersymmetric and stable D-brane given above are sen-

sible in the low energy approximation, and in the case in which we are considering a

D-brane that is fixed, i.e. we are neglecting its dynamics: indeed, to take into account
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that a D-brane is a dynamical object, and to describe some aspects of its quantum

behavior, a formalism know as the boundary state formalism is more suitable. In this

formalism, the boundary conditions characterizing the D-brane are imposed after the

theory of closed superstrings has been quantized: this suggests to identify states of

a quantum D-brane as coherent states in the Fock space of the closed superstring,

making it more precise the investigation of stability, supersymmetry, etc. of these

states. Moreover, it makes it possible to introduce D-branes even when the boundary

condition it represents has no clear geometrical description.

As in this thesis we will be concerned only with a semiclassical and geometrical descrip-

tion of D-branes, we will not invoke this formalism, directing the reader to [59, 79],

and references therein, for a complete review of these topics.

2.5 D-branes and Ramond-Ramond charges

As we have mentioned in section 1.3, the low energy approximation of type IIA and

type IIB superstring theory contains particle states described by a gauge theory of

differential forms C(p) defined on a d-dimensional spacetime manifold M, with p odd

in type IIA and p even in type IIB.

Moreover, if we denote by Fp = dC(p) the Ramond-Ramond field strength, the GSO

projection imposes the constraint ?Fp = Fd−p, representing the fact that not all the

forms C(p) are independent degrees of freedom [79].

It follows that the Ramond-Ramond field strengths satisfy the linearized equations

d ? F(p) = 0

dF(p) = 0

These equations are a generalization of the Maxwell equations in 4 dimensions.

As the field theory they describe plays a prominent role in this thesis, we will digress

slightly to review some of its aspects, following [29, 42, 41].

2.5.1 Generalized electromagnetism and sources

In analogy with Maxwell electromagnetism in 4 dimensions, consider a theory of

differential forms A ∈ Ωn(M; R), where M = R × Y is a d-dimensional oriented

Lorentzian manifold with Y the spatial slice, and whose equations of motion are
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given by

d ?G = 0

dG = 0

with G = dA.

Such a theory is usually referred to as generalized electromagnetism, as the Maxwell

equations (in vacuum) are obtained for n=1 and d=4. The equations of motion are

invariant under the transformation A→ A + ω, with ω a closed n-form, describing an

abelian gauge theory of n-forms. It is natural, then, to introduce an electric source

for the field A in complete analogy with the electromagnetic case, i.e. by modifying

the equations of motion as

d ?G = je

dG = 0
(2.5.1)

where je ∈ Ωd−n
s (M; R) is a (d − n)-form with compact support on the spatial slice,

called the electric current distribution.

The equations of motion imply that dje = 0, hence je represents a class

[je] ∈ Hd−n
s (M; R)

in the cohomology of M with real coefficients, and compact support on Y.

Notice that the equations of motion do not imply that the class [je] is vanishing, as

?G is not required to have compact support on the spatial slice.

More precisely, if we denote with it : Y→ M the map Y→ {t} × Y ⊂ M, the class

Qe := [i∗t je] ∈ Hd−n
cpt (Y; R) (2.5.2)

is in general non vanishing, and it is called the total charge of the electric current

distribution. Indeed, the fact that je is a closed form implies4 that the class Qe does

not depend upon the choice of it, hence it is a conserved quantity for the equations

of motion.

This cohomological interpretation of the electric charge may sound “exotic” at first:

but notice that in the ordinary electromagnetism case, with n=1, d=4, and Y = R3,

one has H3
cpt(R3; R) ' R, and the total electric charge is given by a real number, as

usual.

Equations (2.5.1) can be obtained from the functional

S[A] := −1

2

∫
M

G ∧ ?G− 1

2

∫
M

je ∧ A (2.5.3)

4This is also due to the particular choice made for M.
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via a variational principle. This functional is not gauge invariant, but one can show

that the equations of motion obtained do not depend on the particular choice of a

gauge. Moreover, also the coupling term in (2.5.3) can be given a cohomological

interpretation. As je is a closed form with compact support on M, it will induce a

homomorphism

ψje : Hn(M; R)→ R

defined as

ψje([a]) :=< [je] ∪ [a], [M] >=

∫
M

je ∧ a

for any closed n-form a.

As in cohomology with real coefficients we have that Hom(Hn(M; R)) ' Hn(M; R),

one has that there exists a class in [Q] ∈ Hn(M; R) represented by a compact oriented

submanifold Q such that

ψje([a]) =< [a], [Q] >=

∫
Q

a

The class [Q] is called the Poincaré dual of [je].

Indeed, using this class we could rewrite the coupling term in (2.5.3) as∫
M

je ∧ A =

∫
Q

A|Q (2.5.4)

which gives rise to the straightforward interpretation of Q as the worldvolume of an

extended object acting as a source for the field A, with coupling given by (2.5.4).

Moreover, in the usual physical case in which Q ' R × Q̃, the total charge of the

distribution is represented by [Q̃].

Unfortunately, as it is stated, equation (2.5.4) is not quite true, as A is in general not

closed.

The mathematical solution to this problem is to regard je as a current [29, 50], i.e. as

a distribution valued differential form, with support on Q. This indeed allows equa-

tion (2.5.4) to hold for a non-closed differential form A; notice that this is perfectly

analogous to the electromagnetic case, where an electron current is described with a

Dirac delta distribution having support on the worldline of the electron itself.

To summarize, in this section we have argued that a generalized abelian gauge theory

of n-forms admits extended objects as electric sources, whose worldvolume Q are sub-

manifolds of the spacetime, and whose charges can be identified with the homology

classes represented by Q in de Rham homology.
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2.5.2 Ramond-Ramond charges and anomalies

As we have seen in the previous section, a generalized electromagnetic theory natu-

rally admits extended objects as its electric sources. Since the dynamics of Ramond-

Ramond fields are governed by such a gauge theory, it is natural to ask for their

sources. Recall that Ramond-Ramond fields are given by p-forms, with p odd in type

IIA String theory, and p even in type IIB: sources for Ramond-Ramond fields in type

IIA are necessarily odd-dimensional submanifolds, while in type IIB they need to be

even-dimensional. Hence, the natural candidates for the role of sources are the super-

symmetric stable D-branes of type II String theory: indeed, we have seen in section

2.4 that they occur with the right dimension, i.e. as odd-dimensional in type IIA, and

as even-dimensional in type IIB. This would indeed take into account the stability of

D-branes of certain dimensions.

As it is stated here, this could be merely a coincidence, in the sense that the only

property of having the right dimension does not necessarily identify D-branes with

the sources of Ramond-Ramond fields.

On the contrary, in the seminal paper [78] strong support was given to the fact that

D-branes do interact with Ramond-Ramond fields: this was achieved by scattering

closed strings with D-branes, and showing that the interaction amplitude contains a

term that can be manipulated to a coupling of the form (2.5.4). Moreover, it was

shown that D-branes coupling to Ramond-Ramond fields enjoy the BPS property:

their mass, that in the case of D-branes is called the tension, coincides with their

charge. D-branes in type II with the “wrong” dimension do not couple to Ramond-

Ramond fields, and they are unstable: they are called non-BPS D-branes.

Hence, let Q ⊂ M be a Dp-brane: the term∫
Q

C(p+1)|Q (2.5.5)

is called the Ramond coupling, and the class [Q] is called the Ramond charge of the

Dp-brane Q.

It turns out [71, 48], though, that (2.5.5) is not yet the right coupling term, and has

to be modified in order to take into account some peculiar properties of D-branes.

Before explaining the reason for this modification, we add a comment on the

coupling (2.5.5). Indeed, in the above discussion we have willingly neglected the fact

that the different Ramond-Ramond fields are dependent upon the relation ?F(p) =

F(d−p). This means that any electric source for the field C(p) is a magnetic source for

C(d−p), which requires a shift in the meaning of C(p) themselves, for the appropriate
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values of p. More precisely, in the presence of a Dp-brane, C(d−p−1) cannot be a globally

defined differential d − p − 1-form, as the Bianchi identities for its field strength do

not hold any longer. Moreover, this poses a serious threat to the quantization of the

Ramond-Ramond abelian gauge theory. For the moment, we will continue to neglect

the problems posed by the duality constraints.

Recall from section 2.4 that in the low energy approximation the worldvolume of a

set of n Dp-branes carries a dimensionally reduced Yang-Mills theory coupled with a

spinor field charged under some additional internal symmetries; moreover, if the Dp-

brane is supersymmetric, the worldvolume gauge theory is an N=1 super Yang-Mills

theory, and the tachyon field is absent.

A consistency requirement on the gauge theory supported by the D-brane is that

the theory does not present any “quantum” anomaly, which would spoil its gauge

invariance after quantization. Recall, indeed, that this gauge theory is obtained by

considering only the massless states in the open string spectrum in the presence of

a D-brane, which should represent one particle states for the full quantized gauge

theory: an anomaly would render this an inconsistent procedure.

It turns out that the gauge theory on the D-brane suffers from two anomalies. The

abelian anomaly is related to the fact that the spinor fields on the worldvolume are

charged under an internal symmetry, represented by the tensor product S(νQ)⊗Eadj,

where Q is the D-brane worldvolume. More precisely, in the type IIB case, where Q

is an even-dimensional (spin) manifold, the dynamics for the spinor fields is governed

by the Dirac operator

/D : S+(TM|Q)⊗ Eadj → S−(TM|Q)⊗ Eadj (2.5.6)

where the ± splitting is given by the chiral decomposition, since M even-dimensional.

From equation (2.4.2) one can see that

S±(TM|Q) '
[(

S+(TQ)⊗ S±(νQ)
)
⊕
(
S−(TQ)⊗ S∓(νQ

)]
Hence, from the worldvolume perspective the spinor fields do not have a definite

chirality: this, in general, leads to the so called “chiral” anomaly, and is measured by

the index of the Dirac operator in (2.5.6).

The other possible source of anomaly is given by the intersection of two D-branes,

usually referred to as I-brane. The spectrum of the open string in the presence of

an I-brane is different from the one obtained in the presence of a D-brane wrapping

the same worldvolume [79]. In particular, the fermion sector on the I-brane develops

itself an anomaly, depending on the dimension of the two intersecting branes.
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Both the anomalies need to be cancelled: the mechanism used is known as the inflow

mechanism, and essentially consists in modifying the coupling (2.5.5) in such a way

that its variation under gauge transformations cancel the quantum anomalies above.

We refer the reader to [48, 29, 90] for a detailed exposition, as the computations

involved are rather lengthy, and the techniques used therein will not play any relevant

role for the rest of this thesis.

The coupling (2.5.5) is modified as∫
Q

i∗C ∧ ch(E)i∗
√

Â(TM)
1

Â(TQ)
(2.5.7)

where i : Q→ M is the embedding map, ch denotes the (total) Chern character, and

Â denotes the A-roof genus5. See Appendix C for details on characteristic classes of

vector bundles.

Moreover, in the coupling (2.5.7), C is the total Ramond-Ramond field, defined as the

formal sum C := C(i) + C(i+2) + · · · , with i = 0, 1 in type IIB, type IIA, respectively,

and the integration is understood to be 0 when the degrees do not match.

The coupling term (2.5.5) is referred to as the Wess-Zumino, or Chern-Simons term

for D-branes: we will refer to it as the anomalous coupling.

The anomalous coupling forces us to rethink the charge classification of D-branes:

indeed, the current generated by such extended objects is no longer given by the

Poincaré class dual to the homology cycle of their worldvolume, but needs to be

corrected according to the equations of motion for the (total) Ramond-Ramond field

induced by (2.5.7). We will refer to the charge of this current as the D-brane charge.

The modern interpretation for the charge of a D-brane was first exploited in [71], where

it was proposed that the correct mathematical tool to represent D-brane charges is

not de Rham or singular cohomology, but K-theory, which represents, together with

some of its “flavours”, the main mathematical subject of this thesis.

We conclude this section by noticing that the anomalous coupling (2.5.7) suffers

from the same, and actually worse, problems of the coupling (2.5.5). Indeed, the

anomalous coupling requires that all the Ramond-Ramond differential forms should be

defined on the worldvolume Q of the D-brane. This is not the case when we take into

account the fact that D-branes are electric and magnetic sources: indeed, the usual

description for a gauge field A in the presence of a magnetic distribution prescribes

that A should be defined on the complement of the distribution’s support, which

renders the expression (2.5.7) ill defined [42]. Again, its correct description requires a

5More precisely, these are the Chern-Weil forms representing such characteristic classes.
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more powerful formalism: we will address a possible solution for this problem in later

chapters.

2.6 D-brane decay and Sen’s conjectures

The fact that Dp-branes are charged under Ramond-Ramond fields allows the intro-

duction of anti-D-branes. Of course, such objects should arise in a proper quantum

description of D-branes, which we currently lack. In any case, one can give the fol-

lowing semiclassical definition:

Definition An anti-D-brane for a charged Dp-brane Q supporting a Chan-Paton line

bundle E is given by a submanifold Q′ carrying the opposite Dp-brane charge, and

supporting a line bundle E′ which is topologically equivalent to E.

As D-brane charges are conserved during the dynamics, charged Dp-branes are stable,

and hence cannot decay. Again, the description of the decay process would require

a proper quantum theory of D-branes: in this context, we will say that a Dp-brane

has decayed if the theory of open and closed strings in the presence of the Dp-brane

is equivalent, in some sense, to a theory of only closed strings in the absence of the

Dp-brane itself. This is believed to be described at low energy by the dynamics

of the tachyon field living on the worldvolume of the Dp-brane, which mimics the

“slow rolling” dynamics of the Higgs field in the standard model of elementary par-

ticles. In particular, the decay process of the Dp-brane ends when the tachyon field

reaches a stable minimum of the potential modelling its dynamics [96]. Even if at the

present stage such a process cannot be described in a satisfactory way, it has greatly

contributed to a more basic understanding of D-branes and their charges. More pre-

cisely, it is at the base of the so called Sen’s conjectures.

Recall that in the bosonic String theory all D-branes are unstable, as the open string

spectrum contains a tachyon. In particular, one has a spacetime filling D25-brane

which is unstable. In [85, 84] Sen stated the following

Conjectures(Sen) The open bosonic String theory in the presence of a spacetime

filling D25-brane is such that

a) The tachyon field potential has a stable local minimum. Moreover, the energy

density of this minimum as measured with respect to that of the initial unstable

point is equal with opposite sign to the tension of the D25-brane;

b) Lower dimensional Dp-branes can be obtained as solitonic solutions of the field
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theory living on the D25-brane worldvolume;

c) The stable minimum of the tachyon potential corresponds to the closed string

vacuum with no open string excitations

The above conjecture can be stated also in the case of a lower dimensional unsta-

ble Dp-brane: the advantage of using a spacetime filling D-brane consists in the fact

that the spacetime symmetries are not broken.

Moreover, the conjecture can be adapted to superstring theory on a 10-dimensional

spacetime, but some modifications are needed. For instance, in type IIB String theory

the spacetime filling D9-brane is stable, and hence does not obey Sen’s conjecture. In

any case, an instability appears in a system of a coincident Dp-brane and its anti-D-

brane, denoted as Dp̄-brane, wrapped on a submanifold Q: at an intuitive level, the

system has no conserved D-brane charge, and hence it should be able to annihilate

by Sen’s conjectures. This is supported by the fact that the spectrum of the open

strings “stretching” between the Dp-brane and the Dp̄-brane contains a tachyonic

state, which is not projected out by the GSO projection. This extends to a system of

n Dp-branes and n Dp̄-branes wrapping the same submanifold of the spacetime.

Notice that a system of n Dp-branes with Chan-Paton bundle E and m anti-D-branes

with Chan-Paton bundle F wrapping the submanifold Q has Chan-Paton bundle E⊕F,

as the D-branes and the anti-D-branes are distinguished by the open string endpoints.

In particular, at low energy the surviving open string tachyon field is described by a

section of E⊗ F∗, where F∗ denotes the dual bundle.

Despite the resemblances, there is a major difference between an unstable bosonic

Dp-brane and a brane-antibrane system: indeed, while by Sen’s conjectures all the

bosonic Dp-branes will eventually decay to the vacuum state, a generic brane-antibrane

system can decay to a stable Dp-brane, if the starting configuration has a net D-brane

charge different from “zero”. In particular, in [83] Sen was able to construct a Dp-

brane as a decay product of a system of a Dp+2-brane and a coincindent Dp+ 2-brane,

identifying the worldvolume wrapped by the Dp-brane as a “vortex” for the tachyon

field living on the brane-antibrane worldvolume. Indeed, recall that in this case the

tachyon field T is a section of the complex line bundle E ⊗ F∗ defined on the brane-

antibrane worldvolume: in Sen’s construction, the Dp-brane is identifyed with the

submanifold representing the Poincaré dual class to the (first) Chern class of E⊗ F∗,

the zero loci for the section T.6

A somewhat simple observation was used by Witten in the seminal paper [94] to give

6We are supposing that the Chern class of E⊗F∗ is nontorsion and that T is a transversal section.
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an elegant mathematical description of the various D-brane configurations. More pre-

cisely, consider in type IIB String theory a system of n spacetime filling D9-branes

with Chan-Paton bundle E, and a system of n D9̄-branes carrying a Chan-Paton bun-

dle F;7 label such a configuration by the pair (E,F). As the process of brane-antibrane

creation and annihilation does not change the D-brane charge, we can add any col-

lection of m D9-branes and m D9̄-branes with Chan-Paton bundle H.8

Hence, the configuration (E,F) should be considered to have the same D-brane charge

as the configuration (E⊕H,F⊕H): pairs of vector bundles with such an equivalence

relation constitute, in a nutshell, the basic ingredients for the K-theory group K(M)

of the spacetime.

In particular, Witten showed that the construction used by Sen can be generalized

to arbitrary spacetime and D-brane configurations, and that such a generalization

perfectly corresponds to mathematical properties of K-theory. More importantly,

Witten’s classification of D-branes via K-theory applies not only to type IIB/A su-

perstring theories, but also to type I and to String theory on orbifolds : in these latter

cases, indeed, the K-theory description makes new and unexpected predictions, as we

will see in the following chapters.

7The number of branes and antibranes needs to be the same in type IIB to cancel the Ramond-

Ramond tadpole.
8We use the same notation H for both the gauge bundle on the D-brane and that on the anti-D-

brane, as they are by definition topologically equivalent.
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Chapter 3

K-Theory, an introduction

3.1 The group K0(X)

In this section we introduce the basic definitions used to construct the group K0(X)

of a topological space X. In particular, we will restrict ourselves to compact Haus-

dorff topological spaces which can carry a structure of a finite CW-complex. Even

if most of the constructions can be extended to more general topological spaces, the

choice of CW-complexes is not restrictive for the aim of this thesis, as we will mainly

be interested in the K-theory groups of finite dimensional manifolds, which naturally

carry a canonical CW-complex structure. In the following exposition we tacitily refer

to [4, 61], unless otherwise stated.

Let VectF(X) denote the set of isomorphism classes of topological F-vector bundles

over X, where F = C,R. The direct (Whitney) sum of vector bundles gives VectF(X)

the structure of an abelian monoid: in a nutshell, the group K0(X) is constructed via

a procedure that consists intutively in adding “inverses” to VectF(X). In particular,

the procedure can be generalized to any abelian monoid, which is the case we will

illustrate in the following.

Let A be an abelian monoid. We can then associate to A an abelian group K0(A)

and a monoid homomorphism α : A→ K0(A) with the the following universal prop-

erty. For any group G, and any morphism of the underlying monoids f : A → G,

there is a unique group homomorpshim f̃ such f̃α = f . Because of the uniqueness

property, it is an immediate consequence that if such a K0(A) exists, then it is unique

up to isomorphism. The group K0(A) is known usually as the Grothendieck group of

A.

A possible construction for the group K0(A) is the following. Denote with F(A) the
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free abelian group generated by the elements of A, and let E(A) be the subgroup of

F(A) generated by those elements of the form a + b − (a ⊕ b), with a, b ∈ A, and ⊕
denoting the addition in A. Then for K0(A) := F(A)/E(A), the universality property

above holds, with α : A→ K0(A) the obvious map.

A different and sometimes convenient construction of K0(A) is the following. Consider

the diagonal homomorphism of monoids ∆ : A → A× A, i.e the map ∆(a) = (a, a),

and denote with K0(A) the set of cosets of ∆(A) in A × A. It is clearly a quotient

monoid, but the interchange of factors induces inverses in K0(A), giving it a group

structure. If we define α : A → K0(A) to be the composition of a → (a, 0) with the

natural projection A×A→ K0(A), then the universality property above holds.

The association to a monoid A of its Grothendieck group as defined above induces

in an obvious way a unique covariant functor K0 from the category A of abelian

monoids with monoid morphisms to the category G of abelian groups with group

morphisms. Indeed, to any morphisim f : A→ B, the functor K0 associates the mor-

phism K0(f) : K0(A)→ K0(B) satysfying αB ◦ f = K0(f) ◦αA, and such a morphism

is unique by the universality property.

Example 3.1. Consider A := (N0,+). Then K0(A) ' Z

Example 3.2. Consider A := (Z− {0}, ·). Then K0(A) ' Q− {0}.

A fundamental example of the above construction that allows a higher degree

of generality is the following. Let C an additive category, and denote with Ė the

isomorphism class of the object E. Then the set Φ(C ) of such classes can be provided

with a structure of an abelian monoid if one defines Ė + Ḟ to be ˙E⊕ F: the well-

definedness of the + operation and the algebraic identities derive from the additivity

of the category C . In this case one denotes with K0(C ) the group K0(Φ(C )), called the

Grothendieck group of the category C . Moreover, if ϕ : C → C
′
is an additive functor,

then ϕ naturally induces a monoid homomorphism Φ(C ) → Φ(C
′
), hence a group

homomorphism K0(Φ(C )) → K0(Φ(C
′
)), denoted with ϕ∗. The usual composition

rule follows.

We will now specialize to the case A = VectF(X), for X a topological space. We

denote with K0(X) the group K0(VectF(X)), or equivalently the Grothendieck group

of the additive category of topological F-vector bundles on X, that we will denote

with V F. To follow the notations usually found in literature, we will use K0(X) for

F = C, and KO0(X) for F = R. When the results do not depend on the choice of F,

we will use the notation for F = C .
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The basic constructions for the K0 group described above allow to prove the following

basic, but very useful results.

Proposition 3.3. Let X be a compact space. Then every element x ∈ K0(X) can be

written in the form [E]− [F], with E,F vector bundles on X. Moreover,

[E]− [F] = [E
′
]− [F

′
] in K0(X) if and only if there exists a vector bundle G on X such

that E⊕ F
′ ⊕G ' E

′ ⊕ F⊕G

Proof. By definition, x = [(Ė, Ḟ)], for some vector bundles E,F. Then we have that

[(Ė, Ḟ)] = [(Ė, 0) + (0, Ḟ)] = [(Ė, 0)] + [(0, Ḟ)] = [E]− [F], where with [E], [F] we de-

note the composition of E→ Ė with Ė→ [Ė].

Let [E]− [F] = [E
′
]− [F

′
]. Then one has that [E⊕ F

′
] = [E

′ ⊕ F], which implies

Ė + Ḟ
′
+ Ġ = Ė

′
+ Ḟ + Ġ, for some G. Hence E⊕ F

′ ⊕G ' E
′ ⊕ F⊕G.

The above proposition allows almost immediately to prove the following

Proposition 3.4. Let E and F be vector bundles over X. Then [E] = [F] if and only

if E⊕ θn ' F⊕ θn, for some θn a trivial bundle of rank n.

Proof. Recall that for any vector bundle G on a compact space X there exists a vector

bundle G
′

such that G ⊕ G
′ ' θn, for some n, i.e. any vector bundle is a projective

object in V F .

By Proposition 3.3, if [E] = [F], then E⊕G ' F⊕G, for some vector bundle G. By

adding G
′

chosen as above, one gets that E ⊕ θn ' F⊕ θn, which yelds the desired

result.

An easy consequence of Proposition 3.3 is that any element x ∈ K0(X) can be

written as [H]− [θn], for some vector bundle H and some θn.

As we have seen, the group K0(A) “depends” covariantly on the monoid A. However,

K0(X) depends contravariantly on the topological space X, i.e. K0 is a contravariant

functor from the category T of topological spaces with continuous maps to G .

More precisely, if we let f : X → Y be a continuous map, then f induces a monoid

morphism f ∗ : VectF(Y)→ VectF(X) via the pullback of vector bundles, hence a map

K0(Y)→ K0(X), which we still denote with f ∗.

By the homotopy theory of vector bundles one has immediately the following

Theorem 3.5. Let X and Y be compact topological spaces, and let f0, f1 : X→ Y be

continuous and homotopic maps. Then f0 and f1 induces the same homomorphism

K0(Y)→ K0(X).
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Hence, the group K0(X) is a topological invariant, in the sense that two isomor-

phic spaces have isomorphic K0 groups. More importantly, if the two spaces can be

“deformed” into each other, they have isomorphic K0: this property is typical of a

cohomology theory, and it is intuitively a first indication that the group K0(X) is a

building block for a cohomology theory. In this sense, it is important to define the

reduced group K̃0(X).

First notice that K0({pt}) ' Z , as a vector bundle on a point is uniquely character-

ized by the dimension of its typical fiber. Then, the inclusion i : x0 → X induces the

homomorphism

i∗ : K0(X)→ K0({x0}) ' Z

The reduced group K̃0(X) is defined as the kernel of i∗. Moreover, the following exact

sequence

0→ K̃0(X)→ K0(X)
i∗−→ K0({x0})→ 0

canonically splits, i.e. K0(X) ' Z⊕ K̃0(X).

Given a vector bundle E → X with Ex the fiber of E over x, we can define the rank

function of E rnk(E) : X → N0. As E is locally trivial as a vector bundle over X,

its rank function is a locally constant function over X with values in N0, i.e. an

element of the abelian monoid H0(X; N0). Hence, the rank map extends naturally as

the homomorphism

rnk : K0(X) → H0(X; Z)

[E]− [F] → rnk(E)− rnk(F)
(3.1.1)

In the case in which X is a connected space, the integer (3.1.1) is called the virtual

dimension of the class [(E,F)] in K0(X). Moreover, in the same case, the group

K̃0(X) is isomorphic to the kernel of the rank homomorphism, hence it consists of the

subgroup of elements whose virtual dimension is zero, classes [(E,F)] with E and F

of equal rank.

We conclude this section with a proposition which states how the K-theory group

behaves under disjoint unions.

Proposition 3.6. Let X =
∐n

i=1 Xi. Then the inclusions of the Xi in X induces the

decomposition K0(X) ' K0(X1)⊕K0(X1)⊕ · · · ⊕K0(Xn).

Proof. Use the fact that any vector bundle on X is characterized by its restrictions

on the Xi.
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Remark Notice that this last proposition is not true for the functor K̃0(X). In-

deed, if X is the disjoint union of two points {x0} and {x1}, then K̃0(X) ' Z, but

K̃0({xi}) = 0, for i = 0, 1.

3.2 Relative K-theory and higher K-groups

Starting with the group K0(X) one can naturally define the relative K-theory and the

higher K-theory groups.

Let TP denote the category of compact pairs (X,Y), where X,Y are topological spaces,

and X is such that it can be equipped with a structure of a CW-complex such that Y

is a CW-subcomplex. The morphisms (X,Y) → (X
′
,Y
′
) are given by relative maps,

i.e. continuous functions f : X→ X
′

such that f(Y) ⊂ Y
′
.

We define the relative K-theory group as

K0(X,Y) := K̃0(X/Y) (3.2.1)

where X/Y is obtained from X by shrinking Y to a point, with respect to which

the reduced K-group is defined. In the case when Y = {Ø}, we define X/Y as

X+ := X
∐
{pt}. Hence, for a base-pointed space X one has

K0(X,Ø) := K̃0(X+) ' K0(X) (3.2.2)

Moreover, for {x0} ⊂ X we have K0(X, {x0}) = K̃0(X).

Let us denote with π : X→ X/Y. The map π induces the obvious relative map

π : (X,Y)→ (X/Y, {pt})

hence the map

π∗ : K0(X/Y, {pt})→ K0(X,Y)

We have the following excision theorem

Theorem 3.7. The map π∗ is an isomorphism.

It is instructive, at this point, to explain a useful way to describe vector bundles

on the space X/Y, given a vector bundle E on X with typical fiber F. Suppose E
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is trivializable on Y, i.e. there exists a homeomorphism α : E|Y
'−→ Y × F which is

linear on the fibres. Consider the equivalence relation on E|Y given by

v ∼ v
′ ⇔ p ◦ α(v) = p ◦ α(v

′
)

where p : Y × F → Y is the canonical projection. The relation is then extended to

the whole E. The corresponding set of equivalence classes can be shown to be the

total space of a vector bundle over X/Y; moreover, every vector bundle on X which

is trivial when restricted to Y is isomorphic to the pullback of a vector bundle over

X/Y.

This construction, in particular, allows to prove that the following sequence

K0(X,Y)
ρ∗−→ K0(X)

i∗−→ K0(Y) (3.2.3)

is exact, where the homomorphism ρ∗ is induced by the map ρ : X → X/Y, and

i : Y ↪→ X realizes Y as a subspace of X [61, 56].

To define the higher K-groups, we need to introduce some well known operations

on topological spaces. Let X and Y be compact spaces with base points {x0} and

{y0}, respectively. The wedge product of X and Y is defined as

X ∨ Y := (Xq Y)/{x0 ∼ y0} (3.2.4)

while the smash product of X and Y is defined as

X ∧ Y := X× Y/ {X× {y0} ∪ {x0} × Y} (3.2.5)

The two operations above are related. Indeed, one has natural maps

X ∨ Y → X× Y → X ∧ Y

which allow to write

X ∧ Y = X× Y/X ∨ Y

Moreover, the operations ∨ and ∧ are associative and commutative, and ∧ is dis-

tributive over ∨. This means, for example, that there is a canonical homeomorphism

between X ∧ Y and Y ∧ X.

An important property of the smash product is that

Sn ' S1 ∧ S1 ∧ · · · ∧ S1 n-times (3.2.6)

where Sn is the standard n-sphere with base point.

For a given space X with base point, we define the n-th reduced suspension Σn(X) as

Σn(X) := Sn ∧ X (3.2.7)
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Because of property (3.2.6), we have that the n-th reduced suspension Σn(X) is the

n-th iterated reduced suspension of X.

We have then the following

Definition 3.8. For (X,Y) a compact pair, and for n ≥ 0 we define

K−n(X,Y) := K̃0(Σn(X/Y))

For X a compact space we put

K−n(X) := K−n(X,Ø) := K̃0(Σn(X+))

and for X a compact space with base point {x0} we put

K̃−n(X) := K−n(X, {x0}) := K̃0(Σn(X))

The K−n are contravariant functors, as the reduced suspension induces a covariant

functor on T . The relation between higher and reduced K-theory groups is given

canonically by

K−n(X) ' K̃−n(X)⊕ K̃−n({x0})

with {x0} being the base point. By the definitions above K−n({x0}) ' K̃0(Sn): we

will compute these groups in section 3.4.

The various higher K-groups are linked together by the following semi-infinite long

exact sequence

. . .K−(n+1)(X)→ K−(n+1)(Y)
δ−→ K−n(X,Y)→ K−n(X)→ K−n(Y)

δ−→ . . . (3.2.8)

where δ is the boundary homomorphism. For a definition of δ see [4, 61]. The se-

quence above is another typical feature of a cohomology theory.

3.3 Multiplicative structures on K-theory

As vector bundles on a space X can be “multiplied” together via tensor product, it is

natural to look for multiplicative structures on the K-groups.

The tensor product of vector bundles on X induces a multiplication

K0(X)⊗Z K0(X)→ K0(X)

defined as

[(E,F)]⊗ [(E
′
,F
′
)] := [(E⊗ E

′ ⊕ F⊗ F
′
,E⊗ F

′ ⊕ F⊗ E
′
)] (3.3.1)
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The expression above comes from writing [(E,F)] as [E]− [F], and formally imposing

distributivity of the tensor product on virtual bundles. Hence, K0(X) is actually a

ring.

There is another product, usually called the external tensor product or cup product,

which is a homomorphism

∪ : K0(X)⊗Z K0(Y)→ K0(X× Y) (3.3.2)

defined as follows. Denote with πX : X× Y → X and πY : X× Y → X the canonical

projections.

Hence, ∪([E], [F]) ∈ K0(X)⊗Z K0(Y) is the class in K0(X× Y) defined by

∪([E], [F]) := π∗X([E])⊗ π∗Y([F])

and extended by (bi)linearity. Notice that when Y = X, we have that

∆∗ ∪ ([(E,F)], [(E
′
,F
′
)]) = [(E,F)]⊗ [(E

′
,F
′
)]

where ∆ : X→ X× X is the diagonal map.

The above exterior product is crucial when dealing with higher K-groups. In partic-

ular, when restricted to reduced K-theory, the cup product induces a homomorphism

[4]

K̃0(X)⊗Z K̃0(Y)→ K̃0(X ∧ Y)

which immediately induces the homomorphism

K̃0(Σn(X))⊗Z K̃0(Σm(Y))→ K̃0(Σn+m(X ∧ Y)) (3.3.3)

By substituting in the above expression X+ and Y+ for X and Y, respectively, one

obtains the homomorphism

K−n(X)⊗Z K−m(Y)→ K−(n+m)(X× Y) (3.3.4)

If we denote with K−∗(X) :=
⊕

n≥0 K−n(X), the cup product induces, via (3.3.4), the

structure of a graded ring on K−∗(X). Moreover, for any space X with base point

{pt}, the cup product makes K−∗(X) into a graded module over K−∗(pt).

Notice, at this point, that a priori the ring K−∗(X) could be very complicated,

even for the case X = {pt}. It’s an extremely remarkable property of K-theory that

this is not the case, as the following results show.
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For the first time in this introduction, we have to make a difference between complex

and real K-theory to introduce a fundamental and deep result.

Theorem 3.9. (Bott Periodicity) The ring K−∗({pt}) is a polynomial algebra

generated by an element u ∈ K−2({pt}) ' K̃0(S2), i.e. there is a ring isomorphism

K−∗({pt}) ' Z[u] (3.3.5)

The element u can be represented as u = [H]− [θ1], where H denotes the tautolog-

ical complex line bundle over S2 ' CP1. For a proof see [4].

The above theorem, in particular, says that the map µu : K−n({pt})→ K−n−2({pt})
induced by multiplication by u, is an isomorphism for all n.

The previous theorem generalizes as

Theorem 3.10. Let X be a compact space. Then the map

µu : K−n(X)
'−→ K−n−2(X)

given by module multiplication by u, is an isomorphism for all n ≥ 0

The above theorem is usually referred to as the general Bott periodicity theorem,

and essentially states that there are only two “independent” K functors, namely K0

and K−1. Moreover, theorem (3.10) can be extended to relative and reduced K-theory.

Finally, the original simplest formulation of the periodicity theorem states that for any

compact space X, there is an isomorphism between K0(X)⊗K0(S2) and K0(X× S2).

In the real case things are a bit different, and slightly more complicated. Indeed,

one has the following real version of the Bott periodicity theorems.

Theorem 3.11. The ring KO−∗({pt}) is generated by elements

η ∈ KO−1({pt}), y ∈ KO−4({pt}), x ∈ KO−8({pt})

subject to the relations

2η = 0, η3 = 0, ηy = 0, y2 = 4x

i.e. there is a ring isomorphism

KO−∗({pt}) ' Z[η, y, x]/ < 2η, η3, ηy, y2 − 4x > (3.3.6)

Theorem 3.12. Let X be a compact space. Then the map

µx : KO−n(X)
'−→ KO−n−8(X)

given by module multiplication by x, is an isomorphism for all n ≥ 0.
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The first consequence of theorem (3.11) is that the ring KO−∗({pt}) is not freely

generated, i.e. it contains torsion subgroups.

Apart from limiting the number of K-groups to compute, the Bott periodicity

theorem allows to define K-theory for positive degrees, which is the final important

step needed to construct a cohomology theory associated to the K-groups. Indeed,

for n > 0 one defines Kn(X,Y) as

Kn(X,Y) := K0(X,Y), for n even

Kn(X,Y) := K−1(X,Y), for n odd

and analogous definitions are given for KOn(X,Y). In particular, the Bott isomor-

phism is compatible with the long exact sequence (3.2.8), and hence it can be extended

to positive degrees.

Because of Bott periodicity, it is convenient to define for any pair (X,Y)

K∗(X,Y) := K0(X,Y)⊕K−1(X,Y)

KO∗(X,Y) :=
⊕7

i=0 KO−i(X,Y)

The cohomology theory constructed in this way is referred to as K-theory, and satisfies

all the usual axioms of a cohomology theory E on TP, but the dimension axiom, which

requires the cohomology E to satisfy Ei(pt) = 0, for i 6= 0, and E0(pt) = Z.

Finally, because of Bott periodicity, the long exact sequence (3.2.8) for complex K-

theory can be truncated to the six-term exact sequence

K−1(X) // K−1(Y)
δ // K0(X,Y)

��
K−1(X,Y)

OO

K0(Y)
δ

oo K0(X)oo

3.4 K-theory and classifying spaces

As for ordinary cohomology, there is a description of K-theory in terms of classifying

spaces. As this approach will play a very important role in later chapters, we will

review it in some detail.

Let X a compact CW-complex of finite type. It is a very important result in

geometry that F-vector bundles of rank k over X can be classified up to isomorphism.

Namely, there exists a connected topological space BFk, equipped with a rank k F-

vector bundle Ek, called the universal F-vector bundle, such that

VectFk (X) ' [X,BFk]
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where the isomorphism is induced by assigning to the homotopy class [f ] the isomor-

phism class [f ∗Ek] [56].

A model for BFk can be defined as follows. Denote with Gr(k,m; F) the Grassmannian

manifold of F-linear subspaces in Fm of dimension k. For F = C one has

Gr(k,m; C) ' U(m)

U(k)× U(m− k)

while for F = R one has

Gr(k,m; R) ' O(m)

O(k)×O(m− k)

The inclusion Fm ⊂ Fm+1 induces the natural inclusion Gr(k,m; F) ⊂ Gr(k,m +

1; F). Taking the inductive limit over such inclusions allows to define the infinite

Grassmannian

Gr(k,∞; F) := lim
m→∞

Gr(k,m; F)

which can be used as a model for our classifying space [56]. We will use the notation

BU(k) for Gr(k,∞; C), and BO(k) for Gr(k,∞; R).

The universal F-vector bundle Ek → Gr(k,∞; F) is given by assigning to a point

x ∈ Gr(k,∞; F) the vector space represented by x itself.

To represent K-theory we need a limit of the above construction over the vector bundle

rank k. More precisely, denote with K
′0(X) the kernel of the rank homomorphism

(3.1.1). Recall that when X is connected, K
′0(X) is isomorphic to K̃0(X). In general

one has the decomposition

K0(X) ' K
′0(X)⊕ H0(X; Z) (3.4.1)

with H0(X; Z) = [X,Z].

Notice, at this point, that for [Ek] ∈ VectF
k (X), we have that [Ek] − [θk] ∈ K

′0(X). If

we define

VectF
∞(X) := lim

k→∞
VectF

k (X)

as the inductive limit over the inclusions VectF
k (X) ⊂ VectF

k+1(X) induced by the

maps Ek → Ek ⊕ θ1, one has that the map [Ek] → [Ek] − [θk] is a monoid morphism

VectF∞(X)→ K
′0(X), hence VectF∞(X) can be given the structure of an abelian group

[61]. Finally, as

VectF
∞(X) = [X,BF∞]

one has

K0(X) ' VectF
∞(X)⊕ [X,Z] = [X,Z× BF∞]
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where BF∞ :=
⋃
k BFk.

Moreover one can obtain reduced K-theory for a base pointed space X as

K̃0(X) = [X,Z× BF∞]∗

where the base point in Z× BF∞ has been chosen to lie in 0× BF∞. Consequently,

higher relative K-theory can be obtained as

K−n(X,Y) = [Σn(X/Y),Z× BF∞]∗ ' [X/Y,Ωn(Z× BF∞)]∗

where Ωn is the iterated loop space functor, and we have used the fact that for CW-

complexes X,Y one has [Σ(X),Y]∗ = [X,Ω(Y)]∗.

In particular, if X is a connected space, then

K̃0(X) = [X,BF∞]∗

In later sections we will see that another classifying space for K-theory is given by

the space of Fredholm operators on a infinite dimensional Hilbert space.

3.4.1 Examples: K-theory of spheres and tori

The reduced K-theory of spheres can be deduced immediately by the Bott periodicity

theorems (3.9) and (3.11): in this section we want to give a geometric view on the

Bott periodicity theorems, at least in the complex case. Indeed, this is actually how

the Bott theorem originated.

Consider the standard n-dimensional sphere Sn. We will illustrate a procedure, called

the clutching construction, to construct vector bundles E → Sn. Write the n-sphere

Sn as the union of the upper and lower hemispheres Dn
+ and Dn

−, such that Dn
+∩Dn

− '
Sn−1. Given a continuous map f : Sn−1 → GLk(C), we can define the total space of a

complex vector bundle Ef of rank k as

Ef := Dn
+ × Ck

∐
Dn
− × Ck/ ∼

where the identification ∼ is between (x, v) ∈ ∂Dn
+ × Ck and (x, f(x)v) ∈ ∂Dn

− × Ck,

and the projection Ef → Sn is the obvious one. Essentially, the clutching construction

is a special case of the gluing construction for locally trivial vector bundles, which

one can see by considering a “small” strip Sn × {−ε, ε}, and using the function f on

each slice Sn × {t}. Moreover, as the structure group for a complex vector bundle

of rank k can always be reduced to the unitary group U(k), upon the introduction
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of a Hermitian metric, the function f can always be chosen to be a continuous map

f : Sn−1 → U(k).

A basic property of the clutching construction is that Ef ' Eg if f and g are homotopic

maps. This allows to define a map

Φ : [Sn−1,U(k)]→ Vectk(S
n)

A fundamental result is the following [61]

Theorem 3.13. The map Φ is a bijection.

In other words, all complex vector bundles on spheres are obtained up to isomor-

phism by the clutching construction. By taking inductive limits, we finally obtain

Vect∞(Sn) = [Sn−1,U(∞)]

where U(∞) denotes the infinite unitary group.

Hence we have

K̃0(Sn) = πn−1 (U(∞)) (3.4.2)

Because K−n(pt) ' K̃0(Sn), we see that the Bott periodicity theorem is a statement

about the homotopy of the infinite unitary group: indeed, this is how it was originally

stated1 in [20].

The real case requires some modifications in the clutching construction, and, as it is

expected from the structure of KO∗(pt), the relation with the orthogonal groups is

more complicated.

Notice, also, that as a topological invariant for spheres, K-theory is a very coarse one,

as it cannot detect the sphere dimensionality, in contrast to ordinary cohomology.

The case for tori, instead, is quite different. To compute the complex K-theory groups

for tori, we will use the following result [4]: given two base pointed spaces X and Y

we have the following isomorphism

K̃−n(X× Y) ' K̃−n(X ∧ Y)⊕ K̃−n(X)⊕ K̃−n(Y) (3.4.3)

We now specialize (3.4.3) to the case in which Y = S1, with the usual base point. In

this case, we have that

K̃−n(X× S1) ' K̃−n(X ∧ S1)⊕ K̃−n(X)⊕ K̃−n(S1)

' K̃−(n+1)(X)⊕ K̃−n(X)⊕ K̃−(n+1)({pt})

1To be precise, the statement was on the homotopy groups of the unitary groups U(k) in the

stable range.
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where we have used Bott periodicity.

Recalling that for odd n the reduced and unreduced K-theory groups coincide, we

have that
K−2n(X× S1) ' K−1(X)⊕K0(X)

K−(2n+1)(X× S1) ' K0(X)⊕K−1(X)
(3.4.4)

Let Tn ' S1×· · ·×S1 be the standard n-dimensional torus. The K-theory for Tn can

be computed using isomorphism (3.4.4) by induction with base n = 2.

Indeed, we have that

K0(T2) ' K−1(T2) ' K0(S1 × S1) ' Z⊕ Z

As Tn ' Tn−1 × S1, we have

K0(Tn) ' K−1(Tn) ' K−1(Tn−1)⊕K0(Tn−1)

Then, by induction we find that there is the following non-canonical isomorphism for

n ≥ 2

K0(Tn) ' K−1(Tn) ' Z2(n−1)

Hence, for tori the K-theory groups can indeed detect their dimension.

3.5 The Atiyah-Bott-Shapiro isomorphism

In this section we will introduce the Atiyah-Bott-Shapiro (ABS) isomorphism, which

will give explicit representatives for the generators of the rings K∗({pt}) and KO∗({pt})
via the so called “difference bundle construction”. More importantly, the ABS iso-

morphism relates complex and real Clifford algebras to K-theory: such a relation is

somehow expected, given that the periodicity of K-theory is similar to the periodicity

of Clifford algebras. The main reference is the seminal paper [5]; moreover, we will

refer to Appendix B for the basic notions of Clifford algebras.

To construct the ABS isomorphism, we need a reformulation of the relative K-

theory group K0(X,Y), which will also prove useful in relation to elliptic operators,

and in the description of D-branes, in particular in type IIA String theory. Again,

this reformulation is due to [5], and there is no difference between the complex and

real case.

Definition 3.14. Let X and Y be CW-complexes of finite type. For n ≥ 1, denote

with Ln(X,Y) the set of elements E = (E0,E1, · · · ,En ;σ1, σ2, · · · , σn), where Ei is a
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vector bundle over X, σi : Ei−1|Y → Ei |Y is a bundle morphism defined on Y, such

that

0→ E0|Y
σ1−→ E1|Y

σ2−→ . . .
σn−→ En |Y → 0

is an exact sequence of vector bundles.

We will say that two such elements E and E
′

are isomorphic if there are bundle

isomorphisms ϕi : Ei → E
′
i over X such that the diagram

Ei−1|Y
σi //

ϕi−1

��

Ei |Y
ϕi

��
E
′
i−1|Y

σ
′
i // E

′
i |Y

commutes for every i.

Finally, an element E = (E0,E1, · · · ,En ;σ1, σ2, · · · , σn) is said to be elementary if

there is an i such that

a) Ei = Ei−1 and σi = id

b) Ej = {0}, for j 6= i or i− 1

The Whitney sum ⊕ of vector bundles induces naturally an operation on Ln(X,Y).

We define the equivalence relation ∼ on Ln(X,Y) generated by isomorphisms and

and addition of elementary elements. Namely, we will say that two elements E,E
′

are

equivalent if there are elementary elements P1,P2, . . . ,Pk,Q1,Q2, . . . ,Ql in Ln(X,Y)

such that

E⊕P1 ⊕ · · · ⊕Pk ' E
′ ⊕Q1 ⊕ · · · ⊕Ql

The set of all equivalences classes in Ln(X,Y) under ∼ is denoted by Ln(X,Y), and is

an abelian group under the operation ⊕. Moreover, if Y = Ø, we will use the notation

Ln(X).

Consider the natural map Ln(X,Y) → Ln+1(X,Y) which associates to the element

(E0,E1, · · · ,En ;σ1, σ2, · · · , σn) the element (E0,E1, · · · ,En, 0;σ1, σ2, · · · , σn, 0).

We refer to [5] for the proof of the following fundamental result

Proposition 3.15. For each n ≥ 1, the induced map Ln(X,Y) → Ln+1(X,Y) is an

isomorphism.

Hence we can focus on the group L1(X,Y), whose elements are given by triples

E = [E0,E1;σ].

The difference bundle construction allows to associate to any triple E an element χ(E)

in K0(X,Y) in the following way.
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First, set Xk = X× {k}, for k = 0, 1, and consider the space A = X0 ∪Y X1, obtained

from the disjoint union X0

∐
X1 by identifying y × 0 with y × 1 for any y ∈ Y.

Notice that the map

ρ : A→ X1

is a retraction, i.e i ◦ ρ = id, i : X1 ↪→ A. In this case, the exact sequence (3.2.3)

becomes the split short exact sequence [4]

0→ K0(A,X1) −→ K0(A)
i∗−→ K0(X1)→ 0 (3.5.1)

Moreover, the relative map (X,Y) → (A,X1) which identifies X with X0 induces an

isomorphism ϕ : K0(A,X1)
'−→ K0(X,Y).

Now, from the element E = [E0,E1;σ] we construct (up to isomorphism) a vector

bundle over A by setting F|Xk := Ek, and using σ to identify over Y. Recall, at this

point, that the map i∗ is given essentially by restricting vector bundles from A to X1.

Hence, setting F1 := ρ∗E1, the class [F]− [F1] is in ker(i∗) ⊂ K0(A). By (3.5.1), there

exists a unique element χ(E) ∈ K0(X,Y) such that

π∗ϕ−1χ(E) = [F]− [F1]

In this way we have defined a homomorphism χ : L1(X,Y)→ K0(X,Y).

The following result allows the desired reformulation of relative K-theory [5]

Proposition 3.16. The map χ is an isomorphism.

The above proposition is easy to prove in the case in which Y = Ø. In this case,

indeed, the map χ satisfies

χ([E0,E1]) = [E0]− [E1]

The surjectivity of χ is obvious.

Suppose that χ([E0,E1]) = 0: then there exists a vector bundle G such that

E0 ⊕ G ' E1 ⊕G. Hence the element E ⊕G, where G is the elementary sequence

defined by G, is isomorphic to the elementary sequence defined by E1⊕G, and hence

it represents 0 in L1(X).

With this reformulation of relative K-theory, we can describe the ABS isomor-

phism. Again, we refer the reader to Appendix B for the relevant notions of modules

of Clifford algebras.

Let Dn denote the unit disk in Rn, and Sn−1 the boundary ∂Dn.
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Let W = W0 ⊕W1 be a Z2-graded module over the Clifford algebra C`n := C`(Rn).

To the module W we can associate the element

ϕ(W) = [E0,E1;µ] ∈ K0(Dn , Sn−1) (3.5.2)

where Ek := Dn ×Wk , and µ is the bundle isomorphism E0 → E1 defined over Sn−1

by Clifford multiplication

µ(x, v) := (x, x · v)

As the element ϕ(W) depends only on the isomorphism class of W, and the map W→
ϕ(W) is an additive homomorphism, it follows that (3.5.2) induces a homomorphism

ϕ : M̂C
n → K0(Dn, Sn−1) (3.5.3)

where M̂C
n is the abelian group freely generated by the irreducible complex graded

C`n-modules.

Consider now the homomorphism i∗ : M̂C
n+1 → M̂C

n induced by restricting the action

from C`n+1 to C`n. Now, let W be a graded C`n-module obtained from a C`n+1-

module by restriction. Then, the isomorphism µ defined on Sn−1 can be extended to

all of Dn by setting

µ̃(x, v) := (x, (x+
√

1− ||x||2 en+1) · v)

where en+1 ∈ Rn+1 is a unit vector orthogonal to Rn . As E0 and E1 are isomorphic

bundles over Dn , the element [E0,E1;µ] is 0 in K0(Dn, Sn−1).

Hence, the map (3.5.3) descends to the homomorphism

ϕn : M̂C
n/i
∗M̂C

n+1 → K0(Dn, Sn−1) (3.5.4)

In complete analogy, in the real case we have the homomorphism

ϕR
n : M̂n/i

∗M̂n+1 → KO0(Dn, Sn−1) (3.5.5)

Recalling that

K0(Dn, Sn−1) = K̃0(Dn/Sn−1) ' K̃0(Sn)

Denote with

M̂C
∗ /i
∗M̂C

∗+1 :=
⊕
n≥0

M̂C
n/i
∗M̂C

n+1

the graded ring induced by the graded tensor product of Clifford modules, and the

same for the real case.

Finally, we can state the following fundamental result in K-theory
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Theorem 3.17. Atiyah-Bott-Shapiro Isomorphisms. The maps ϕn and ϕR
n

induce graded ring isomorphisms

ϕ∗ : M̂C
∗ /i
∗M̂C

∗+1 → K−∗({pt})
ϕR
∗ : M̂∗/i

∗M̂∗+1 → KO−∗({pt})

As the periodicity of the quotients M̂C
∗ /i
∗M̂C

∗+1 and M̂∗/i
∗M̂∗+1 can be deduced

by the algebraic properties of Clifford algebras, it may seem that the above theorem

gives an algebraic proof of the Bott periodicity theorems. This is not the case, as the

proof of the above theorem in [5] actually invokes the Bott result.

The ABS isomorphisms can now be used to obtain explicit representatives for

K−∗({pt}) and KO−∗({pt}). Namely, consider SC = S+
C ⊕ S−C , the fundamental Z2-

graded complex representation of C`2n. Then, by fundamental results in the theory

of Clifford algebras, the group M̂C
2n ' Z⊕ Z is generated by SC and S̃C, the graded

module obtained by interchanging the factors in SC.

Moreover, the homomorphism i∗ maps the generator of the group M̂C
2n+1 ' Z to

(SC, S̃C) ∈ Z ⊕ Z. Hence, the generator for K−2n({pt}) ' K0(D2n, S2n−1) is given by

the element

σC
2n := [S+

C , S
−
C ;µ]

In the case n = 1, σC
2 is mapped by the isomorphism K0(D2, S1) ' K̃0(S2) to the class

[H]− [θ1], where H is the tautological complex line bundle over S2 ' CP1.

Due to the presence of torsion, the generators for the ring KO−∗({pt}) are more

complicated to describe. As an example, we will consider the case n = 1, where we

have KO−1({pt}) ' Z2.

First, recall that to any graded module W = W0 ⊕W1 for C`n we can assign the

ungraded module W0 for the Clifford algebra C`0
n ' C`n−1, where C`0

n denotes the

even part of C`n. The converse is also true: given an ungraded module W0 for the

Clifford algebra C`n−1, the module

W := C`n ⊗C`0n
W0

is naturally a graded module for the Clifford algebra C`n.

This induces the isomorphism M̂n 'Mn−1, where Mn−1 denotes the ungraded version

of M̂n−1, and consequently the isomorphism

M̂n/i
∗M̂n+1 'Mn−1/i

∗Mn

In the case n = 1, C`0 ' R and C`1 ' C: taking the real and complex dimension

of the ungraded modules gives the isomorphisms M0 ' Z and M1 ' Z, respectively.
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The map i∗ : M1 → M0 is given by considering a complex vector space to be a real

vector space under restriction of scalars. It induces a homomorphism Z → Z given

by multiplication by 2, hence M0/i
∗M1 ' Z2. Then, the generator for KO−1({pt}) is

given by the element in KO0(D1, S0)

σ1 := [D1 × R,D1 × R;µ]

where
µ(1, v) = v

µ(−1, v) = −v

Moreover, σ1 = [H1] − [θ1] ∈ K̃O
0
(S1), where H1 is the infinite Möbius bundle over

the circle, i.e. the tautological real line bundle over RP1 ' S1.

3.6 K-theory and Spinc manifolds

In this section, we will specialize to the case in which the CW-complex X is a smooth

finite dimensional manifold. Being a topological invariant, K-theory does not depend

on the presence of any smooth structure: neverthless, restricting to manifolds pro-

vides a strong connection between K-theory and the theory of elliptic operators, and,

moreover, it is the right framework for the description of D-branes in String theory.

Again, all the following results for which a smooth structure is not explicitly required,

are to be considered valid in a more general context.

Before introducing the notions of K-orientation and the Thom isomorphism, we

need some basic preliminary results.

In the following we will consider the K-theory of total spaces of vector bundles, which

are locally compact spaces. For a locally compact space X we define

K0
cpt(X) := K̃0(X+)

and

K−ncpt(X) := K0
cpt(X× Rn)

The functors K−ncpt are defined on the category of locally compact spaces and proper

maps, and they constitute the K-theory with compact support.

Moreover, we have that

K−ncpt(X,Y) := K0
cpt((X− Y)× Rn)
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Analogous definitions can be given for KO-theory, and the Bott periodicity theorems

assume the form
K0
cpt(X) ' K0

cpt(X× C)

KO0
cpt(X) ' KO0

cpt(X× R8)

Now, let X be a compact space, and let E→ X be a complex vector bundle. The one

point compactification E+ is called the Thom space, or Thom complex of E.

By definition, K̃0(E+) = K0
cpt(E).

Consider the (unit) ball and sphere bundle of E, denoted as B(E) and S(E), respec-

tively, and defined as

B(E) := {e ∈ E : ϕ(e, e) ≤ 1}
S(E) := {e ∈ E : ϕ(e, e) = 1}

for ϕ a Hermitian metric on E, and the projection is the obvious one.

By noticing that B(E)− S(E) ' E, we have

B(E)/S(E) ' E+

and consequently

K0
cpt(E) := K̃0(E+) ' K̃0(B(E)/S(E)) := K0(B(E), S(E))

The isomorphism above does not depend on the choice of the Hermitian metric ϕ,

and a similar construction follows for KO-theory.

In the following, we will often interchange K0
cpt(E) and K0(B(E), S(E)) freely using

the isomorphism above.

3.6.1 K-orientation and Thom isomorphism

In the same way that an orientation of a vector bundle E → X induces a class

τ ∈ H∗cpt(E) and a ring isomorphism H∗cpt(E) ' H∗(X) via cup product with τ , the

existence of certain structures on vector bundles will induce analogous results for K-

and KO-theory.

Let π : E → X be a complex or real vector bundle, and denote with k∗ the functor

K∗cpt or KO∗cpt, or, more generally, any multiplicative generalized cohomology theory.

Define the map

j∗ : k∗(X× E)→ k∗(E)

induced by the map j(e) = (π(e), e).

Then, the composition

k∗(X)× k∗(E)
∪−→ k∗(X× E)

j∗−→ k∗(E)
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canonically equips k∗(E) with a structure of left module over k∗(X).

In the following we will give a somewhat general definition of orientation for k∗, as it

will become important later in the context of K-homology.

Definition 3.18. An n-dimensional vector bundle π : E → X is said to be k∗-

orientable if there exists a class τ ∈ kn(E) such that i∗xτ is a generator of kn(Ex) for

each fiber inclusion ix : Ex ↪→ E. A choice of such a class τ is called a k∗-orientation

for π, and π is said to be k∗-oriented by τ .

For a k∗-oriented vector bundle one has the following fundamental general result

[38, 88]

Theorem 3.19. Let π : E → X be an n-dimensional vector bundle which is k∗-

oriented by the class τ ∈ kn(E). Then the homomorphism

TX,E : ki(X)→ ki+n(E)

defined by

TX,E(ξ) := π∗(ξ) ∪ τ

is an isomorphism.

The isomorphism TX,E is called the Thom isomorphism. As a corollary of theorem

(3.19), we have that k∗(E) is a free k∗-module with generator τ , and hence is com-

pletely known once k∗(X) is.

Given a vector bundle, one is interested in finding sufficient, if not necessary con-

ditions for orientation classes to exist, and, more generally, to investigate which are

the possible obstructions to such an existence.

For this, consider the trivial bundle

E = X× Cm π−→X

and consider the class

τ(E) := [Λeven
C Cm,Λodd

C Cm;σ] ∈ K0(B(E), S(E))

where Cm = π∗E, and where

σ(x,v)(ϕ) := v ∧ ϕ− iv∗ϕ

with iv∗ given by contraction. See Appendix B for details.

Now, the restriction of τ(E) to the fiber is given by the class

[Λeven
C Cm,Λodd

C Cm;σ] ∈ K0
cpt(Cm) = K0(D2m, S2m−1)
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where we have identified Cm ' R2m.

Upon the identification Λ∗Cm ' C`2m, and noticing that σ is given by Clifford mul-

tiplication by the element v, the class above can be rewritten as

[S+
C , S

−
C ;µ]

which by the ABS isomorphism is a generator of K0(D2m, S2m−1).

As any complex vector bundle E is locally trivializable, and there is no obstruction

to construct Λ∗CE globally, we have the following

Theorem 3.20. Let π : E→ X be a complex hermitian vector bundle over a compact

space X. Then the class

τK(E) := [Λeven
C π∗E,Λodd

C π∗E;σ] ∈ K0
cpt(E)

where σe(ϕ) := e ∧ ϕ− ie∗ϕ, is a K∗-orientation class for π.

Hence, any complex vector bundle is K∗-orientable, and there is no obstruction

present.

The case for real vector bundles is instead different. Indeed, consider the 8n-dimensional

real trivial vector bundle

E = X× R8n π−→ X

and consider the class

τKO(E) := [π∗S+(E), π∗S−(E);µ] ∈ KO0
cpt(E)

where S+(E) ⊕ S−(E) = S(E) = X ×W, with W the irreducible real graded C`8n-

module, and µ is Clifford multiplication. Again, by Bott periodicity, the class τKO(E)

gives the generator of KO0
cpt(R8n) = KO0(D8n, S8n−1), when restricted to the fiber.

Given an arbitrary real vector bundle E, the bundle S(E) will exist if and only if E

admits a spin structure.

Hence, we have the following

Theorem 3.21. Let π : E → X be a real 8n-dimensional vector bundle with a spin

structure over a compact space X. Then the class

τKO(E) := [π∗S+(E), π∗S−(E);µ] ∈ KO0
cpt(E)

where µe(ϕ) = e · ϕ is Clifford multiplication, is a KO∗-orientation for π.
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In the same way, the following theorem gives sufficient conditions for a real vector

bundle to be K∗-orientable.

Theorem 3.22. Let π : E → X a real 2n-dimensional vector bundle with a spinc

structure over a compact space X. Then the class

τK(E) := [π∗S+
C(E), π∗S−C(E);µ] ∈ K0

cpt(E)

where SC = S+
C ⊕ S−C is the irreducible spinor bundle associated to the spinc structure

on E, and µe(ϕ) = e ·ϕ is Clifford multiplication. Then τK(E) is a K∗-orientation for

π.

Thanks to the results above, we can construct an orientation class for a spinc

vector bundle of arbitrary rank in the following way, with the spin case requiring

minor modifications.

Let π : E → X be a spinc vector bundle of rank n, and consider the Whitney sum

E⊕ θp, with p such that n+ p = 2m.

If we equip θp with its canonical spinc structure, then the sum E⊕ θp is a spinc vector

bundle of rank 2m.

Hence, by Theorem 3.22 there exists a Thom class

τK(E⊕ θp) ∈ K0(B(E⊕ θp), S(E⊕ θp))

By using the following isomorphisms [38, 88]

K0(B(E⊕ θp), S(E⊕ θp)) := K̃0(B(E⊕ θp)/S(E⊕ θp))

' K̃0(Σp(B(E)/S(E))

' K−p(B(E), S(E))

' Kn(B(E), S(E))

it follows that the class τK(E⊕ θp) is an orientation class for the vector bundle π.

It is important to notice that, in contrast to the results in Theorem 3.22, the con-

struction of the Thom class above is not natural, as we have to make several choices

in the process, starting from that of a spinc structure on E ⊕ θp . Neverthless, the

induced Thom isomorphism will be an essential ingredient in the next chapter, where

we will discuss a more natural description of D-branes in terms of K-homology.

3.6.2 Chern Character and Gysin homomorphism

In this section we will briefly introduce the homomorphisms induced by the Chern

character and the Thom isomorphism. We refer to Appendix C for the basic notions

58



K-theory and Spinc manifolds

on characteristic classes for vector bundles.

Let E→ X be a complex vector bundle. The Chern character ch(E) is an element

in the rational cohomology Hev(X; Q) constructed from the total Chern class of E. The

importance of the Chern character lies in the fact that it respects the (semi)additive

and multiplicative structure on Vect(X). Namely, for E and E
′

vector bundles on X

we have
ch(E⊕ E

′
) = ch(E) + ch(E

′
)

ch(E⊗ E
′
) = ch(E) ∪ ch(E

′
)

Hence, we can define the following homomorphism

ch : K0(X)→ Hev(X; Q)

[E]− [F]→ ch(E)− ch(F)
(3.6.1)

It is easy to show that the Chern character homomorphism (3.6.1) for a class x does

not depend on its representation in terms of vector bundles, hence it is a well defined

ring homomorphism.

The Chern character homomorphism can be extended to a group homomorphism

ch : K−n(X,Y)→ H∗(X,Y; Q)

by defining

ch(x) := α((σn)−1ch(x′)) x ∈K−n(X,Y) (3.6.2)

where x′ is the class corresponding to x in K̃0(Σn(X/Y)), σn is the suspension iso-

morphism in cohomology, and α is the canonical isomorphism

α : H̃∗(X/Y; Q)
'−→ H∗(X,Y; Q)

Moreover, one can prove that the homomorphism (3.6.2) is compatible with Bott

periodicity: this allows to define ch(x) for x ∈ Kn(X,Y), where n is any integer.

Finally, by using a spectral sequence argument, the following fundamental result was

proven in [7]

Theorem 3.23. Let X be a finite CW-complex. Then the homomorphism

ch⊗ id : K∗(X)⊗Q→ H∗(X; Q)

is an isomorphism and maps K0(X)⊗Q onto Hev(X; Q) and K1(X)⊗Q onto Hodd(X; Q).

As a corollary of Theorem 3.23, when X is a finite CW-complex, K∗(X) is a

finitely generated abelian group. This technical simplification in a sense justifies the
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restriction to CW-complexes.

In the case in which X is a smooth manifold, the Chern character homomorphism

is closely related to the Gysin homomorphism, which we will illustrate in the following.

Consider two locally compact manifolds X and Y, such that dimY−dimX = 0 mod 2,

and let f : X→ Y be a proper embedding2. Denote with νX the normal bundle of X

in Y, and suppose it is equipped with a spinc structure, which is a restriction on the

map f . Moreover, identify this normal bundle with a tubular neighbourhood N of X

in Y. Then, we can define the Gysin homomorphism

f∗ : K0
cpt(X)→ K0

cpt(Y)

as the composition

K0
cpt(X)

TX,νX−−−→ K0
cpt(νX) ' K0

cpt(N)
j∗−→ K0

cpt(Y)

where the map j∗ is induced by the map j : Y+ → N+ defined as

j(z) = z, ∀ z ∈ N

j(z) =∞,∀ z /∈ N

with ∞ denoting the point that compactifies N. Intuitively, j∗ extends a class in

K0
cpt(N) via trivial bundles, and is usually referred to as “extension by zero”.

The Gysin homomorphism is also called the “wrong way” morphism, as it “goes” in

the direction opposite to the contravariance of the K-functor.

The Gysin homomorphism does not depend on the tubular neighbourhood N, and only

depends on the homotopy class of f , as the vector bundle νX is defined as f ∗(TY)/TX,

and the K-functor is homotopy invariant.

Moreover, the Gysin homomorphism enjoys the following functoriality property, which

will be very useful in later chapters.

Let f : X→ Y and g : Y → Z be proper embeddings satisying the hypothesis above.

Then

(g ◦ f)∗ = g∗f∗ (3.6.3)

As the Thom isomorphism can be extended to higher K-groups, the Gysin homomor-

phism can be extended to a homomorphism

f∗ : K−1
cpt(X)→ K−1

cpt(Y)

2The embedding condition can be relaxed. See [61].
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Moreover, by recalling the discussion on orientation classes in section 3.6.1, we can

relax the condition that dimY − dimX = 0 mod 2. Indeed, in general, we will have a

Gysin homomorphism

f∗ : Ki
cpt(X)→ Ki+n

cpt (Y)

where n is the rank of the normal bundle. Again, the price we pay is that the

homomorphism f∗ so obtained does not induce a natural transformation.

Finally, along the same lines, one can define a Gysin homomorphism in ordinary

cohomology

fH
∗ : H∗(X; Q)→ H∗(Y; Q)

As mentioned before, the Chern character homomorphism and the Gysin homo-

morphism are closely related via the Atiyah-Hirzebruch version of the Riemann-Roch

theorem [6].

Consider two locally compact manifolds X and Y and a proper embedding f : X→ Y

as above, and denote with d(νX) the cohomology class defining the spinc structure on

the normal bundle νX. Then we have the following

Theorem 3.24. (Riemann-Roch) For each class x ∈ K0(X) we have the relation

ch(f∗(x)) = fH
∗ ( e d(νX)/2Â(νX) ch(x))

This form of the Riemann-Roch theorem will be used in the next section, where

we will see how the K-theoretic machinery developed so far is related to D-branes in

String theory.

3.7 K-theory and type IIA/B D-branes

Having developed the necessary notions in the previous sections, we will describe how

K-theory is related to D-branes in superstring theory. In particular, in this section

we will consider type II String theory on a 10-dimensional spin manifold M, while in

the next section we will investigate type I String theory.

We will present two supporting arguments for the K-theoretic description of D-branes,

based on the fact that D-branes are currents for Ramond-Ramond fields, and on Sen’s

conjectures, respectively.

We first need some comments on the anomalous coupling (2.5.7) between the total

Ramond-Ramond potential and a D-brane. Recall that in section 2.4 we made the

assumption that the worldvolume Q wrapped by the D-brane is a spin manifold,

pointing out that this condition is not necessary from a string theoretic point of view.
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In presence of a D-brane the partition function of the superstring develops an anomaly,

called the Freed-Witten anomaly [45]: in a topologically trivial B-field setting, this

anomaly cancels exactly when the normal bundle of Q in M admits a spinc structure.

Since M is a spin manifold, the manifold Q necessarily admits a spinc structure.

Moreover, the anomalous coupling is modified as∫
Q

i∗C ∧ e d(νQ)/2ch(E)i∗
√

Â(TM)
1

Â(TQ)
(3.7.1)

which coincides with the coupling (2.5.7) when Q is spin manifold, as in this case the

class d(νQ) vanishes.

Consider the cohomology class

jQ = e d(νQ)/2ch(E)i∗
√

Â(TM)
1

Â(TQ)

As we have discussed in section 2.5, the class jQ represents the charge associated to

the Ramond-Ramond current generated by the D-brane wrapping Q. More precisely,

for such an interpretation to be valid, the class jQ needs to be “pushed” into the

spacetime manifold M as

iH∗ (jQ) (3.7.2)

where we recall that i : Q→ M is the embedding map. By noticing that

νQ ' i∗TM/TQ

and using the fact that the roof genus is a characteristic class, we have the identity

Â(νQ) = i∗Â(TM)/Â(TQ)

Hence, we can rewrite (3.7.2) as

iH∗ ( e d(νQ)/2Â(νQ)ch(E)
1

i∗
√

Â(TM)
)

By using the following property of the cohomological Gysin homomorphism

iH∗ (α ∪ i∗β) = iH∗ (α) ∪ β, ∀α ∈ H∗(Q; Q),∀β ∈ H∗(M; Q)

we have that

iH∗ ( e d(νQ)/2Â(νQ)ch(E)
1

i∗
√

Â(TM)
) = iH∗ ( e d(νQ)/2Â(νQ)ch(E)) ∪ 1√

Â(TM)
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Finally, by using the Riemann-Roch theorem we have

iH∗ (jQ) = ch(i∗[E]) ∪ 1√
Â(TM)

(3.7.3)

The identity (3.7.3) strongly suggests that the charge for a D-brane wrapping a world-

volume Q equipped with a Chan-Paton bundle E is naturally given by the element

i∗[E] ∈ K0(M).

This argument was developed in [71], and constitutes the first evidence for the impor-

tance of K-theory in String theory. However, the argument is strictly speaking only

valid over Q, where the map

ch ∪ 1√
Â(TM)

: K∗(M)⊗Q→ H∗(M; Q)

is a group isomorphism. In this case, then, the cohomological description of D-branes

“coincides” with the K-theoretical one, with the latter having the advantage of being

more natural.

An argument which relates the full K-theory groups to D-brane charges is based

on Sen’s conjectures, as discussed in section 2.6: of course, the price we pay consists

in the fact that we have to invoke (open) string tachyon condensation, which is not

yet fully understood, both from the physical and the mathematical point of view.

Recall from section 2.6 that Witten made the observation that in type IIB String

theory, a configuration of n D9-branes and n D9-branes (E,F) has to be considered

equivalent to the configuration (E ⊕ H,F ⊕ H), because the brane-antibrane system

(H,H) is able to decay in the string vacuum, as conjectured by Sen.

As we have seen in this chapter, the equivalence classes of configurations (E,F) under

brane-antibrane annihilation are elements in K0(M), or more precisely K̃0(M), as the

bundles E and F have the same rank.

Moreover, in [94] Witten was able to K-theoretically interpret Sen’s construction,

which allows to obtain Dp-branes with p < 9 as the decay product of a system of

brane-antibranes of higher dimension. According to this interpretation, the group of

possible charges for a Dp-brane wrapping a spinc submanifold Q ⊂ M is given by

K0
cpt(N) ' K0(B(N), S(N))

with N denoting the tubular neighbourhood identifying the normal bundle to Q in M.

In particular, given a single Dp-brane wrapping Q with trivial Chan-Paton bundle,

the system of D9-D9-brane decaying to Q is given by

i∗(1) ∈ K0(M)
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where 1 denotes the class of the trivial line bundle over Q.

Applying the above machinery to a flat Dp-brane wrapping R1,p ⊂ M10, with M10 the

ten dimensional Minkowski spacetime, we obtain that the its charge group is given by

K0
cpt(B(N), S(N)) ' K0

cpt(R1,p ×D9−p,R1,p × S9−p) ' K̃0(S9−p)

where we have used the compact support relative K-theory, as R1,p is not compact.

As K̃0(S9−p) = 0 for p even, we find that the K-theoretical description agrees with,

and in a certain sense justifies the statement that odd-dimensional (flat) D-branes

in type IIB String theory are necessarily unstable, as they cannot carry any D-brane

charge.

The discussion for type IIA is less straightforward. Indeed, the fact that Sen’s con-

struction works in even codimension let Witten propose to relate branes not to bun-

dles on M, but to bundles on S1 ×M. Namely, given a Dp-brane wrapping an odd-

dimensional submanifold Q ⊂ M, one identifies Q with pt×Q in S1 ×M, where pt is

any point in S1. Applying Sen’s construction, the Dp-brane wrapping Q determines

an element in K0(S1 ×M), which turns out to be trivial when restricted to pt×M.

By using the isomorphism

K−1(M) ' ker
[
K0(S1 ×M)→ K0(pt×M)

]
it follows that type IIA brane-antibrane configurations have to be considered equiva-

lent if they determine the same element in K−1(M). Of course, the construction above

is not natural, as we have to make a choice of how to embed Q in S1 ×M.

Similarly, the group of charges for a Dp-brane wrapping Q is given by

K−1
cpt(B(N), S(N))

which agrees with the known results for flat Dp-branes in Minkowski spacetime.

From our point of view, the appearence of the functor K−1 can be motivated in the

following way. As we have seen in section 3.6.2, a Gysin homomorphism for a map

i : X → Y such that the normal bundle admits a spinc structure does always exist.

Hence, given a D-brane wrapping an odd codimension manifold Q equipped with a

trivial Chan-Paton bundle, its D-brane charge is given by the element

i∗(1) ∈ K−1
cpt(M)

The classes in K−1
cpt(M) do not represent a brane-antibrane system: instead, they can

can be conveniently represented as a system of D9-branes equipped with the tachyon

field causing the instability of D9-branes in Type IIA String theory. We refer the

reader to [55] for details on this construction.
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3.8 KO-theory and Type I D-branes: torsion ef-

fects

As we mentioned in chapter 1, Type I String theory is a theory of open and closed

strings, including oriented as well as unoriented worldsheets. The Fock space for a

String theory of unoriented worldsheets is obtained by considering states in the Type

II Fock space which are invariant under the worldsheet parity operator Ω, induced by

reversing the orientation on the worldsheet [79, 33].

The operator Ω induces an action also on the Chan-Paton bundle to a D-brane, forc-

ing it to be an O(n)-bundle. Moreover, the Ramond-Ramond field content in Type

I differs from that of Type II: indeed, the Ramond-Ramond gauge theory in Type I

String theory consists of p-forms, for p=2,6.

Finally, Freed-Witten anomaly cancellation imposes that a D-brane can only wrap a

spin manifold.

The right framework to describe D-brane charges is then KO-theory. Namely, a config-

uration of Type I D9-branes (E,F) modulo brane-antibrane annihilation is represented

by a class x in KO0(M).

Moreover, as in Type II String theory, given a Dp-brane wrapping a spin manifold

Q ⊂ M, the group of its admissable charges is given by

KO0(B(N), S(N))

Applying this classification to a Dp-brane wrapping R1,p ⊂ M10, we obtain

KO0
cpt(B(N), S(N)) ' KO0

cpt(R1,p ×D9−p,R1,p × S9−p) ' K̃O
0
(S9−p)

where

K̃O
0
(Sn) '


Z, n = 0, 4 mod 8

Z2, n = 1, 2 mod 8

0, otherwise

We have K̃O
0
(S9−p) ' Z, for p = 1, 5, 9: for p = 1, 5, this agrees with the fact that

the corresponding supersymmetric D-branes couple to Ramond-Ramond fields, and

hence are stable. Moreover, we would expect these to be the only stable D-branes

in Type I String theory. A new prediction of K-theory is that this is not the case.

Indeed, for p = 7, 8, we have K̃O
0
(S9−p) ' Z2: hence, D7-branes and D8-branes can

carry a charge that would protect them from decaying. Morever, since the group Z2

is a pure torsion group, this charge is not associated to any spacetime field coupling
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to the D-brane, and has to be considered as a purely topological effect.

The K-theoretic description also naturally describes stable objects for p = −1 and

p = 0, which are called the D-instanton and the D-particle.

In contrast to Type II String theory, constructing a system of spacetime filling brane-

antibranes which has a given Dp-brane as its decay product is not very systematic,

in the sense that there is no unified procedure, or homomorphism, realizing this

construction. Indeed, in [94] the different stable Dp-branes are treated with different

methods. This is due to the fact that the Thom isomorphism in KO-theory implies

that

KO0
cpt(B(N), S(N)) ' KO−pcpt(Q) (3.8.1)

where Q is the wrapped manifold, and p is the rank of the normal bundle of Q in M.

As we have seen, elements of KO−pcpt(Q) are not represented by “differences” of vector

bundles on Q, hence there is no natural way to identify them as a system of D-branes.

Indeed, the higher KO-groups only play a role through the isomorphism (3.8.1), which

is one of the limitations of the K-theorical description of D-branes. We will address a

possible solution to this problem in the next chapter, where we will develop another

description of D-branes, based on KO-homology, the dual theory to KO-theory. We

refer to [76] for an alternative interpretation of the higher KO-groups, and to [75] for

extensive review on the application of K-theory to String theory.
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Chapter 4

KO-homology and Type I D-branes

As it was emphasized in the last sections of chapter 3, the K-theorical description of

D-branes in String theory is based on the Sen-Witten mechanism of brane-antribrane

annhilation. However, we have seen that in an ordinary Maxwell theory of p-forms

the sources are extended objects, and their charges are related to the homology cycles

they represent. We have argued that for the Ramond-Ramond gauge theory this is

not the case: anyway, intuitively we still expect the right mathematical framework to

be given by some sort of homology theory that would take into account the relation

between K-theory and D-branes as exposed in the previous chapter.

In Type II String theory, this simple observation suggests that a much more natural

description of D-branes can be given in terms of K-homology, the homological theory

associated to K-theory, as thouroghly emphasized in [77, 52, 69, 89].

More precisely, K-homology has two equivalent representations: an analytic repre-

sentation, in terms of C∗-algebras and Fredholm modules, and a geometric one, con-

structed by Baum and Douglas in [14, 13]. In particular, the Baum-Douglas con-

struction was extensively used in [80] to provide a rigorous geometric description of

D-branes in Type II String theory in various topologically non trivial backgrounds.

In this chapter, we will present new results concerning KO-homology, the homology

theory associated to KO-theory.

From the mathematical perspective, we construct a geometric realization of KO-

homology, and we argue that it is indeed isomorphic to the homology theory defined

via the loop spectrum of KO-theory, which we refer to as spectral KO-homology. We

will also develop the analytic description of KO-homology, using Kasparov’s formal-

ism for real C∗-algebras, which represents a unified description of both K-theory and

K-homology.

We then construct an homomorphism between geometric and analytic KO-homology,
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and give a detailed and explicit proof that such homomorphism induces a natural

equivalence between the two representations. We want to comment, at this point,

that the equivalence between geometric and analytic K-homology has been a sort of a

“folklore theorem” until recently [15], as the original work of Baum and Douglas did

not contain any accurate proof of such equivalence. In particular, the work [15] also

contains a proof of the equivalence between geometric and analytic KO-homology:

neverthless, the proof presented in this chapter is fundamentally different, and the

whole construction is more apt for physical applications, as we will see later on. In-

deed, the approach followed here has strongly been inspired by the point of view in

[14] that index theory is based on the equivalence between geometric and analytic

K-homology: this point of view is reinforced by the introduction of certain geometric

invariants that will help us to derive some cohomological index formulas in the real

case.

From the physical perspective, we introduce the notion of wrapped D-brane and

of wrapping charge of a D-brane. In particular, we will illustate how the higher K-

homology groups can naturally be interpreted in terms of wrapped D-branes, and we

will argue that the wrapping charge of a D-brane is a genuinely different concept in

Type I String theory..

We have mentioned in chapter 2 that the interpretation of a D-brane as a submanifold

of the spacetime is not very accurate, and that a distinction should be made some-

how between the D-brane itself and the worldvolume it wraps. This point of view

emerges here, as we will construct stable torsion D-branes wrapping a single point in

the spacetime.

4.1 Dual theories and spectral KO-homology

In this section we will explain in which sense KO-homology is “associated” to KO-

theory, and we will define spectral KO-homology.

First we recall some properties of cohomology theories in the category of CW-complexes,

referring to [88] for a detailed exposition.

An Ω-spectrum, or loop spectrum for a generalized cohomology theory k∗ is given by

a sequence of CW-complexes {Kn}n∈Z together with homotopy equivalences

Kn → ΩKn+1 (4.1.1)

where Ω denotes the loop space functor, such that the functor kn can be represented

kn(X) = [X,Kn] ∀ n ∈ Z
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for any CW-complex X.

By considering the maps σn : Σ(Kn) → Kn+1 adjoint to the maps in (4.1.1), we can

define the unreduced generalized homology theory associated to k∗ by setting

ki(X) := k̃i(X
+) := limnπn+i(X

+ ∧Kn)

where the inductive limit is taken using the maps σi

πn+i(X
+ ∧Kn) = [Sn+i,X+ ∧Kn]∗

susp−−→ [Σ(Sn+i),Σ(X+ ∧Kn)]∗

' [Sn+i+1,X+ ∧ Σ(Kn)]∗
σi−→ [Sn+i+1,X+ ∧Kn+1]∗

= πn+i+1(X+ ∧Kn+1)

The relative homology theory can be defined as usual, and we will refer to the homol-

ogy theory k∗ as the dual theory to k∗.

In [10] it was shown that a suitable spectrum for KO-theory can be defined in the

following way. For n ≥ 1, let HR be a real Z2-graded separable Hilbert space which

is a ∗-module for the real Clifford algebra C`n−1 = C`(Rn−1). Let Fredn be the

space of all Fredholm operators on HR which are odd, C`n−1-linear and self-adjoint.

Then Fredn is the classifying space for KO−n, and there are homotopy equivalences

Fredn → ΩFredn−1. For n ≤ 0, we choose k ∈ N such that 8k + n ≥ 1 and define

Fredn := Fred8k+n.

Then, spectral KO-homology can be defined by setting

KOs
i (X,Y) := limnπn+i((X/Y) ∧ Fredn) (4.1.2)

From a general result for spectrally defined generalized homology theories, we have

that

KOs
i (pt) = K̃O

0
(Si)

The importance of the functors KOs
n in our context consists in the fact that any

set of groups which are isomorphic to spectral KO-homology, in a suitable sense, for

any space X, defines necessarily an homology theory. Indeed, this will be the case

for geometric KO-homology defined later on, whose homological properties will be

deduced by “comparison” with spectral KO-homology.

4.2 KKO-theory and analytic KO-homology

We will give now a detailed overview of the definition of KO-homology in terms of

Kasparov’s KK-theory for real C∗-algebras [62], and describe various properties that

we will need later on. Incidentally, we will eventually give an interpretation of the

KK-groups for complex C∗-algebras in terms of Type II D-branes.
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4.2.1 Real C∗-algebras

A real algebra is a ring A which is also an R-vector space such that λ (x y) = (λx) y =

x (λ y) for all λ ∈ R and all x, y ∈ A. A real ∗-algebra is a real algebra A equipped

with a linear involution ∗ : A → A such that (x y)∗ = y∗ x∗ for all x, y ∈ A. A real

Banach algebra is a real algebra A equipped with a norm ‖−‖ : A → R such that

‖x y‖ ≤ ‖x‖ ‖y‖ and such that A is complete in the norm topology. If A is a unital

algebra then we assume ‖1‖ = 1. A real Banach ∗-algebra is a real Banach algebra

which is also a real ∗-algebra. A real C∗-algebra is a real Banach ∗-algebra such that

(i) ‖x∗x‖ = ‖x‖2 for all x ∈ A; and

(ii) 1 + x∗ x is invertible in Ã for all x ∈ A.

where Ã denotes the unitalization of the algebra A.

Remark 4.1. Although in the complex case invertibility of 1+x∗ x for all x ∈ A would

follow immediately from the C∗-algebra structure, in the real case this is no longer

true. For example, consider the real Banach ∗-algebra C with involution given by the

identity map. Then 1 + i ∗ i is not invertible, where i :=
√
−1. This invertibility

condition is fundamental to obtaining the usual representation theorem below for C∗-

algebras in terms of bounded self-adjoint operators on a real Hilbert space. However,

C with involution given by complex conjugation is a real C∗-algebra. Since the only

R-linear involutions of C are the identity and complex conjugation, when we consider

C as a real C∗-algebra the involution will always be implicitly assumed to be complex

conjugation. More generally any complex C∗-algebra, regarded as a real vector space

and with the same operations, is a real C∗-algebra.

Let us now give a number of examples of real C∗-algebras, some of which we will

use later on in representation theorems.

Example 4.2. Let HR be a real Hilbert space. Then the set of bounded linear

operators B(HR) with the usual operations is a real C∗-algebra. Any closed self-

adjoint subalgebra of B(HR) is also a real C∗-algebra. More generally, any closed

self-adjoint subalgebra of a real C∗-algebra is always a real C∗-algebra.

Example 4.3. Let X be a locally compact Hausdorff space and C0(X,R) the space of

real-valued continuous functions vanishing at infinity. Then C0(X,R) with pointwise

operations, the supremum norm and involution given by the identity map is a real

C∗-algebra. As in the complex case, C0(X,R) is unital if and only if X is compact.
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Example 4.4. With X as in Example 4.3 above, let Y be a closed subspace of

X and C0(X,Y; R) the subspace of C0(X,C) consisting of maps f : X → C such

that f(Y) ⊂ R. Then with the operations inherited from C0(X,C), the subspace

C0(X,Y; R) is a real C∗-algebra.

Example 4.5. Let X be a locally compact Hausdorff space with involution τ : X→ X,

i.e. a homeomorphism such that τ ◦ τ = idX, and consider the subset C0(X, τ) of

C0(X,C) consisting of maps f such that f ◦ τ = f ∗ = f . Then C0(X, τ), with the

operations inherited from C0(X,C), is a real C∗-algebra. If τ = idX then C0(X, τ) =

C0(X,R). If X is compact and Y is a closed subspace of X, then there is a compact

Hausdorff space Z with an involution τ such that C(X,Y; R) ' C(Z, τ). However,

the converse does not hold in general.

Example 4.6. Let V be a real vector space equipped with a quadratic form q, and

consider the associated real Clifford algebra C`(V, q). Assume, without loss of gen-

erality, that q(v) = 〈v, φ(v)〉 for all v ∈ V with respect to an inner product on V,

where the linear operator φ ∈ L(V) is symmetric and orthogonal. We can then de-

fine an involution on C`(V, q) by (v1 · · · vk)∗ = φ(vk) · · ·φ(v1), i.e. if v ∈ V then

v∗ = φ(v). The isomorphism Φ : C`(V ⊕ V, q ⊕ −q) → L(Λ∗V) induces a norm on

C`(V ⊕ V, q ⊕ −q) by pullback of the operator norm on L(Λ∗V), and the inclusion

C`(V, q) ↪→ C`(V, q)⊗̂C`(V,−q) ' C`(V ⊕ V, q ⊕ −q) given by x 7→ x⊗̂1 thereby

induces a norm on C`(V, q). Then C`(V, q) with its algebra structure, this involution

and norm is a real C∗-algebra.

If A, B are real ∗-algebras then a real ∗-algebra homomorphism is a real algebra

map φ : A→ B, i.e. an R-linear ring homomorphism, such that φ(x∗) = φ(x)∗ for all

x ∈ A. The homomorphism is assumed to be unital if both algebras are unital.

If A is an algebra, we denote by Mn(A) the algebra of n× n matrices with entries in

A. Then, we have the following general representation theorem [47]

Theorem 4.7. Let A be a finite-dimensional real C∗-algebra. Then there exist

n1, . . . , nk ∈ N such that A ' Mn1(A1) × · · · × Mnk(Ak) as real C∗-algebras with

A1, . . . , Ak ∈ {R,C,H}.

Analogously to the complex case, real C∗-algebras are always algebras of operators

on some Hilbert space.

Theorem 4.8. (Ingelstam) Let A be any real C∗-algebra. Then there exists a real

Hilbert space HR such that A is isomorphic as a real C∗-algebra to a closed self-adjoint

subalgebra of B(HR).
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Consider now a real C∗-algebra A. We denote by AC := A⊗C the complexification

of A, which is a complex algebra containing A as a real algebra. Theorem 4.2.1 assures

that AC can be given a unique C∗-algebra norm such that the natural embedding

θ : A→ AC of A onto its complexification is an isometry.

We can define a map JA : AC → AC by JA(x + i y) = x − i y for all x, y ∈ A.

The map JA is a conjugate linear ∗-isomorphism of the complex C∗-algebra AC. If

φ : A → A is a continuous ∗-homomorphism, then the map JA(φ) : AC → AC

defined by JA(φ)(x+ i y) = φ(x) + iφ(y) is a continuous ∗-homomorphism such that

JA ◦ JA(φ) = JA(φ) ◦ JA. Conversely, if J is a conjugate linear ∗-isomorphism of

a complex C∗-algebra B, then A = {x ∈ B | J(x) = x} is a real C∗-algebra. This

implies the following result.

Proposition 4.9. Let C ∗R be the category of real C∗-algebras and continuous ∗-
algebra homomorphisms. Let C ∗C,cl be the category of pairs (A, J), where A is a

complex C∗-algebra and J is a conjugate linear ∗-isomorphism of A, and continu-

ous ∗-homomorphisms commuting with J . Then the assignments

A 7→ (AC, JA)

φ 7→ JA(φ)

define a functor

J : C ∗R −→ C ∗C,cl

which is an equivalence of categories.

The complexification of a real C∗-algebra A is crucial in generalizing the notion

of spectrum of an element. Indeed, we define the complexified spectrum SpC(x) of an

element x ∈ A as the spectrum of the element θ(x) in AC, i.e. the set of λ ∈ C such

that λ− θ(x) is not invertible in AC. This definition of the spectrum assures that the

functional calculus in A is well behaved. In the following, we will use the notion of

positive element. An element x in a real C∗-algebra A is said to be positive if x = x∗,

and SpC(x) ⊆ R+.

As we are interested in the applications of real C∗-algebras to algebraic topology

of CW-complexes, we will now specialize to the case of commutative algebras.

As with complex Banach algebras, a maximal two-sided ideal in a real Banach algebra

A is closed in A. If M is a maximal two-sided ideal of a real Banach algebra A, then

A/M is isomorphic to one of R or C as real algebras. A character on a real algebra A

is a non-zero real algebra map χ : A→ C, assumed unital if A is unital. Let ΩA be the

space of characters of A. This can be given, as in the complex case, a locally compact
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Hausdorff space topology such that ΩA is homeomorphic to ΩAC . Furthermore, A is

unital if and only if ΩA is compact.

Given x ∈ A, evaluation at x gives a continuous map Γ(x) : ΩA → C called the

Gel’fand transform of x. From this we obtain the Gel’fand transform of A, Γ : A →
C0(ΩA,C), which is a continuous real algebra homomorphism of unit norm. If A is a

real ∗-algebra, then Γ is a ∗-algebra homomorphism.

The following important results on the representation of commutative real C∗-algebras

allow to unify the treatment of real commutative C∗-algebras and topological spaces

with involution.

Theorem 4.10. Let A be a commutative real C∗-algebra. Then:

(i) The map τ : ΩA → ΩA defined by τ(χ) = χ is an involution; and

(ii) The Gel’fand transform Γ : A→ C0(ΩA, τ) is a real C∗-algebra isomorphism.

Proof. (i) The map τ is a bijection. The collection of sets

Ux,V =
{
χ ∈ ΩA | χ(x) ∈ V

}
for every x ∈ A and V open in C is a sub-basis for the topology of ΩA. The complex

conjugate V of V is an open set and τ−1(Ux,V ) = Ux,V . Thus τ is continuous.

(ii) The map Γ is a real ∗-algebra map with ‖Γ(x)‖ = ‖x‖. One also has

Γ(x) ◦ τ(χ) = Γ(x)(χ )

= χ(x) = Γ(x)∗(χ) ,

and so Γ(x) ◦ τ = Γ(x)∗ and Γ(A) ⊂ C0(ΩA, τ). Let θ : A → AC be the C∗-algebra

embedding of A into its complexification. The map ϑ : ΩAC → ΩA given by ϑ(f) = f◦θ
is a homeomorphism and there is a commutative diagram

A
Γ //

θ

��

C0(ΩA,C)

ϑ∗

��
AC Γ

// C0(ΩAC ,C) .

Using this one then shows that Γ(A) = C0(ΩA, τ); see [47].

Corollary 4.11. Let A be a commutative real C∗-algebra with trivial involution. Then

A is ∗-isomorphic to C0(ΩA,R).
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4.2.2 Hilbert Modules

In this section we will present a generalization of the notion of Hilbert space, in which

the scalar product takes value in a general real C∗-algebra.

Let A be a (not necessarily commutative) real C∗-algebra. A pre-Hilbert module over

A is a (right) A-module E equipped with an A-valued inner product, i.e. a bilinear

map (−,−) : E× E→ A such that

(i) (x, x) ≥ 0 for all x ∈ E and (x, x) = 0 if and only if x = 0;

(ii) (x, y) = (y, x)∗ for all x, y ∈ E; and

(iii) (x, y a) = (x, y) a for all x, y ∈ E, a ∈ A.

For x ∈ E we define ‖x‖E := ‖(x, x)‖1/2. This defines a norm on E satisfying the

Cauchy-Schwartz inequality. If E is complete under this norm, then it is called a

Hilbert module over A.

As a straight generalization from the ordinary Hilbert space case, we have the following

examples of Hilbert modules.

Example 4.12. A real C∗-algebra A can be given the structure of a Hilbert module

over itself by defining (a, b) = a∗b, for any a, b ∈ A. More generally, any closed right

ideal of A is a Hilbert module over A.

Example 4.13. Let E consists of all sequences (an)n∈N, an ∈ A, such that∑
n

‖an‖2 <∞

with inner product ((an), (bn)) =
∑

n a
∗
nbn.

E is called the Hilbert space over A, and is often denoted with A∞.

Let E,F be Hilbert A-modules and T : E → F an A-linear map. We call a map

T∗ : F → E such that (Tx, y)F = (x,T∗y)E for all x ∈ E, y ∈ F the adjoint of T. If it

exists the adjoint is unique.

In contrast to ordinary bounded operators on separable Hilbert spaces, not every

A-linear map between Hilbert A-modules has an adjoint. We denote the set of all

A-linear maps T : E → F admitting an adjoint by L(E,F). Elements of L(E,F) are

bounded A-linear maps and L(E) := L(E,E) is a C∗-algebra with the operator norm

and involution given by the adjoint.

Notice that a submodule of a Hilbert A-module E in general need not be comple-

mented, i.e. there is generally no projection in L(E) onto the given submodule.
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However, one can define some special “rank 1” operators as follows. Given x ∈ F, y ∈
E we define an operator θx,y ∈ L(E,F) by θx,y(z) = x (y, z)E. These operators generate

an L(E) − L(F)-bimodule whose norm closure in L(E,F) is denoted K(E,F). Ele-

ments of K(E,F) are called generalized compact operators. We will use the notation

K(E) for K(E,E).

Example 4.14. K(A) = A for any real C∗-algebra A. If A is unital, we have also

that L(A) = A.

Example 4.15. If E is a Hilbert A-module, then L(En) 'Mn(R)⊗L(E), and K(En) '
Mn(R)⊗K(E)

Example 4.16. K(A∞) ' A⊗KR, where KR := K(HR).

For a real C∗-algebra A, the multiplier algebra of A, M(A), is the maximal C∗-

algebra containing A as an essential ideal. Equivalently, by representing A ⊂ L(HR)

one has

M(A) = {T ∈ L(HR) | T S, S T ∈ A for all S ∈ A} .

The multiplier algebra M(A) is a C∗-algebra which is ∗-isomorphic to the C∗-algebra

of double centralizers, i.e. pairs (T1,T2) ∈ L(A)× L(A) such that aT1(b) = T2(a) b,

T1(a b) = T1(a) b and T2(a b) = aT2(b) for all a, b ∈ A.

If A is unital, then M(A) = A. Furthermore, M(KR) = L(HR), and M(C0(X,R)) =

Cb(X,R) is the C∗-algebra of real-valued bounded continuous functions on a locally

compact Hausdorff space X.

We have then the following proposition, whose proof follows from the analogous result

for complex Hilbert modules [18]

Proposition 4.17. Let E be a Hilbert A-module. Then there is an isomorphism

L
(
E
)
' M

(
K(E)

)
.

As with ordinary Hilbert spaces, one can define tensor products of Hilbert modules

in the following way [18].

Let Ei be a HilbertBi-module, for i=1,2, and let φ : B1 → L(E2) be a *-homomorphism.

If we regard E2 as a left B1-module via φ, we can form the algebraic tensor product

E1 ⊗B1 E2, which is a right B2-module. Finally, we define the B2-valued pre-inner

product on the algebraic tensor product by

(x1 ⊗ x2, y1 ⊗ y2) := (x2, φ((x1, y1)E1)y2)E2
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The completion of the algebraic tensor product with respect to this inner product,

with vectors of length 0 divided out, is called the tensor product of E1 and E2, and is

denoted with E1 ⊗φ E2.

As for ordinary Hilbert spaces, there is a natural homomorphism from L(E1) to

L(E1 ⊗φ E2), and we will denote the image of T ∈ L(E1) as T⊗ 1, or φ∗(T) when we

want to emphatize the homomorphism φ. However, there is no homomorphism from

L(E2) to L(E1 ⊗φ E2) in general.

Finally, if E is a pre-Hilbert module over the real C∗-algebra A, we assume that the

complexification E⊗C is a pre-Hilbert module over AC. This means that the A-valued

inner product extends to a sesquilinear map. We assume that sesquilinear maps are

linear in the second variable.

4.2.3 Kasparov’s formalism for KKO-theory

We are now ready to define KKO-theory by using Kasparov’s approach, developed in

[62]. In the following we will assume that a real C∗-algebra A is separable and a real

C∗-algebra B is σ-unital, i.e. B contains an element h such that φ(h) > 0, for every

character φ of B. This technical requirements will be useful in the following.

Definition 4.18. A (Kasparov) (A,B)-module is a triple (E, ρ,T), where E is a

countably generated Z2-graded Hilbert B-module, ρ : A → L(E) is an even ∗-
homomorphism and T ∈ L(E) such that

(T− T∗) ρ(a) ,
(
T2 − 1

)
ρ(a) ,

[
T , ρ(a)

]
∈ K(E) (4.2.1)

for all a ∈ A, and T is odd with respect to the grading on E. A Kasparov module

(E, ρ,T) is called degenerate if all operators in (4.2.1) are zero. Two Kasparov modules

(Ei, ρi,Ti), i = 1, 2 are said to be orthogonally equivalent if there is an isometric

isomorphism U ∈ L(E1,E2) such that T1 = U∗T2 U and ρ1(a) = U∗ ρ2(a) U for all

a ∈ A.

Orthogonal equivalence is an equivalence relation on the set of Kasparov modules.

We denote the set of Kasparov modules by E(A,B). The subset containing degenerate

modules is denoted D(A,B). Direct sum makes E(A,B) and D(A,B) into monoids.

Definition 4.19. Let (Ei, ρi,Ti) ∈ E(A,B) for i = 0, 1, (E, ρ,T)∈E(A,B⊗C([0, 1],R)),

and let ft : B ⊗ C([0, 1],R) → B be the evaluation map ft(g) = g(t). Then
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(E0, ρ0,T0) and (E1, ρ1,T1) are said to be homotopic and (E, ρ,T) is called a ho-

motopy if (E⊗fi B, fi ◦ ρ, fi∗(T)) is orthogonally equivalent to (Ei, ρi,Ti) for i = 0, 1.

Homotopy is an equivalence relation on E(A,B) and we denote the equivalence

classes by [E, ρ,T]. It is useful to consider special kinds of homotopy. If E =

C([0, 1],E0), E0 = E1 and the induced maps t 7→ Tt, t 7→ ρt(a) for all a ∈ A are

strongly ∗-continuous, then we call (E, ρ,T) a standard homotopy. If in addition

ρt = ρ is constant and Tt is norm continuous, then (E, ρ,T) is called an operator

homotopy. The following result holds, whose proof can be obtained by the analogous

result in complex case [18].

Proposition 4.20. Let (E, φ,T) be an element in D(A,B). Then (E, φ,T) is homo-

topic to the zero module.

We can now give the definition of the Kasparov’s KKO-groups.

Definition 4.21. The set of equivalence classes in E(A,B) with respect to homotopy

of (A,B)-modules is denoted KKO(A,B) or KKO0(A,B). For p, q ≥ 0 we define

KKOp,q(A,B) := KKO(A,B ⊗ C`p,q) ,

where C`p,q := C`(Rp,q) is the real Clifford algebra of the vector space Rp+q with

quadratic form of signature (p, q).

The equivalence relation allows us to simplify the (A,B)-modules required to de-

fine KKO(A,B) [18]. Indeed, we need only consider modules of the form (B∞, ρ,T)

with T = T∗. If A is unital, we can further assume that ‖T‖ ≤ 1 and T2−1 ∈ K(B∞).

There is another equivalence relation that we can define on E(A,B). We say that

two (A,B)-modules (Ei, ρi,Ti), i = 0, 1 are stably operator homotopic, (E0, ρ0,T0) 'oh

(E1, ρ1,T1), if there exist (E′i, ρ
′
i,T

′
i) ∈ D(A,B) such that (E0⊕E′0, ρ0⊕ρ′0,T0⊕T′0) and

(E1 ⊕ E′1, ρ1 ⊕ ρ′1,T1 ⊕T′1) are operator homotopic up to orthogonal equivalence.One

can proove that the set of equivalence classes with respect to 'oh coincides with the

set KKO(A,B) defined above. For this result to hold the hypothesis that B is σ-unital

is of particular importance.

The set KKO(A,B) is an abelian group, for any separable real C∗-algebra A and

any real σ-unital C∗-algebra B. Moreover, KKO(−,−) is a covariant bifunctor from
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the category of separable C∗-algebras into the category of abelian groups which is

additive, i.e.

KKO(A1 ⊕ A2, B) = KKO(A1, B)⊕KKO(A2, B) ,

KKO(A,B1 ⊕B2) = KKO(A,B1)⊕KKO(A,B2) .

Namely, any two ∗-homomorphisms f : A2 → A1 and g : B1 → B2 induce group

homomorphisms

f ∗ : KKO(A1, B) −→ KKO(A2, B) ,

g∗ : KKO(A,B1) −→ KKO(A,B2)

defined by

f ∗[E, ρ, T ] = [E, ρ ◦ f, T ] ,

g∗[E, ρ, T ] = [E⊗g B2, ρ⊗ 1, T ⊗ 1].

Finally, any two homotopies ft : A2 → A1 and gt : B1 → B2 induce the same

homomorphism for all t ∈ [0, 1], i.e. f ∗t = f ∗0 and gt∗ = g0∗.

4.2.4 Analytic KO-homology

As mentioned in the introduction to this chapter, Kasparov’s formalism represents a

unified description of both KO-theory and KO-homology. Indeed, if we denote with

KOp(B) the algebraic KO-theory groups of a unital real C∗-algebra B, we have the

following result [18, 62].

Theorem 4.22. Let B be a unital real C∗-algebra. Then, KKO(R, B) ' KO0(B) and

KKOp,q(R, B) ' KOp−q(B)

Recall that for a real unital C∗-algebra A, the algebraic K-theory group KO0(A)

is defined as the Grothendieck group of the monoid of unitarily equivalent projectors

in M∞(A), which is defined as the direct limit of A-valued matrix algebras Mn(A)

under the embedding a → diag(a, 0). The higher algebraic K-theory group can be

defined by KOp(A) := KO0(C0(Rp)⊗ A).

If X is a compact Hausdorff space, KKOp(R,C(X,R)) ' KOp(C(X,R)) ' KOp(X).

On the other hand, using the Gel’fand transform the contravariant functor (X, τ) 7→
C(X, τ) induces an equivalence of categories between the category of compact Haus-

dorff spaces with involution and the category of commutative real C∗-algebras. Since
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KKO](−,R) is also a contravariant functor, it follows that their composition (X, τ) 7→
KKO](C(X, τ),R) is a covariant functor. This motivates the following

Definition 4.23. Let (X, τ) be a compact Hausdorff space with involution. The

analytic KO-homology groups of (X, τ) are defined by

KOa
n

(
X , τ

)
:= KKOn,0

(
C(X, τ) , R

)
= KKO

(
C(X, τ) , C`n

)
.

In the following, we will illustrate an alternative description of Kasparov’s KO-

homology groups for a real C∗-algebra A, referring to [53] for more details.

This description is based on triples (HR, ρ,T) which are defined by the data:

(i) HR is a separable real Hilbert space;

(ii) ρ : A→ L(HR) is a *-representation of A; and

(iii) T is a bounded linear operator on HR.

These are assumed to satisfy the following conditions:

(i) HR is equipped with a Z2-grading such that ρ(a) is even for all a ∈ A and T is

odd;

(ii) For all a ∈ A one has(
T2 − 1

)
ρ(a) , (T− T∗) ρ(a) , T ρ(a)− ρ(a) T ∈ KR ; (4.2.2)

and

(iii) There are odd R-linear operators ε1, . . . , εn on HR with the C`n algebra relations

εi = −ε∗i , ε2
i = −1 , εi εj + εj εi = 0 (4.2.3)

for i 6= j such that T and ρ(a) commute with each εi.

We shall refer to the triple (HR, ρ,T) as an n-graded Fredholm module.

Let us denote by ΓOn(A) the set of all n-graded Fredholm modules over A. Consider

the equivalence relation ∼ on ΓOn(A) generated by the relations:

Orthogonal equivalence: (HR, ρ,T) ∼ (H′R, ρ
′,T′ ) if and only if there exists an

isometric degree-preserving linear operator U : HR → H′R such that U ρ(a) =

ρ′(a)U for all a ∈ A, U T = T′ U , and U εi = ε′i U ; and

79



KKO-theory and analytic KO-homology

Homotopy equivalence: (HR, ρ,T) ∼ (HR, ρ,T
′ ) if and only if there exists a

norm continuous function t 7→ Tt such that (HR, ρ,Tt) is a Fredholm module

for all t ∈ [0, 1] with T0 = T, T1 = T′.

We define the direct sum of two Fredholm modules (HR, ρ,T) and (H′R, ρ
′,T′ ) to be

the Fredholm module (HR ⊕H′R, ρ⊕ ρ′,T⊕ T′ ).

We may now define KOn(A) as the free abelian group generated by elements

in ΓOn(A)/∼ and quotiented by the ideal generated by the set {[x0 ⊕ x1] − [x0] −
[x1] | [x0], [x1] ∈ ΓOn(A)/∼}. In KOn(A) the inverse of a class represented by the

module (HR, ρ,T) is given by (Ho
R, ρ,T), where Ho

R is the Hilbert space HR with the

opposite Z2-grading and where the operators εi reverse their signs. Moreover, the

operator T for a triple (HR, ρ,T) representing an element in KOn(A) can be taken to

be a Fredholm operator without loss of generality [18].

For a compact Hausdorff space X we define

KOa
n

(
X
)

:= KOn
(
C(X,R)

)
= KKO

(
C(X,R) , C`n

)
.

Moreover, for a compact pair (X,Y), we can define the higher relative KO-homology

groups as

KOa
n

(
X,Y

)
:= KOn

(
C(X/Y,R)

)
= KKO

(
C(X/Y,R) , C`n

)
.

The groups KOa
n

(
X,Y

)
enjoy Bott periodicity

KOa
n

(
X,Y

)
' KOa

n+8

(
X,Y

)
, ∀ n ≥ 0

which can be proven by using the periodicity of real Clifford algebras, and the iso-

morphisms

KKO(A⊗C`p,q, B ⊗C`r,s) ' KKO(A⊗C`p,q ⊗C`r,s, B) ' KKO(A⊗C`p−q+s−r,0, B)

induced by the intersection product, which we will not attempt to define here.

The term “KO-homology” for the groups KOa
n

(
X,Y

)
is justified by the following

theorem [15, 53].

Theorem 4.24. (Kasparov) There are connecting homomorphisms

∂ : KOa
n

(
X,Y

)
→ KOa

n−1

(
X,Y

)
which are compatible with Bott periodicity, and give Kasparov KO-homology the struc-

ture of a Z8-graded homology theory on the category of CW-complex pairs (X,Y). On

the subcategory of finite CW-complex pairs Kasparov’s KO-homology is isomorphic to

spectral KO-homology.
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In particular, Theorem 4.24 implies that

KOa
n(pt) ' KO−n(pt)

This can indeed be proven by directly computing the groups KKO(R,C`n); see [18]

for such a computation in the complex case.

4.3 Geometric KO-homology

As we have seen in the previous section, analytic KO-homology gives a representation

of spectral KO-homology based on C∗-algebras and linear operators on Hilbert spaces.

In this section we will develop a geometric version of KO-homology, which is analogous

to the Baum-Douglas construction of K-homology [14, 13, 80]. Indeed, we will prove

directly its homological properties by comparing it with other formulations of KO-

homology.

Definition 4.25. Let X be a finite CW-complex. A KO-cycle on X is a triple (M,E, φ)

where

(i) M is a compact spin manifold without boundary;

(ii) E is a real vector bundle over M; and

(iii) φ : M→ X is a continuous map.

There are no connectedness requirements made upon M, and hence the bundle E can

have different fibre dimensions on the different connected components of M. It follows

that disjoint union

(M1,E1, φ1)q (M2,E2, φ2) := (M1 qM2,E1 q E2, φ1 q φ2)

is a well-defined operation on the set of KO-cycles on X, which we will denote with

ΓO(X).

In the following we will consider some equivalence relations on the set ΓO(X).

Definition 4.26. Two KO-cycles (M1,E1, φ1) and (M2,E2, φ2) on X are isomorphic

if there exists a diffeomorphism h : M1 → M2 such that

(i) h preserves the spin structures;

(ii) h∗(E2) ' E1 as real vector bundles; and
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(iii) The diagram

M1
h //

φ1 !!DD
DD

DD
DD

M2

φ2

��
X

commutes.

Definition 4.27. Two KO-cycles (M1,E1, φ1) and (M2,E2, φ2) on X are spin bordant

if there exists a compact spin manifold W with boundary, a real vector bundle E→W,

and a continuous map φ : W→ X such that the two KO-cycles(
∂W , E|∂W , φ|∂W

)
,
(
M1 q (−M2) , E1 q E2 , φ1 q φ2

)
are isomorphic, where −M2 denotes M2 with the opposite class in H1(M; Z2) repre-

senting the spin structure on its tangent bundle TM2. The triple (W,E, φ) is called

a spin bordism of KO-cycles.

We finally introduce the last equivalence relation we will need to define geometric

KO-homology. Let M be a spin manifold and F → M a C∞ real spin vector bundle

with fibres of dimension n := dimR Fp ≡ 0 mod 8 for p ∈ M. Let 11R
M := M×R denote

the trivial real line bundle over M. Then F⊕ 11R
M is a real vector bundle over M with

fibres of dimension n + 1 and projection map λ. By choosing a C∞ metric on it, we

may define

M̂ = S
(
F⊕ 11R

M

)
(4.3.1)

where S
(
F⊕ 11R

M

)
denotes the spere bundle of F⊕ 11R

M. The tangent bundle of F⊕ 11R
M

fits into an exact sequence of bundles given by

0 −→ λ∗
(
F⊕ 11R

M

)
−→ T

(
F⊕ 11R

M

)
−→ λ∗

(
TM

)
−→ 0 ,

as for a vector bundle E
π−→ M the vertical tangent bundle to the fibration π is

isomorphic to the vector bundle π∗E→ E. Upon choosing a splitting, it follows that

T
(
F⊕ 11R

M

)
' λ∗

(
TM

)
⊕ λ∗

(
F⊕ 11R

M

)
and hence the spin structures on TM and F ⊕ 11R

M determine a spin structure on

T
(
F ⊕ 11R

M

)
. Since the sphere bundle S

(
F ⊕ 11R

M

)
is the boundary of the disk bundle

B
(
F⊕ 11R

M

)
, and using the fact that we can equip B

(
F⊕ 11R

M

)
with the spin structure

induced by that on the total space of T
(
F⊕ 11R

M

)
, it follows that M̂ is a compact spin
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manifold. By construction, M̂ is a sphere bundle over M with n-dimensional spheres

Sn as fibres. We denote the bundle projection by

π : M̂ −→ M . (4.3.2)

We may regard the total space M̂ as consisting of two copies B±(F), with opposite

spin structures, of the unit ball bundle B(F) of F glued together by the identity map

idS(F) on its boundary so that

M̂ = B+(F) ∪S(F) B−(F) . (4.3.3)

Since n ≡ 0 mod 8, the group Spin(n) has two irreducible real half-spin representa-

tions. The spin structure on F associates to these representations real vector bundles

S0(F) and S1(F) of equal rank 2n/2 over M. Their Whitney sum S(F) = S0(F)⊕S1(F)

is a bundle of real Clifford modules over TM such that C`(F) ' End S(F), where C`(F)

is the real Clifford algebra bundle of F. Let /S+(F) and /S−(F) be the real spinor bun-

dles over F obtained from pullbacks to F by the bundle projection F→ M of S0(F) and

S1(F), respectively. Clifford multiplication induces a bundle map F⊗ S0(F)→ S1(F)

that defines a vector bundle map σ : /S+(F) → /S−(F) covering idF which is an

isomorphism outside the zero section of F. Since the ball bundle B(F) is a sub-

bundle of F, we may form real spinor bundles over B±(F) as the restriction bundles

∆±(F) = /S±(F)|B±(F). We can then glue ∆+(F) and ∆−(F) along S(F) = ∂B(F) by

the Clifford multiplication map σ giving a real vector bundle over M̂ defined by

H(F) = ∆+(F) ∪σ ∆−(F) . (4.3.4)

For each p ∈ M, the bundle H(F)|π−1(p) is the real Bott generator vector bundle over

the n-dimensional sphere π−1(p).

In particular, the class [H(F)] ∈ KO0(M̂) is the image of the Thom class of F τF ∈
KO0(B+(F),S(F)) under the composition of the homomorphisms

KO0(B+(F),S(F))→ KO0(M̂,B−(F))→ KO0(M̂)

where the first map is given by excision, and the second map is given by restriction.

Definition 4.28. Let (M,E, φ) be a KO-cycle on X and F a C∞ real spin vector

bundle over M with fibres of dimension dimR Fp ≡ 0 mod 8 for p ∈ M. Then the

process of obtaining the KO-cycle ( M̂,H(F) ⊗ π∗(E), φ ◦ π) from (M,E, φ) is called

real vector bundle modification.
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We are now ready to define the geometric KO-homology groups of the space X.

Definition 4.29. The geometric KO-homology group of X is the abelian group ob-

tained from quotienting ΓO(X) by the equivalence relation ∼ generated by the rela-

tions of

(i) isomorphism;

(ii) spin bordism;

(iii) direct sum: if E = E1 ⊕ E2, then (M,E, φ) ∼ (M,E1, φ)q (M,E2, φ); and

(iv) real vector bundle modification.

The group operation is induced by disjoint union of KO-cycles. We denote this group

by KOt
](X) := ΓO(X) / ∼, and the homology class of the KO-cycle (M,E, φ) by

[M,E, φ] ∈ KOt
](X).

Since the equivalence relation on ΓO(X) preserves the dimension of M mod 8 in

KO-cycles (M,E, φ), one can define the subgroups KOt
n(X) consisting of classes of

KO-cycles (M,E, φ) for which all connected components Mi of M are of dimension

dim Mi ≡ n mod 8. Then

KOt
](X) =

7⊕
n=0

KOt
n(X) (4.3.5)

has a natural Z8-grading.

The geometric construction of KO-homology is functorial. If f : X→ Y is a continu-

ous map, then the induced homomorphism

f∗ : KOt
](X) −→ KOt

](Y)

of Z8-graded abelian groups is given on classes of KO-cycles [M,E, φ] ∈ KOt
](X) by

f∗[M,E, φ] := [M,E, f ◦ φ] .

One has (idX)∗ = idKOt
](X) and (f ◦ g)∗ = f∗ ◦ g∗. Since real vector bundles over M

extend to real vector bundles over M× [0, 1], it follows by spin bordism that induced

homomorphisms depend only on their homotopy classes. If pt denotes a one-point

topological space, then the collapsing map ζ : X→ pt induces an epimorphism

ζ∗ : KOt
](X) −→ KOt

](pt) . (4.3.6)
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The reduced geometric KO-homology group of X is

K̃O t
] (X) := ker ζ∗ . (4.3.7)

Since the map (4.3.6) is an epimorphism with left inverse induced by the inclusion of

a point ι : pt ↪→ X, one has KOt
](X) ' KOt

](pt)⊕ K̃O t
] (X) for any space X.

As for the complex case [80], the abelian group KOt
](X) is generated by classes

[M,E, φ] where M is connected, and if {Xj}j∈J is the set of connected components of

X then

KOt
](X) =

⊕
j∈J

KOt
](Xj) .

Moreover, the homology class of a cycle (M,E, φ) on X depends only on the KO-theory

class of E in KO0(M), and on the homotopy class of φ in [M,X].

4.3.1 Homological properties of KOt
]

In the previous section we have constructed a covariant functor KOt
] from the category

of finite CW-complexes to the category of abelian groups, which is homotopy invariant.

We will now establish that this construction actually yields a (generalized) homology

theory, and in particular is the dual homology to KO-theory. The main strategy

consists in “comparing” the functors KOt
n with a realization of spectral KO-homology

developed in [58], which we will denote with KO
′

]. Namely, for each pair (X,Y) we

will construct a map µs : KOt
n(X,Y) → KO′n(X,Y) for each n ∈ Z which defines a

natural equivalence between functors on the category of topological spaces having the

homotopy type of finite CW-pairs.

The set of cycles for KO
′

](X) is given by triples (M, x, φ) as in Definition 4.25, but

with x ∈ KOi(M) being a KO-theory class over M such that dim M≡ i + n mod 8.

The equivalence relations are as in the previous section, apart from real vector bundle

modification, which is modified from Definition 4.28 as follows. The nowhere zero

section

ΣF : M −→ F⊕ 11R
M (4.3.8)

defined by

ΣF(p) = 0p ⊕ 1

for p ∈ M induces an embedding

ΣF : M ↪→ M̂ . (4.3.9)
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Then real vector bundle modification is replaced by the relation(
M , x , φ

)
∼
(

M̂ , ΣF
! (x) , φ ◦ π

)
,

where the functorial homomorphism ΣF
! : KOi(M) → KOi+r( M̂ ) is the Gysin map

induced by the embedding (4.3.9), with r = rank(F). By construction, the normal

bundle to M in M̂ can be identified with F. Since H(F) is the image of the Thom

class of F, by the definition of Gysin morphism in section 3.6 it follows that on stable

isomorphism classes of real vector bundles [E] ∈ KO0(M) one has

ΣF
!

[
E
]

=
[
H(F)⊗ π∗(E)

]
. (4.3.10)

To compare KOt
] with KO

′

], we define KOt
n+8k(X) := KOt

n(X) for all k ∈ Z, 0 ≤ n ≤ 7.

Moreover, we give a spin bordism description of the relative geometric KO-homology

groups KOt
n(X,Y) as follows. We consider the set ΓO(X,Y) of isomorphism classes

of triples (M,E, φ) where

(i) M is a compact spin manifold with (possibly empty) boundary;

(ii) E is a real vector bundle over M; and

(iii) φ : M→ X is a continuous map with φ(∂M) ⊂ Y.

The set ΓO(X,Y) is then quotiented by relations of relative spin bordism, which

is modified from Definition 4.27 by the requirement that M1 q (−M2) ⊂ ∂W is a

regularly embedded submanifold of codimension 0 with φ(∂W \M1 q (−M2)) ⊂ Y,

direct sum, and real vector bundle modification, which is applicable in this case since

S(F ⊕ 11R
M) is a compact spin manifold with boundary S(F ⊕ 11R

M)|∂M. The collection

of equivalence classes is a Z8-graded abelian group with operation induced by disjoint

union of relative KO-cycles. One has KOt
i(X, ∅) = KOt

i(X).

We can finally prove the following

Theorem 4.30. The map

µs : KOt
n(X,Y) −→ KO′n(X,Y)

defined on classes of KO-cycles by

µs
[
M , E , φ

]
t

=
[
M , [E] , φ

]
′

is an isomorphism of abelian groups which is natural with respect to continuous maps

of pairs.
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Proof. Taking into account the equivalence relations on ΓO(X,Y) used to define both

KO-homology groups, the map µs is well-defined and a group homomorphism. Let

[M, x, φ]′ ∈ KO′n(X,Y) with m := dim M. We may assume that M is connected and x

is non-zero in KOi(M). Then m−i ≡ n mod 8. Consider the trivial spin vector bundle

F = M×Rn+7m over M. In this case the sphere bundle (4.3.1) is M̂ = M×Sn+7m and

the associated Gysin homomorphism in KO-theory is a map

ΣF
! : KOi

(
M
)
−→ KOi+7m+n

(
M̂
)
.

Since i + 7m + n ≡ (i + 7m + m − i) mod 8 ≡ 0 mod 8, one has KOi+7m+n( M̂ ) '
KO0( M̂ ). It follows that there are real vector bundles E,H→ M̂ such that ΣF

! (x) =

[E]− [H], and so by real vector bundle modification one has

[M, x, φ]′ = [ M̂, [E], φ ◦ π]′ − [ M̂, [H], φ ◦ π]′

in KO′n(X,Y). Therefore µ′( [ M̂,E, φ◦π]t−[ M̂,H, φ◦π]t ) = [M, x, φ]′, and we conclude

that µs is an epimorphism.

Now suppose that µs[M1,E1, φ1]t = µs[M2,E2, φ2]t are identified in KO′n(X,Y)

through real vector bundle modification. Then, for instance, there is a real spin

vector bundle F→ M1 such that M2 = M̂1 and [E2] = ΣF
! [E1]. Since

ΣF
!

[
E1

]
=
[
H(F)⊗ π∗(E1)

]
and since the class [M2,E2, φ2]t depends only on the KO-theory class [E2], it fol-

lows that the homology classes [M1,E1, φ1]t and [M2,E2, φ2]t are also identified in

KOt
n(X,Y) through real vector bundle modification. As this is the only relation in

KO′n(X,Y) that might identify these classes without identifying them as KO-cycles,

we conclude that µs is a monomorphism and therefore an isomorphism.

Since KO
′

] is a homological realization of the homology theory associated with

KO-theory, we have thus established that geometric KO-homology is a generalized

homology theory which is equivalent to spectral KO-homology. In particular, it enjoys

the standard homological properties, such as the existence of a long exact sequence

for any pair (X,Y). Moreover, the connecting homomorphism

∂ : KOt
n(X,Y) −→ KOt

n−1(Y)

is given by the boundary map

∂[M,E, φ] := [∂M,E|∂M, φ|∂M] (4.3.11)

on classes of KO-cycles and extended by linearity.

Other homological properties are direct translations of those of the complex case

provided by [80], to which we refer for details.
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4.3.2 Products and Poincaré Duality

Since we have established that geometric KO-homology is a representation of spectral

KO-homology, we can define products and dualities with KO-theory.

The cap product is defined as the Z8-degree preserving bilinear pairing

∩ : KO0(X)⊗KOt
](X) −→ KOt

](X)

given for any real vector bundle F→ X and KO-cycle class [M,E, φ] ∈ KOt
](X) by

[F] ∩ [M,E, φ] := [M, φ∗F⊗ E, φ] (4.3.12)

and extended linearly. In particular, it makes KOt
](X) into a module over the ring

KO0(X).

As in the complex case, this product can be extended to a bilinear form

∩ : KOi(X)⊗KOt
j(X,A) −→ KOt

j−i(X,A) .

defined as

x ∩ [M,E, φ] := (µs)−1([M, x ∪ φ∗[E], φ]′) (4.3.13)

which coincides with (4.3.12) when x = [F].

If X and Y are spaces, then the exterior product

× : KOt
i(X)⊗KOt

j(Y) −→ KOt
i+j(X× Y)

is given for classes of KO-cycles [M,E, φ] ∈ KOt
i(X) and [N,F, ψ] ∈ KOt

j(Y) by[
M,E, φ

]
×
[
N,F, ψ

]
:=
[
M× N,E � F, (φ, ψ)

]
,

where M×N has the product spin structure uniquely induced by the spin structures

on M and N, and E�F is the real vector bundle over M×N with fibres (E�F)(p,q) =

Ep⊗Fq for (p, q) ∈ M×N. This product is natural with respect to continuous maps.

Unfortunately, in contrast to the complex case, we don’t have a version of the Künneth

theorem for KO-homology. Indeed, should such a formula exist, one could use it to

show that KO](pt) ⊗ KO](pt) has to be a tensor product as modules over the ring

KO](pt). But this does not work correctly as pointed out by Atiyah [3].

Let M be a spin manifold of dimension n. The class

[M] := [M, 11R
M, idM] ∈ KOt

n(M, ∂M)
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is called the fundamental class, and it induces the following Poincaré Duality isomor-

phism [58]

ΦM : KOi(M)
'−−→ KOt

n−i(M, ∂M)

ξ −→ ξ ∩ [M]

The fundamental class is uniquely determined.

Finally, let V
π−→ X be a KO-oriented vector bundle of rank r over a space X with

Thom class τV. In analogy to K-theory, we have the homological version of Thom

isomorphism

T∗X,V : KOt
i+r

(
B(V) , S(V)

) ≈−→ KOt
i

(
X
)
. (4.3.14)

defined as

T∗X,V([M,E, φ]) := π̃∗(τV ∩ [M,E, φ]) (4.3.15)

where π̃ : B(V)→ X is the bundle projection induced by π.

We conclude this section by noticing that all the above constructions have an equiv-

alent description in analytic KO-homology.

4.4 K-homology and Index Theorems

We have seen in the previous sections that both analytic KO-homology and geomet-

ric KO-homology are representations of spectral KO-homology. It follows straight-

forwardly from compositions of natural equivalences that analytic KO-homology and

geometric KO-homology are naturally equivalent. It is interesting, at this point, to

ask if such natural isomorphism can be induced by a map defined at the level of the

cycles. That this is indeed the case can be viewed as the primordial formulation of the

index theorem, and it is the philosophy proposed in [14, 13]. Since this point of view

will be crucial in both the construction and the proof of the equivalence carried in the

next section, we will briefly make the above statement more precise by illustrating

the case of even complex K-homology, directing the reader to [14, 13, 53] for more

information.

Let M be an even dimensional compact spinc manifold, and let E be a complex vector

bundle on M. The canonical Dirac operator on M induces the elliptic differential

operator

/DM ⊗ IE : Γ(/S⊗ E)→ Γ(/S⊗ E)

where /S denotes the spinor bundle associated to TM. After a choice of a smooth

metric g on M, we can construct the Hilbert space

HM
E := L2(Γ(/S⊗ E); dgM)
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and define the bounded Fredholm operator TE
M as the partial isometry in the polar

decomposition for /DM⊗ IE. Since M is even-dimensional, HM
E is Z2-graded, and there

is a *-homomorphism

ρM
E : C(M; C)→ L(HM

E )

as the space of section of a vector bundle on a manifold is equipped with a mod-

ule structure over the algebra of functions of the manifold itself. Hence we have a

correspondence

(M,E, φ)→ (HM
E , ρ

E
M ◦ φ∗,TE

M)

between cycles for geometric K-homology and cycles for analytic K-homology.

Theorem 4.31. ([14]) Let X be a finite CW-complex. Then the correspondence

(M,E, φ)→ (HM
E , ρ

E
M ◦ φ∗,TE

M)

induces a natural isomorphism

µa : Kt
0(X)→ Ka

0(X)

commuting with the cap product between K-theory and K-homology.

The isomorphism µ can be now used to give an elegant formulation of the Atiyah-

Singer index theorem. Namely, consider a closed even-dimensional smooth manifold

M, and let T∗M denote its cotangent bundle. By the results in [11], any elliptic

pseudo-differential operator D between the sections of vector bundles on M can be

assigned to a class in K0
cpt(T

∗M). More precisely, let

D : Γ(E)→ Γ(F)

be an elliptic differential operator of order m, where the vector bundles E and F

have rank p and q respectively. The differential operator D can be expressed in local

coordinates (x1, . . . , xn) on M as

D =
∑
|α|≤m

Aα(x)
∂|α|

∂xα

where |α| :=
∑

k αk for a n-tuple on nonnegative integers α = (α1, . . . , αn), and

where for each α Aα(x) is a q × p matrix of smooth complex-valued functions on

M with Aα(x) 6= 0 for some α such that |α| = m. The principal symbol of D is

defined to be the section σ(D) of the bundle (�mTM) ⊗ Hom(E,F) represented by

the coefficients {Aα}|α|=m, and where � denotes the symmetric tensor product. Since
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�mV is canonically isomorphic to the space of homogeneous polynomial functions of

degree m on V ∗, for any vector space V , it follows that for each cotangent vector

ξ ∈ T∗x(M), the principal symbol gives a homomorphism

σξ(D) : Ex → Fx

For elliptic operators, by definition, such a homomorphism is invertible for each non-

zero cotangent vector ξ and any point x ∈ M. The principal symbol σ(D) can be

considered to live on the cotangent bundle, i.e. it defines a bundle map

σ(D) : π∗E→ π∗F

where π : T∗M→ M. In particular, if D is elliptic, σ(D) is an isomorphism away from

the zero section, hence we can assign to D the class

i(D) := [π∗E, π∗F;σ(D)] ∈ K0(B(T∗M),S(T∗M))

Conversely, to any class [E,F;µ] ∈ K0(B(T∗M),S(T∗M)) one can assign a pseudo-

differential operator on M with total symbol µ. See [63] for details on this construction.

By using the pseudo-differential operator associated to any class in K0
cpt(T

∗M), one

can define isomorphisms

indt : K0
cpt(T

∗M)→ Kt
0(M)

inda : K0
cpt(T

∗M)→ Ka
0(M)

which in the case that M is a spinc manifold are given by the composition of Thom

isomorphism and Poincaré duality. The above isomorphisms can be used to state the

following elegant version of the index theorem.

Theorem 4.32. (Atiyah-Singer) Let M be a closed smooth manifold. Then the

following diagram commutes

K0
cpt(T

∗M)

indt

&&LLLLLLLLLL
inda

xxrrrrrrrrrr

Kt
0(M)

µa
// Ka

0(M)

To recover the usual form of the Atiyah-Singer index theorem, we consider the

following composition of commutative diagrams

K0
cpt(T

∗M)

inda

&&MMMMMMMMMM
indt

xxqqqqqqqqqq

Kt
0(M)

ζ∗ &&MMMMMMMMMM µa
// Ka

0(M)

ζ∗xxqqqqqqqqqqq

K0(pt) ' Z

(4.4.1)
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where ζ is the collapsing map, and the commutativity of the bottom diagram is

granted by the fact that the isomorphism µ is natural. The homomorphisms

ζ∗ ◦ indt, ζ∗ ◦ inda coincide with the topological and analytical index homomorphism,

respectively, defined by Atiyah and Singer, and the commutativity of the two triangles

implies that

ζ∗ ◦ indt = ζ∗ ◦ inda

which is the original formulation of the index theorem.

Theorem 4.32 motivated the authors in [14] to state that for any flavour k of K-

theory, the equivalence between geometric and analytic k -homology is related to an

index theorem for the given theory k. In the next section we will reinforce the above

statement: we will construct a natural morphism µa between KOt
] and KOa

] defined

at the level of the cycles, and use a suitable index theorem to prove that µa is indeed

a natural equivalence.

4.5 The equivalence between KOt
] and KOa

]

As illustrated in the previous section, our primary goal is to prove the following result.

Theorem 4.33. There is a natural equivalence

µa : KOt ≈−→ KOa

between the topological and analytic KO-homology functors.

As we have seen, geometric and analytic KO-homology are generalized cohomology

theories defined on the category of finite CW-pairs (X, Y ). For such theories, the

following general result holds [30].

Theorem 4.34. Let h] and k] be generalized homology theories defined on the category

of finite CW-pairs, and let

φ : h] → k]

a natural transformation such that

φ : hn(pt)→ kn(pt)

is an isomorphism for any n ∈ Z. Then φ is a natural equivalence.

We have explained in the previous section how the fact that the natural isomor-

phism µa between geometric and analytic K-homology induces the commutativity of
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the bottom triangle in (4.4.1), and consequently the Atiyah-Singer index theorem.

Our strategy to prove Theorem 4.33 will be instead opposite: namely, we will con-

struct surjective “index” homomorphisms indt
n and inda

n such that the diagram

KOt
n(pt)

µa
//

indt
n &&MMMMMMMMMM

KOa
n(pt)

inda
n

��
KO−n(pt)

(4.5.1)

commutes for every n, thanks to a suitable index theorem. Recall that

KOt,a
n (pt) ' KO−n(pt)

and since the groups KO−n(pt) are equal to either 0, Z or Z2 depending on the

particular value of n, the commutativity of the diagram (4.5.1) along with surjectivity

of the index maps are sufficient to prove that µa is an isomorphism1. Moreover, the

index homomorphism will play a crucial role in the applications exploited in later

sections, in particular in the construction of cycles representing the generators for

KOt
](pt).

4.5.1 The natural transformation µa

Let (M,E, φ) be a topological KO-cycle on X with dim M = n. Recall that M is a

compact spin manifold. We construct a corresponding class in KOa
n(X) as follows.

Consider the associated vector bundle

/S(M) := P Spin(M)×λn C`n

where C`n = C`(Rn), λn : Spin(n) → End(C`n) is given by left multiplication with

Spin(n) ⊂ C`0
n ⊂ C`n, and P Spin(M) is the principal Spin(n)-bundle over M associated

to the spin structure on the tangent bundle TM. Since C`n = C`0
n⊕C`1

n is a Z2-graded

algebra, it follows that

/S(M) = /S0(M)⊕ /S1(M) (4.5.2)

is a Z2-graded real vector bundle over M with respect to the C`(TM)-action. The

Clifford algebra C`n acts by right multiplication on the fibres whilst preserving the

bundle grading (4.5.2). Since /S(M) is a vector bundle associated to P Spin(M), it

carries the canonical Riemannian connection associated to the spin connection, and

1Recall that surjective group homomorphisms of Z or any finite group are isomorphisms
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hence it is a Dirac bundle, i.e. it admits a canonical Dirac operator which is selfadjoint

on the space of L2-sections of /S(M) with respect to the given metric, and which has

finite dimensional kernel. Indeed, as a vector bundle, /S(M) is isomorphic to the direct

sum of irreducible real spinor bundles on M. Hence, after choosing a C∞ Riemannian

metric gM on TM, we consider the canonical Dirac operator

/DM : C∞(M, /S(M))→ C∞(M, /S(M))

which we will refer to as the Atiyah-Singer operator [10] defined locally by

/DM =
n∑
i=1

ei · ∇M
ei
, (4.5.3)

where {ei}1≤i≤n is a local orthonormal basis of sections of the tangent bundle TM, ∇M
ei

are the corresponding components of the spin connection ∇M, and the dot denotes

Clifford multiplication. The operator /DM is a C`n-operator [63], i.e. one has

/DM(Ψ · ϕ) = /DM(Ψ) · ϕ

for all Ψ ∈ C∞(M, /S(M)) and all ϕ ∈ C`n, where ·ϕ denotes right multiplication by

ϕ. In particular, with respect to decomposition (4.5.2), the operator /DM is of the form

/DM =

(
0 /DM

1

/DM
0 0

)
where

/DM
0 : Γ(/S0(M))→ Γ(/S1(M))

is a real, elliptic first-order differential operator which commutes with the action of

C`0
n ' C`n−1 on /S(M). Since /DM commutes with the C`n-action, the vector space

ker /DM is a finite dimensional graded C`n-module.

We can now construct a triple (HM
E , ρ

M
E ,T

M
E ) comprising the following data:

(i) The separable real Hilbert space HM
E := L2

R(M, /S(M)⊗ E; dgM);

(ii) The ∗-homomorphism ρM
E : C(M,R)→ L(HM

E ) defined by(
ρM

E (f)(Ψ)
)
(p) = f(p) Ψ(p)

for f ∈ C(M,R), Ψ ∈ C∞(M, /S(M)⊗ E) and p ∈ M; and

(iii) The bounded Fredholm operator

TM
E :=

/DM
E√

1 +
(
/DM

E

)2
(4.5.4)
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acting on HM
E , where /DM

E is the Atiyah-Singer operator (4.5.3) twisted by the

real vector bundle E→ M.

This triple satisfies the following properties [53]:

(i) HM
E is Z2-graded according to the splitting (4.5.2) of the Clifford bundle;

(ii) ρM
E (f) is an even operator on HM

E for all f ∈ C(M,R);

(iii) Since M is compact, TM
E is an odd Fredholm operator which obeys the compact-

ness conditions (4.2.2) with ρM
E (f); and

(iv) There are odd operators εi, i = 1, . . . , n commuting with both ρM
E (f) and TM

E

which generate a C`n-action on HM
E as in (4.2.3), and which are given explicitly

as right multiplication by elements ei of a basis of the vector space Rn.

It follows that (HM
E , ρ

M
E ,T

M
E ) is a well-defined n-graded Fredholm module over the real

C∗-algebra C(M,R).

We now define the map µa in (4.5.1) by

µa
(
M , E , φ

)
:= φ∗

(
HM

E , ρM
E , TM

E

)
=
(
HM

E , ρM
E ◦ φ∗ , TM

E

)
, (4.5.5)

where φ∗ : C(X,R)→ C(M,R) is the real C∗-algebra homomorphism induced by the

map φ. At this stage the map µa is only defined on KO-cycles. More precisely, we

can consider the map µa : ΓOn(X) → KOa
n(X) induced by the equivalence relations

on the set of Fredholm modules. We need to prove, at this point, that the map µa

gives a well defined homomorphism

µa : KOt
n(X)→ KOa

n(X)

We will first recall some useful results concerning the above construction. Let us

denote with [ /DM
E ] the class corresponding to the element µa(M,E, idM) ∈ KOa

n(M).

We can then state the following result [53]

Theorem 4.35. Let M − ∂M be the interior of a spin manifold M of dimension n

with boundary ∂M, and let E be a real vector bundle on M. Equip the boundary ∂M

with the spin structure induced by that on M. Then

∂[ /DM−∂M
E|M−∂M ] = [ /D∂M

E|∂M ]

where ∂ : KOa
n(M− ∂M)→ KOa

n−1(∂M) is the boundary homomorphism.
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Notice that in the theorem above we have used that KOa
n(M−∂M) ' KOn(M, ∂M)

via excision. Moreover, one can prove that the class [ /DM] := [ /DM
11 ] represents the

fundamental class of M in KOa
n(M), and that

[ /DM
E ] = [E] ∩ [ /DM]

See [24] for details.

We are now ready to prove the following

Theorem 4.36. The map µa : ΓOn(X)→ KOa
n(X) induces a well defined homomor-

phism

µa : KOt
n(X)→ KOa

n(X)

for any CW-complex X, and any n ∈ Z.

Proof. That the map µa respects the algebraic sum and independence of the direct

sum relation follows straightforwardly from the fact that

Γ( /S(M t N)⊗ (E t F)) = Γ( /S(M)⊗ E)⊕ Γ( /S(N)⊗ F)

for any compact spin manifolds M, N, with vector bundles E, F over M, N respectively,

and by the definition of direct sum of Fredholm modules.

To prove that the map homomorphism µa does not depend on the bordism relation

is equivalent to proving that µa(M,E, φ) = 0 for every bord n-cycle (M,E, φ), i.e. a

cycle for which there exists an n+ 1-cycle (W,F, ψ) in the appropriate relative group

such that

(M,E, φ) = (∂W,F|∂W, ψ|∂W)

First, we notice that the map ψ∂W factors as ψ|∂W = ψ ◦ i, where

i : ∂W ↪→W

denotes the inclusion of the boundary. We have that

µa(M,E, φ) = (ψ|∂W)∗([ /D
∂W
F|∂W ])

= (ψ)∗ ◦ i∗([ /D∂W
F|∂W ])

= 0

which follows by Theorem 4.35, and the long exact sequence for the pair (W, ∂W)

· · · → KOa
n+1(W − ∂W)

∂−→ KOa
n(∂W)

i∗−→ KOa
n(W)→ · · ·
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To conclude the proof, we need to show that for any KO-cycle (M,E, φ) and any real

spin vector bundle F of rank 8r over M we have

µa(M,E, φ) = µa(M̂,H(F)⊗ π∗E, φ ◦ π)

By definition, we have

µa(M̂,H(F)⊗ π∗E, φ ◦ π) := φ∗π∗
(
[ /D

bM
H(F)⊗π∗E]

)
By using that

[ /D
bM
H(F)⊗π∗E] = [H(F)⊗ π∗E] ∩ [ /D

bM]

= ([H(F)] ∪ [π∗E]) ∩ [ /D
bM]

= π∗[E] ∩
(
[H(F)] ∩ [ /D

bM]
)

we have

µa(M̂,H(F)⊗ π∗E, φ ◦ π) = φ∗π∗
(
π∗[E] ∩

(
[H(F)] ∩ [ /D

bM]
))

= φ∗
(
[E] ∩ π∗

(
[H(F)] ∩ [ /D

bM]
))

By recalling that [H(F)] is the image of the Thom class of F, and by the equation

(4.3.15), the class π∗
(
[H(F)] ∩ [ /D

bM]
))

is the image of [ /D
bM] under the isomorphism

KOn+8r(M̂)→ KOn(M)

for the spherical fibration M̂
π−→ M induced by the Thom isomorphism. Since the

above isomorphism maps the fundamental class of M̂ to that of M, we have

π∗
(
[H(F)] ∩ [ /D

bM]
)

= [ /DM]

The following equalities conclude the proof

µa(M̂,H(F)⊗ π∗E, φ ◦ π) = φ∗
(
[E] ∩ [ /DM]

)
= φ∗

(
[ /DM

E ]
)

= µa(M,E, φ)

We refer the reader to [15] for an alternative proof of Theorem 4.36.

4.5.2 The analytic index map inda
n

Let (HR, ρ,T) be an n-graded Fredholm module over the real C∗-algebra C(X,R)

such that T is a Fredholm operator. Since T commutes with εi for i = 1, . . . , n, the
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kernel ker T ⊂ HR is a real C`n-module with Z2-grading induced by the grading of

HR. Thus we can define

inda
n(T) := [ker T] ∈ M̂n/ı

∗M̂n+1 (4.5.6)

where M̂n is the Grothendieck group of irreducible Clifford modules defined in chapter

3.

By the Atiyah-Bott-Shapiro isomorphism, we have

M̂n/ı
∗M̂n+1 ' KO−n(pt)

We will call (4.5.6) the analytic or Clifford index of the Fredholm operator T. An

important property of this definition is the following result [63].

Theorem 4.37. The analytic index

inda
n : Fredn −→ KO−n(pt)

is surjective and constant on the connected components of Fredn.

Given two Fredholm modules (HR, ρ,T) and (HR, ρ,T
′ ) over a real C∗-algebra A,

we will say that T is a compact perturbation of T′ if (T−T′ ) ρ(a) ∈ KR for all a ∈ A.

We then have the following elementary result.

Lemma 4.38. If T is a compact perturbation of T′, then the Fredholm modules

(HR, ρ,T) and (HR, ρ,T
′ ) are operator homotopic over A.

Proof. Consider the path Tt = (1 − t) T + tT′ for t ∈ [0, 1]. Then the map t 7→ Tt

is norm continuous. We will show that for any t ∈ [0, 1], the triple (HR, ρ,Tt) is a

Fredholm module over A, i.e. that the operator Tt satisfies(
T2
t − 1

)
ρ(a) , (Tt − T∗t ) ρ(a) , Tt ρ(a)− ρ(a) Tt ∈ KR (4.5.7)

for all a ∈ A. The last two inclusions in (4.5.7) are easily proven because the path Tt

is “linear” in the operators T and T′. To establish the first one, for any t ∈ [0, 1] and

a ∈ A we compute

(T2
t − 1) ρ(a) =

[
(T2 − 1) + t2 (T− T′ )2 − t (T2 − 1)

−t (T− T′ )2 + t (T′ 2 − 1)
]
ρ(a) .

(4.5.8)

By using the fact that (HR, ρ,T) and (HR, ρ,T
′ ) are Fredholm modules, that T is a

compact perturbation of T′, and that KR is an ideal in L(HR), one easily verifies that

the right-hand side of (4.5.8) is a compact operator. This implies that (HR, ρ,Tt) is

a well-defined family of Fredholm modules over A.
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By Lemma 4.38, we can choose the operator T in the class [HR, ρ,T] to be selfad-

joint without loss of generality. Indeed, given a Fredholm module we simply replace

the operator T with T̃ := 1
2
(T + T∗). Moreover, such a choice of T̃ is compatible with

operator homotopy. Hence in the following we will always assume that the operator

T is selfadjoint and Fredholm.

Proposition 4.39. The induced map

inda
n : KOa

n(X) −→ KO−n(pt)

given on classes of n-graded Fredholm modules by

inda
n[HR, ρ,T] = [ker T]

is a well-defined surjective homomorphism for any n ∈ N.

Proof. We first show that to the direct sum of two Fredholm modules (HR, ρ,T) and

(H′R, ρ
′,T′ ) over A = C(X,R), the map inda

n associates the class [ker T] + [ker T′ ] ∈
M̂n/ı

∗M̂n+1 ' KO−n(pt). The kernel

ker(T⊕ T′ ) = ker(T)⊕ ker(T′ )

is a real graded C`n-module. By the definition of the group M̂n and of its quotient by

ı∗M̂n+1, one thus has inda
n(T⊕ T′ ) = [ker T] + [ker T′ ] and so the map inda

n respects

the algebraic structure on ΓOn(A).

Consider now two Fredholm modules (HR, ρ,T) and (H′R, ρ
′,T′ ) which are orthog-

onally equivalent. Then there exists an even isometry U : HR → H′R such that

T′ = U TU∗ , ε′i = U εi U
∗ .

This implies that ker T′ = U(ker T), and that the graded C`n representations given

respectively by ε′i and εi are equivalent. In particular, they represent the same class

in M̂n/ı
∗M̂n+1.

Finally, consider two homotopic n-graded Fredholm modules (HR, ρ,T), (HR, ρ,T
′ )

over A. There exists by definition a continuous path t → Tt connecting T and T′ in

Fredn. Hence, by Theorem 4.37 indan(T) = indan(T′).

4.5.3 The topological index map indt
n

Given a KO-cycle (M,E, φ) on X with M an n-dimensional compact spin manifold,

we can assign to it the associated Atiyah-Milnor-Singer (AMS) invariant [63] defined

by

ÂE(M) = β ◦ f!([E]) ∈ KO−n(pt) (4.5.9)
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where f! is the Gysin homomorphism for the smooth embedding

f : M ↪→ Rn+8k (4.5.10)

for some k ∈ N sufficiently large, and β is induced by the Bott periodicity isomorphism

β : KOcpt(Rn+8k)→ KO−n(pt)

This definition does not depend on the embedding (4.5.10) nor on the integer k.

We define

indt
n(M,E, φ) := ÂE(M) . (4.5.11)

Proposition 4.40. The map

indt
n : KOt

n(X) −→ KO−n(pt)

induced by (4.5.11) is a well-defined surjective homomorphism for any n ∈ N.

Proof. We first prove that the map indt
n respects the algebraic structure on the abelian

group KOt
n(X). Given two n-dimensional compact spin manifolds M1 and M2, let

M = M1 qM2. Embed M in the Euclidean space Rn+8k for some k sufficiently large

as in (4.5.10). Recall now that the Gysin homomorphism of f is the composition of

Thom isomorphism with respect to the normal bundle of M in Rn+8k with the map

“extending by zero”, and that the Thom isomorphism is the isomorphism induced

by the Thom class. Moreover, notice that the normal bundle ν to the embedding of

M is given by ν1 q ν2, where ν1 and ν2 are respectively the normal bundles to the

embeddings of M1 and M2 induced by the embedding of M. The Thom class of ν is

given by

τν :=
[
$∗ /S+(ν) , $∗ /S−(ν) ; σ

]
=

[
$∗1 /S

+(ν1)q$∗2 /S+(ν2) , $∗1 /S
−(ν1)q$∗2 /S−(ν2) ; σ1 q σ2

]
= τν1 + τν2 ∈ KO0(B(ν), S(ν)) ' KO0(B(ν1), S(ν1))⊕KO0(B(ν1), S(ν2)) .

where $ = $1q$2 : ν1q ν2 → M1qM2 is the normal bundle projection. Let E1 and

E2 be real vector bundles over M1 and M2, respectively, and let E = E1 q E2. Then

in KO0(B(ν), S(ν)) one has

τν(E) = τν ^ [$∗E]

= τν ^ [$∗1E1 q$∗2E2]

= τν1 ^ [$∗1E1] + τν2 ^ [$∗2E2] = τν1(E1) + τν2(E2) .
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Since the map extending by zero is a homomorphism, one then finds

indt
n

(
(M1,E1, φ1)q (M2,E2, φ2)

)
:= ÂE(M)

= ÂE1(M1) + ÂE2(M2)

= indt
n(M1,E1, φ1) + indt

n(M2,E2, φ2) ∈ KO−n(pt) ,

showing that indt
n respects the algebraic sum of cycles.

Next we have to check that the map indt
n is independent of the choice of representative

of a homology class in KOt
n(X). The independence of the direct sum relation follows

from the discussion above, while spin bordism independence is guaranteed by the

property that the AMS invariant ÂE(M) is a spin cobordism invariant [63]. Finally, we

have to verify that the map indt
n does not depend on real vector bundle modification.

Let M be a smooth n-dimensional compact spin manifold and let E→ M be a smooth

real vector bundle. Let F be a real spin vector bundle over M with fibres of real

dimension 8l for some l ∈ N. Consider the corresponding sphere bundle (4.3.1) with

projection (4.3.2). Real vector bundle modification of a KO-cycle (M,E, φ) on X

induced by F produces the KO-cycle ( M̂, Ê, φ ◦ π), where Ê = H(F) ⊗ π∗(E) is the

real vector bundle over M̂ such that[
Ê
]

= ΣF
!

[
E
]

with [E] ∈ KO0(M), [ Ê ] ∈ KO0( M̂ ), and ΣF defined as in (4.3.9). We may compute

the AMS invariant for the pair ( M̂ , Ê ) by choosing an embedding

f̂ : M̂ ↪→ Rn+8k+8l

so that

ÂbE( M̂
)

= β ◦ f̂!

(
[ Ê ]
)

= β ◦ f̂! ◦ ΣF
! [E] = β ◦

(
f̂ ◦ ΣF

)
!
[E] ,

where in the last equality we have used functoriality of the Gysin map. Notice that

f̂ ◦ ΣF : M ↪→ Rn+8k+8l =: Rn+8m

is an embedding of M into a “large enough” Euclidean space. Since ÂE(M) is inde-

pendent of the embedding and the integer m, we have

ÂbE( M̂
)

= ÂE

(
M
)

as required.
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4.5.4 The Isomorphism Theorem

We can now assemble the constructions of the previous sections to finally establish

our main result. Notice first of all that since ker /DM
E ' kerTM

E , one has

inda
n ◦ µa

(
M , E , φ

)
= inda

n

(
/DM

E

)
(4.5.12)

for any KO-cycle (M,E, φ) on X with dim M = n. At this point we can use an

important result from spin geometry called the C`n-index theorem [63].

Theorem 4.41. Let M be a compact spin manifold of dimension n and let E be a

real vector bundle over M. Let

/DM
E : C∞

(
M , /S(M)⊗ E

)
−→ C∞

(
M , /S(M)⊗ E

)
be the C`n-linear Atiyah-Singer operator with coefficients in E. Then

inda
n

(
/DM

E

)
= ÂE

(
M
)
.

The proof of Theorem 4.33 is now completed once we establish the following result.

Proposition 4.42. The map

µa : KOt
n(pt) −→ KOa

n(pt)

is an isomorphism for any n ∈ N.

Proof. As noticed at the beginning of this section, it suffices to establish the commu-

tativity of the diagram (4.5.1), i.e. that

indt
n = inda

n ◦ µa .

Let [M,E, φ] be the class of a KO-cycle over pt with dim M = n. Using Theorem 4.41

and (4.5.12) we have

indt
n

[
M , E , φ

]
:= ÂE

(
M
)

= inda
n

(
/DM

E

)
= inda

n ◦ µa
[
M , E , φ

]
as required.
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4.6 The Real Chern Character

In this section we will describe the natural complexification map from geometric

KO-homology to geometric K-homology and use it to define the Chern character

homomorphism in topological KO-homology. We describe various properties of this

homomorphism, most notably its intimate connection with the AMS invariant which

was the crux of the isomorphism of the previous section.

Let X be a compact topological space. Consider the topological, generalized homology

groups Kt
](X) and KOt

](X), along with the corresponding K-theory and KO-theory

groups. The complexification of a real vector bundle over X is a complex vector bundle

over X which is isomorphic to its own conjugate vector bundle. The complexification

map is compatible with stable isomorphism of real and complex vector bundles, and

thus defines a homomorphism from stable equivalence classes of real vector bundles

to stable equivalence classes of complex vector bundles. It thereby induces a natural

transformation of cohomology theories

(⊗C)∗ : KO∗(X) −→ K∗(X)

induced by

[E]− [F] 7−→ [EC]− [FC]

where EC := E⊗ C is the complexification of the real vector bundle E→ X.

We can also define a complexification morphism relating the homology theories

(⊗C)∗ : KOt
](X) −→ Kt

](X) (4.6.1)

by

[M,E, φ]⊗ C := [M,EC, φ]

and extended by linearity, where on the right-hand side we regard M endowed with

the spinc structure induced by its spin structure as a KO-cycle. One can easily see

that

[M,E, φ]⊗ C = φ∗
(
[EC] _ [M]K

)
(4.6.2)

where [M]K ∈ K](M) denotes the K-theory fundamental class of M. Thus in the case

when X is a compact spin manifold, the homomorphism (⊗C)∗ is just the Poincaré

dual of (⊗C)∗. This is clearly a natural transformation of homology theories.

A related natural transformation between cohomology theories is the realification

morphism

( R)∗ : K](X) −→ KO](X)
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induced by assigning to a complex vector bundle over X the underlying real vector

bundle over X. Because a spinc manifold is not necessarily spin, we cannot implement

this transformation in the homological setting in general. Rather, we must assume

that X is a compact spin manifold. In this case the K-homology group Kt
](X) has

generators [X× Sn,Ei, pr1]− [X× Sn,Fi, pr1], 0 ≤ n ≤ 7, where pr1 : X× Sn → X is

the projection onto the first factor [80]. We can then define the morphism

( R)∗ : Kt
](X) −→ KOt

](X)

by(
[X× Sn,Ei, pr1]− [X× Sn,Fi, pr1]

)
R := [X× Sn,Ei R, pr1]− [X× Sn,Fi R, pr1]

and extending by linearity. Since this definition depends on a choice of generators

for Kt
](X), the transformation is not natural. As for the complexification morphism,

the morphism ( R)∗ thus defined is Poincaré dual to ( R)∗. It follows that the

composition ( R)∗ ◦ (⊗C)∗ is multiplication by 2.

We can use the natural transformation provided by the complexification homo-

morphism (4.6.1) to define a real homological Chern character

chR
• : KOt

](X) −→ H] (X,Q) (4.6.3)

by

chR
• (ξ) = ch•(ξ ⊗ C)

for ξ ∈ KOt
](X), where on the right-hand side we use the K-homology Chern character

ch• : Kt
](X)→ H] (X,Q), which can be defined as

ch•(M,E, φ) = φ∗
(
(ch(E) ∪ ed(TM)/2Â(TM)) ∩ [M]

)
where the cohomology class d(TM) is defined in Appendix C.

The real Chern character (4.6.3) is a natural transformation of homology theories,

and it preserves the cap product, i.e. the diagram

KO∗t (X)⊗KOt
](X) ∩ //

ch•⊗ch•
��

KOt
](X)

ch•
��

H∗t (X; Q)⊗ Ht
](X; Q) ∩ // Ht

](X; Q)

commutes for any space X. This property is indeed guaranteed by the fact that chR
•

is the natural transformation in KO-homology induced by the real Chern character

in KO-theory. See [58] for details. Finally, tensoring with Q gives a map

chR
• ⊗ idQ =

(
ch• ⊗ idQ

)
◦
(
(⊗C)∗ ⊗ idQ

)
: KOt

](X)⊗Z Q −→ H] (X,Q)

In constrast with the complex case, this map is not an isomorphism.
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4.7 Cohomological Index formulas

We will now explore the relation between the homological real Chern character and

the topological index defined in (4.5.11). In particular, we will be able to give cohomo-

logical C`n-index formulas. We first show that up to Poincaré duality the topological

index is the homological morphism induced by the collapsing map. Recall that up to

isomorphism, the AMS invariant is given by

ÂE(M) = ζ̃ KO
! [E]

where M is a compact spin manifold of dimension n, E is a real vector bundle over

M, ζ̃ : M → pt is the collapsing map on M, and ζ̃ KO
! is the corresponding Gysin

homomorphism2 on KO-theory. In this case we have

ζ̃ KO
∗ = Φpt ◦ ζ̃ KO

! ◦ Φ−1
M

where ζ̃ KO
∗ is the induced morphism on KOt

](M), and Φpt and ΦM are the Poincaré

duality isomorphisms on pt and M, respectively. It then follows that

Φpt ◦ indt
n(M,E, φ) = Φpt ◦ ζ̃ KO

! [E]

= Φpt ◦ ζ̃ KO
! ◦ Φ−1

M (M,E, idM)

= ζ̃ KO
∗ [M,E, idM]

= [M,E, ζ̃ ] = ζKO
∗ [M,E, φ] (4.7.1)

where ζ : X→ pt is the collapsing map on X with ζ̃ = ζ ◦ φ.

We will next describe how the real Chern character can be used to give a characteristic

class description of the map indt
n in the torsion-free cases. Consider first the case

n ≡ 4 mod 8. We begin by showing that there is a commutative diagram

KOt
4(X)

ζKO
∗ //

ζH∗ ◦chR
• &&MMMMMMMMMM

KOt
4(pt)

chR
•

��
H0(pt,Q)

(4.7.2)

where ζH
∗ is the induced morphism on homology. Recall that chR

• = ch• ◦ (⊗C)∗,

where (⊗C)∗ is the complexification map (4.6.1), hence it can be expressed as

chR
• (M,E, φ) = φ∗

(
(ch(EC) ∪ Â(TM)) ∩ [M]

)
2We are using the Gysin homomorphism definition for continuous and proper maps, which are

not necessarily embeddings. See [61] for details.

105



Cohomological Index formulas

Then one has

ζH
∗ ◦ chR

• (M,E, φ) = ζH
∗ ◦ φ∗

(
(ch•(EC) ∪ Â(TM)) ∩ [M]

)
= (ζ ◦ φ)∗

(
(ch•(EC) ∪ Â(TM)) ∩ [M]

)
= chR

• (M,E, ζ̃ ) = chR
• ◦ ζKO

∗ [M,E, φ] .

Now we use the fact that the map chR
• : KOt

4(pt)→ H0(pt,Q) sends Z→ 2Z ⊂ Q
[61]. On its image, the homomorphism chR

• is thus invertible and its inverse is given

as division by 2. This can be proven as follows. We have

ζH
∗ ◦ chR

• (M,E, φ) = ζH
∗ ◦ ΦM

(
ch•(EC) ∪ Â(TM)

)
= Φpt ◦ ζH

!

(
ch•(EC) ∪ Â(TM)

)
=

〈
ch•(EC) ∪ Â(TM) , [M]

〉
, (4.7.3)

where 〈−,−〉 : H](M,Q) × H](M,Q) → Q is the canonical dual pairing between

cohomology and homology. In (4.7.3) we have used the fact that Φpt is the identity on

H0(pt,Q) ' Q , and the proof of the last equality uses the Atiyah-Hirzebruch version

of the Grothendieck-Riemann-Roch theorem [61]. Recall that for a spin manifold M

of dimension 4k + 8, one has〈
ch•(EC) ∪ Â(TM) , [M]

〉
∈ 2Z

After using the isomorphism KO4(pt) ' Z, we thus deduce that

ζKO
∗ [M,E, φ] =

1

2

〈
ch•(EC) ∪ Â(TM) , [M]

〉
and from (4.7.1) we arrive finally at

indt
n(M,E, φ) = 1

2

〈
ch•(EC) ∪ Â(TM) , [M]

〉
When n ≡ 0mod8, one obtains a similar result but now without the factor 1

2
, since in

that case chR
• : KOt

0(pt) → H0(pt,Q) is the inclusion Z ↪→ Q [61]. In the remaining

non-trivial cases n ≡ 1, 2 mod 8 the homological Chern character is of no use, as

KO−n(pt) is the pure torsion group Z2, and there is no cohomological formula for the

AMS invariant in these instances. However, by using Theorem 4.41 one still has an

interesting mod 2 index formula for the topological index in these cases as well [63].

We can summarize our homological derivations of these index formulas as follows.

Theorem 4.43. Let [M,E, φ] ∈ KOt
n(X), and let /DM

E be the Atiyah-Singer operator on

M with coefficients in E. Let /HM
E := ker /DM

E denote the vector space of real harmonic
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E-valued spinors on M, where /DM
E is the Atiyah-Singer operator for the irreducible

real spinor bundle on M. Then one has the C`n-index formulas

indt
n(M,E, φ) =



〈
ch•(EC) ∪ Â(TM) , [M]

〉
, n ≡ 0 mod 8 ,

dimC /HM
E mod 2 , n ≡ 1 mod 8 ,

dimH /HM
E mod 2 , n ≡ 2 mod 8 ,

1
2

〈
ch•(EC) ∪ Â(TM) , [M]

〉
, n ≡ 4 mod 8 ,

0 , otherwise .

4.8 D-branes and K-homology

In this section we will show how geometric K-homology can be used to describe D-

branes in type II and type I String theory in a topological nontrivial spacetime. We

will introduce the notion of wrapped D-brane on a given submanifold of spacetime, we

will define the group of charges of wrapped D-branes, and construct explicit examples

of wrapped D-branes which have torsion charge.

Recall by section 3.7 that the group of topological charges of a Dp-brane realized as

a spinc submanifold W ⊂ X is given by

K0
cpt(νW) ' K0(B(N(W)), S(N(W)))

as proposed by Witten. According to the Sen-Witten construction, the classes in

K0
cpt(νW ) are interpreted as systems of D9 − D9̄ branes which are unstable, and will

decay onto the worldvolume W, which correspond to the zero loci of the appropriate

tachyon field. In particular, this process happens in spacetime, and it depends on

how the worldvolume is embedded in it. On the other hand, the role played by

the Chan-Paton vector bundle on the Dp-brane is not manifest in this classification.

However, there is a natural way of classifying the Dp-branes on W by means which

manifestly takes into account the Chan-Paton bundle contribution. Indeed, from

the Dp-brane data, we can naturally construct the Baum-Douglas cycle (W,E, id),

where E denotes the Chan-Paton bundle, and declare that its charge is given by

the class [W,E, id] ∈ Kp+1(W). As the group Kp+1(W) contains no information

about the embedding of the worldvolume W in X, we can intuitively think the charge

[W,E, id] takes into account how the D-brane wraps the submanifold W. Notice that

this analogous to the charge classification of an extended object in an abelian gauge

theory via the homology cycle of its worldvolume. Finally, the equivalence relation
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that defines the group Kp+1(W) are very natural from the physical point of view. See

[80] for details. At this point, we notice that by definition the elements of Kt
p+1(W)

are given by (differences of) classes [M,E, φ] where M is a p+1-dimensional manifold.

However, it is not always possible to choose the map φ in [M,W] in such a way that

φ is a diffeomorphism. This motivates the following

Definition 4.44. Let X be a type II String theory spacetime, described by a 10-

dimensional spin manifold, and let W ⊂ X be a spinc submanifold. A Dp-brane

wrapping the worldvolume W is defined as the K-cycle (M,E, φ), where dim M =p+1,

and φ(M) ⊂ W. We will call E the Chan-Paton bundle associated to the wrapped

Dp-brane, and we will say that the Dp-branes fills W if φ(M) = W. The charge of

the wrapped Dp-brane is given by the class [M,E, φ] in the group Kt
p+1(W).

Notice that in the above definition we have relaxed the condition that dimW =

p + 1, as we are not requiring that the wrapping preserves the dimension of the D-

brane. This is an attempt to take into account, at least at the topological level, the

well-known fact that D-branes are not always representable as submanifolds equipped

with vector bundles, since they are boundary conditions for a superconformal field

theory, and that a distinction should be made between the wrapping D-brane, in this

case identified with a K-cycle representing a particular type of boundary conditions,

and the worldvolume it wraps. Notice also that the group of charges of wrapped

Dp-branes does not depend on how the manifold W is embedded into the spacetime,

and hence it seems to represent a genuine worldvolume concept. In particular, as

mentioned above, the wrapped D-brane definition is very natural in the ordinary case

of a D-brane realized as a submanifold W of spacetime equipped with a Chan-Paton

bundle E, as it only depends on how the vector bundle is defined on the submanifold,

and not on the procedure used to “extend” it to the spacetime. Finally, in the case of

ordinary D-branes wrapping W with dimW = p+1, the group Kp+1(W) coincides with

the group of charges of type IIB Dp-branes that can be obtained via the Sen-Witten

construction, i.e. via brane-antibrane decay. This can be shown as follows. Since the

normal bundle νW →W is a spinc vector bundle, we can use the Thom isomorphism

in K-theory to establish that

K0
cpt(νW) ' K0(W)

As W is a spinc submanifold of the spacetime, we can use Poincaré Duality to get

K0(W) ' Kt
p+1(W)
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where p+1 = dimW. This suggests that for ordinary type II Dp-branes the wrapping

charge is completely determined by the decay of the tachyon field. It is natural at

this point to extend the notion of wrapped D-brane and of wrapping charge to type I

String theory. In this case, though, the two notions of charge do not coincide, as we

will show in the following.

Recall that in type I String theory the group of topological charges of a Dp-brane

realized as a spin submanifold W ⊂ X is given by

KO0
cpt(νW) ' KO0(B(N(W)), S(N(W))) (4.8.1)

By using the Thom isomorphism in KO-theory, we have that

KO0
cpt(νW) ' KOp−9(W)

Finally, by Poincaré Duality, we get

KOp−9(W) ' KO10(W)

The group KO10(W) is in general not isomorphic to the group KOp+1(W), and ex-

plicitly depends on the dimension of the spacetime. We can physically interpret the

elements of KO10(W) as equally charged systems of wrapping D9−D9̄-branes decay-

ing on the submanifold W, and via the inclusion i : W ↪→ X they can be related to the

D9-branes used in the Sen-Witten construction. This is not surprising, as the decay

mechanism is somehow at the heart of the spacetime D-brane charge classification,

and it reinforces the statement that the group (4.8.1) encodes spacetime properties

of the Dp-brane. After introducing the K-theoretical description of Ramond-Ramond

fields in the next chapter, we will argue that wrapped D-branes can in principle couple

to Ramond-Ramond fields.

We comment at this point that the definition of wrapped branes and of wrapped

charge as presented in this section is very natural from the mathematical point of view,

but is still heuristic in nature. Indeed, stronger evidences for wrapped D-branes and

their coupling to Ramond-Ramond fields should come from the boundary conformal

field theory describing type I String theory in topologically nontrivial settings, which

has not yet been investigated in full generality.

4.9 The group KOt
](pt) and torsion branes

In this section we will find explicit generators for the group KOt
](pt), which, as ex-

plained in the previous section, we can interpret as stable D-branes wrapping a point
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in spacetime. The stability of such D-branes is related to the fact that their charge

is the “lightest” in the group of possible charges, hence the conservation of charge

does not allow these D-branes to decay. To this end, we first give sufficient combina-

torial criteria on the rational homology of X which ensure that torsion-free D-branes

can wrap non-trivial spin cycles of the spacetime X, which is an adaptation of an

analogous result in [80]

Theorem 4.45. Let X be a compact connected finite CW-complex of dimension n

whose rational homology can be presented as

H](X,Q) =
n⊕
p=0

mp⊕
i=1

[
Mp
i

]
Q ,

where Mp
i is a p-dimensional compact connected spin submanifold of X without bound-

ary and with orientation cycle [Mp
i ] given by the spin structure. Then the KO-homology

lattice ΛKOt
](X) := KOt

](X) / torKOt
](X) contains a set of linearly independent elements

given by the classes of KO-cycles[
Mp
i , 11

R
Mp
i
, ιpi
]
, 0 ≤ p ≤ n , 1 ≤ i ≤ mp .

Proof. By [80] the cycles
[
Mp
i , 11

C
Mp
i
, ιpi
]

form a rational basis for the lattice ΛKt
](X) :=

Kt
](X) / torKt

](X) in K-homology. The conclusion follows from the fact that[
Mp
i , 11

R
Mp
i
, ιpi
]
⊗ C =

[
Mp
i , 11

C
Mp
i
, ιpi
]
,

i.e. that the elements chR
•
(
Mp
i , 11

R
Mp
i
, ιpi
)

form a set of generators of H](X,Q).

Recall now, that we have KOt
n(pt) ' Z for n = 0, 4, KOt

n(pt) ' Z2 for n = 1, 2,

and 0 otherwise. For n = 0, 4 Theorem 4.45 and the Chern character assure that the

classes [pt, 11R
pt, idpt] and [S4, 11R

S4 , ζ] are generators of the groups KOt
0(pt) ' Z and

KOt
4(pt) ' Z, respectively. Let us now consider the group KOt

1(pt). Consider the

circle S1 and assign to it a Riemannian metric. Since there is only one unit tangent

vector at any point of S1, one has PSO(S1) ' S1, where P SO(S1) is the orthonormal

frame bundle of S1. A spin structure on S1 is thus given by a double covering

PSpin

(
S1
)
−→ S1

and by the fibration

Z2
// P Spin

(
S1
)
.

��
S1
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There are only two double coverings of the circle, one disconnected and the other

connected, given respectively by

S1 × Z2 −→ S1 , S1
M −→ S1

where S1
M is the total space of the principal Z2-bundle associated to the Möbius strip.

We will call these two spin structures the “interesting” and the “uninteresting” spin

structures, respectively.

Corresponding to these two spin structures (labelled ‘i’ and ‘u’, respectively), we

construct classes in KOt
1(pt) given by [S1

i , 11
R
S1 , ζ] and [S1

u, 11
R
S1 , ζ] where ζ : S1 → pt is

as usual the collapsing map. We will now compute the topological indices in detail,

finding the AMS invariants [63]

Â11R
S1

(
S1

i

)
= 1 , Â11R

S1

(
S1

u

)
= 0

in KO−1(pt) ' Z2. Hence the two classes above represent the elements of KOt
1(pt) '

Z2. In particular, [S1
i , 11

R
S1 , ζ] is a generator, analogous to the non-BPS Type I D-

particle that arises from tachyon condensation.

Let us first consider the circle with the interesting spin structure. Since C`1 ' C,

one has /S(S1) := P Spin(S1)×Z2 C`1 ' S1 × C. By decomposing C = R⊕ i R, one has

the identifications /S0(S1) = S1×R and /S1(S1) = S1× i R. As the Clifford bundle is

trivial, its space of sections is given by C∞(S1, /S(S1)) = C∞(S1,C). By coordinatizing

the circle S1 with arc length s, the Atiyah-Singer operator can be expressed as

/DS1

= i d
ds

(4.9.1)

where e1 = i is a generator of the Clifford algebra C`1. To compute the topological

index Â11R
S1

(S1
i ), we use the C`1-index Theorem 4.41 and hence determine the vector

space ker /DS1

, or equivalently the chiral subspace ker( /DS1

)0. Since C∞(S1, /S0) =

C∞(S1,R), the kernel of the chiral Atiyah-Singer operator ( /DS1

)0 : C∞(S1, /S0) →
C∞(S1, /S1) is given by the space of real-valued constant functions on S1. The dimen-

sion of this vector space, as a module over C`0
1 ' R, is 1 and hence

indt
1

(
S1

i , 11R
S1 , ζ

)
=
[

ker( /DS1

)0
]

= 1

in M0/ı
∗M1 ' KO−1(pt) ' Z2. (Note that here we are using ungraded Clifford

modules.)

We now turn to the uninteresting spin structure on S1. This time the bundle /S(S1)

is the (infinite complex) Möbius bundle. It can be described by a trivialization made
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of three charts U1, U2 and U3 with Z2-valued transition functions g12 = 1, g23 = 1

and g31 = −1. In this case, the vector space ker( /DS1

)0 consists of locally constant

real-valued functions ψi defined on Ui which satisfy ψj = gji ψi on the intersections

Ui ∩ Uj 6= ∅. Because of the non-trivial transition function g31, there are no non-zero

solutions ψ to the equation ( /DS1

)0ψ = 0. The kernel ker( /DS1

)0 is thus trivial, and so

indt
1

(
S1

u , 11R
S1 , ζ

)
= 0 .

Let us now consider the structure of the group KOt
2(pt). Analogously to the construc-

tion above, one can equip the torus T2 = S1× S1 with an “interesting” spin structure

and show that

Â11R
T2

(
T2
)

= 1 ,

and also that

Â11R
S2

(
S2
)

= 0

in KO−2(pt) ' Z2. It follows that the classes [T2, 11R
T2 , ζ] and [S2, 11R

S2 , ζ] represent the

elements of the group KOt
2(pt) ' Z2. In particular, [T2, 11R

T2 , ζ] is a generator, and it

is analogous to the Type I non-BPS D-instanton which is usually constructed as the

Ω-projection of the Type IIB D(−1) brane-antibrane system. We will now give some

details of these results.

Equip T2 with the flat metric dθ1 ⊗ dθ1 + dθ2 ⊗ dθ2, where (θ1, θ2) are angular

coordinates on S1 × S1. Since T2 is a Lie group, its tangent bundle is trivializable,

and hence the oriented orthonormal frame bundle is canonically given by PSO(T2) =

T2 × S1. Consider the spin structure on T2 given by

P Spin

(
T2
)

= T2 × S1 idT2×z2−−−−→ T2 × S1 .

Since C`2 ' H and C`0
2 ' C, the corresponding Clifford bundles are /S(T2) = T2×H

and /S0(T2) = T2 × C. In the riemannian coordinates (θ1, θ2), the Atiyah-Singer

operator can be expressed as

/DT2

= σ1
∂
∂θ1

+ σ2
∂
∂θ2

where the Pauli spin matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 − i

i 0

)

represent the generators e1, e2 of C`2, acting by left multiplication. The chiral op-

erator ( /DT2

)0 is locally the Cauchy-Riemann operator, and hence its kernel consists
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of holomorphic sections of the chiral Clifford bundle /S0(T2). These are simply the

complex-valued constant functions on T2, as the torus is a compact complex manifold.

As a module over C`0
2, this vector space is one-dimensional and so

indt
2

(
T2 , 11R

T2 , ζ
)

=
[

ker( /DT2

)0
]

= 1

in M1/ı
∗M2 ' KO−2(pt) ' Z2.

Consider now the two-sphere S2 as a riemannian manifold. It is not difficult to

see that

P SO

(
S2
)

= SO(3) −→ SO(3)/SO(2) ' S2

is the oriented orthonormal frame bundle over S2. The (unique) spin structure on S2

is thus given by

PSpin

(
S2
)
' SU(2) h //

U(1)
**UUUUUUUUUUUUUUUUUUU

PSO

(
S2
)
' SO(3)

SO(2)

��
S2

with h : SU(2)→ SO(3) the usual double covering, and by

U(1) // P Spin

(
S2
)

��
S2

which is the Hopf fibration of S2. Recall that the group Spin(2) ' U(1) ' SO(2) acts

on C`2 ' H as multiplication by(
e i θ 0

0 e − i θ

)
, θ ∈ [0, 2π) .

If one gives the sphere S2 the structure of the complex projective line CP1, then there

are isomorphims /S0(S2) = P Spin(S2) ×U(1) C ' T 1,0CP1 since the bundle /S0(S2)

has the same transition functions as the Hopf fibration. In other words, /S0(S2) is

isomorphic to the canonical line bundle LC over CP1. The vector space ker( /DS2

)0 thus

consists of the holomorphic sections of LC. The only such section on CP1 is the zero

section [72], and we finally find

indt
2

(
S2 , 11R

S2 , ζ
)

=
[

ker( /DS2

)0
]

= 0

in M1/ı
∗M2 ' Z2.

Remark As we have seen above, the problem of finding generators of the geometric
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KO-homology groups of a space X becomes increasingly involved at a very rapid rate.

Even in the case of spherical D-branes, we have not been able to find a nice explicit

solution. Nevertheless, at least in these cases we can find a formal solution as follows,

which also illustrates the generic problems at hand.

Suppose that we want to construct generating branes for the group KOt
k(S

n) for

some n > 0. Poincaré duality gives the map

KOn−k(Sn) −→ KOt
k

(
Sn
)
, ξ 7−→ ξ ∩

[
Sn , 11R

Sn , idSn

]
. (4.9.2)

As Poincaré duality is a group isomorphism, picking a generator in KOn−k(Sn) will

give a generator in KOt
k(S

n). But the problem is that the class ξ is not a (virtual or

stable) vector bundle over Sn in the cases of interest k < n. To this end, we rewrite the

cap product in (4.9.2) by using the suspension isomorphism Σ and the desuspension

Σ−1 to get

ξ ∩
[
Sn , 11R

Sn , idSn

]
= Σ−1

(
Σ
(
ξ
)
∩ Σ

[
Sn , 11R

Sn , idSn

])
.

As we are interested only in generators, we can substitute Σ(ξ) with the generators

of the KO-theory group KO0(Σn−kSn) = K̃O0(S2n−k). The generators of the latter

groups are given by [61] the canonical line bundle LF over the projective line FP1, with

F the reals R for k = 2n− 1, the complex numbers C for k = 2n− 2, the quaternions

H for k = 2n− 4 and the octonions O for k = 2n− 8.
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Chapter 5

Abelian Gauge Theories and

Differential Cohomology

We have seen in the previous chapters that D-brane charges require the use of K-theory

and K-homology to be properly described. Morever, since D-branes are electric and

magnetic sources for Ramond-Ramond fields, we expect that some form of K-theory

will play a relevant role also in the description of these generalized gauge fields. In

this chapter we introduce some basic notions of generalized differential cohomology

theories, which we will see constitute a powerful mathematical machinery to describe

abelian gauge theories of differential forms, and in particular the theory of Ramond-

Ramond fields. We first motivate the use of this formalism in the case of ordinary

electromagnetism, following [40, 44].

5.1 An example: the electromagnetic case

In ordinary electromagnetism formulated on the four dimensional Minkowski space-

time M4 = Rt × R3, the Maxwell equations are given by

dF = 0

d ? F = je
(5.1.1)

where F ∈ Ω2(M; R), and where je ∈ Ω3(M; R) is the electric current distribution.

Since M4 is a contractible space1, equations (5.1.1) and Poincaré’s Lemma imply that

there exists a form A ∈ Ω1(M; R), called the vector potential, such that

F = dA (5.1.2)

1More precisely, we only use that every 2-sphere is the boundary of a 3-ball.
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As we have seen in section 2.5, the total electric charge of the distribution can be

identified with the class [je|R3 ] in H3
cpt(R3; R) ' R.

We can modify the equations (5.1.1) by introducing a magnetic current jm ∈ Ω3(M; R),

and allowing the equations

dF = jm

d ? F = je
(5.1.3)

The magnetic charge of the system Qm is given by the class [jm|R3 ] in H3
cpt(R3; R).

The equations (5.1.3) have changed the “global properties” of F: indeed, it is no

longer a closed form, and equation (5.1.2) no longer holds. If we denote with We and

Wm the support of the forms je and jm respectively, and supposing We ∩Wm = Ø,

we can consider the following equations defined on M4 −Wm

dF = 0

d ? F = je
(5.1.4)

Notice at this point that equations (5.1.4) do not imply equation (5.1.2), since the

space M4−Wm is in general not contractible. However, for any contractible open set

Uα ⊂ M4 −Wm we have

F|Uα = dAα

and on overlaps Uα ∩ Uβ we have

Aα − Aβ = dgαβ gαβ ∈ C∞(M; R)

Finally, on triple overlaps Uα ∩ Uβ ∩ Uγ

gαβ + gβγ + gγα = cαβγ

where cαβγ is a real constant over the entire triple overlap. The fact that in the

presence of magnetic charges the vector potential is not globally defined requires that

the coupling term ∫
M4

A ∧ je =

∫
We

A

be carefully defined, as We could intersect more patches Uα. However, one can show

that the classical action evaluated over a given worldline We is ambiguous up to a

constant cαβγ [2], and this does not affect the classical equations of motion. Indeed,

equations (5.1.4) only depend on the fieldstrength F, which is a globally defined two

form. At the quantum level, instead, this classical ambiguity leads to inconsistencies,

unless some restrictions are imposed on the collection of all {cαβγ}. For example, in
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the path integral quantization, an ambiguous phase factor of exp{i cαβγ} is poten-

tially present at each non-empty triple intersection of patches: the only way to avoid

this ambiguity is to require that cαβγ = 2π nαβγ, where nαβγ are integer numbers.

Moreover, the constants cαβγ can be directly related to the total magnetic flux, hence

the total magnetic charge, implying that the two form F restricted to M4 −Wm has

integral periods. This is the so called Dirac quantization condition, and was proposed

by Dirac in [34], albeit in a different way. Mathematically, the Dirac quantization

condition states that the class [F] in H2(M4 −Wm; R) lies in the image of the map

H2(M4 −Wm; Z)→ H2(M4 −Wm; R)

induced in cohomology by the inclusion Z ↪→ R.

Notice at this point that the above argument applies even to the case of Maxwell

equations on a spacetime M = Rt × N in then absence of any magnetic current, pro-

vided that H2(N; R) 6= 0. Also in this case, the Dirac quantization condition requires

that the fieldstrength F has integer periods. Differential geometry provides a beautiful

solution to the necessity of having a local vector potential A in the quantum theory,

without forgetting the obstructions that prevent its global existence, and including

the Dirac quantization condition. Indeed, one regards the fieldstrength F as the cur-

vature of a connection A defined on a principal U(1)-bundle π : L → M with first

Chern class c1(L) = [cαβγ] ∈ H2(M; Z). The relevant space2 of fields for the quantum

theory is then given by the space of all principal U(1)-bundles with connection over M.

Notice that this space extends the space of classical solutions of Maxwell equations

by the flat connections, which may contribute nontrivially to the quantum theory.

As we have seen through the argument above, the Dirac quantization of charges

is a required condition in order to have a well defined quantum theory. We have

also seen that the theory of principal bundles can be used to geometrically encode

this condition. However, this framework cannot be applied to the case of generalized

electromagnetic theories introduced in section 2.5: indeed, since the fieldstrength F is

given by a p-form, it cannot be realized as the curvature of some connection. One can

then resort to a local description of these gauge fields, as done for the B-field in section

1.5. This approach has several disadvantages, though: it is usually difficult in this

framework to determine the space of gauge equivalent field configurations, over which

the path integral should be performed, and in particular it is difficult to introduce a

2It is actually a groupoid, where the morphisms are given by connection preserving gauge trans-

formations.
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coupling of these fields with their sources, as one needs a proper notion of pullback,

integration, etc. In the following section, we will introduce the proper mathematical

formalism to treat these fields, whose recent development has been greatly motivated

by the very problems mentioned above.

5.2 Differential Cohomology

In the past 30 years, Differential Cohomology has appeared in the mathematical lit-

erature as the theory of differential characters, Deligne cocycles, sparks, and more

recently differential functions [28, 23, 51, 54]. From the mathematical point of view,

it has provided a refinement of the theory of characteristic classes and characteris-

tic forms, which, in the appropriate contexts, gives rise to obstruction to conformal

immersion of Riemannian manifolds in euclidean spaces; more recently, in combina-

tion with differential K-theory, it has been used to construct an index theorem for

flat bundles. As mentioned above, from the physical point of view it constitutes a

powerful formalism to describe gauge theories of p-forms whose Dirac quantization

condition is dictated by integer cohomology. In the following we will focus on two par-

ticular descriptions of Differential Cohomology, which use Cheeger-Simons characters

and Deligne cocycles, respectively. We will illustrate the relation between differential

cohomology and electromagnetism with Dirac quantization of charges, and we will

give a definition of generalized abelian gauge theories in terms of these objects.

5.2.1 Cheeger-Simons characters

Let M denote a smooth manifold, and let Ck ⊃ Zk ⊃ Bk denote the groups of smooth

singular chains, cycles, and boundaries with ∂ : Ck → Ck−1 and δ : Ck → Ck+1 the

usual boundary and coboundary operators, respectively. Let Ωk
Z(M) ⊂ Ωk(M) denote

the lattice of closed k-forms with integral periods. Notice that if we denote with r the

map induced on cohomology by the inclusion Z ↪→ R, then a k-form ω has integral

periods if and only if [ω] = r(u), for some u ∈ Hk(M; Z). Given ω ∈ Ωk(M), we have

the map

Ωk(M)→ Ck(M; R/Z) (5.2.1)

which assigns to ω the R/Z-valued cochain defined as

ω̃(σ) :=

∫
σ

ω mod Z, ∀σ ∈ Ck(M)
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As the integral of a generic differential form over the set of all cycles never takes

values only in Z, the map (5.2.1) is an injection, and we denote the image of Ωk(M)

in Ck(M; R/Z) with Ω̃k(M). We have then the following

Definition 5.1. The n-th Cheeger-Simons group of a smooth manifold M is the group

Ȟn(M) :=
{
f ∈ Hom (Zn−1,R/Z) : f ◦ ∂ ∈ Ω̃n(M)

}
We set Ȟ0(M) = Z. The elements of Ȟ∗(M) := ⊕nȞn(M) are called differential

characters.

A smooth map φ : M→ N naturally induces a homomorphism

φ∗ : Ȟn(N)→ Ȟn(M)

Hence, Ȟn is a contravariant functor from the category of smooth manifolds to the

category of abelian groups.

A main result is the following [28]

Proposition 5.2. There exist surjective maps

Ȟn(M)
F−→ Ωn

Z(M)

Ȟn(M)
c−→ Hn(M; Z)

for any smooth manifold M and any n ∈ N.

The map F is called the fieldstrength map, and the map c is called the characteristic

class map.

Proof. Let f ∈ Ȟn(M). Consider an element T
′ ∈ Hom (Zn−1,R) such that

T̃
′
= f

where the tilde means mod Z. Consider now the following (split) exact sequence

0→ Zn−1
i−→ Cn−1

∂−→ Bn−2 → 0

Since Hom( · ,R) is an exact functor, the following exact sequence holds

0→ Hom(Bn−2,R)
δ−→ Hom(Cn−1,R)

i∗−→ Hom(Zn−1,R)→ 0 (5.2.2)

where the map i∗ is given by restriction. Hence, there exist T ∈ Hom(Cn−1,R) such

that T|Zn−1 = T
′
, and consequently

T̃|Zn−1 = f
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Since by construction δT := T ◦ ∂, and δ̃T = δT̃, we have that

δT̃ = f ◦ ∂

By assumption δT̃ is an element of Ω̃n(M). Any such element can be written as ω− c,
where ω is a n-form regarded as a real cochain by integration, and c ∈ Cn(M,Z).

Since δT = ω − c, we have

0 = δ2T = δω − δc = dω − δc (5.2.3)

where d denotes the deRham differential. Since the map (5.2.1) is an injection, equa-

tion (5.2.3) implies that dω = 0 and δc = 0. Finally, since δT = ω − c we have that

[ω] = r([c]), with [c] ∈ Hn(M; Z), which implies that ω ∈ Ωn
Z(M). The elements ω

and [c] do not depend on the lift T. Indeed, let T
′

be another real cochain such that

T̃
′ |Zn−1 = f . Then T̃− T′|Zn−1 = 0, and the sequence (5.2.2) implies that

T
′
= T + δα + β (5.2.4)

with α ∈ Cn−2(M; R) and β ∈ Cn−1(M; Z). By the argument above there exist ω
′

and

c
′

such that δT
′
= ω

′ − c′ . Hence we have

ω
′ − c′ = δT

′
= δT + δβ = ω − c+ δβ

which implies

ω
′ − ω = c

′ − c+ δβ ∈ C`(V; q)

By the same reason as before, we have ω
′
= ω and [c

′
] = [c].

We define F(f) = ω and c(f) = [c], where ω and c are obtained as above. Moreover,

we will refer to the form ω as the fieldstrength and to the class [c] as the characteristic

class ; the use of this terminology will be clear later.

To prove that the maps F and c are surjective, notice that any ω ∈ Ωn
Z(M) de-

termines a u ∈ Hn(M; Z) such that [ω] = r(u), and conversely for any u we can find

such a ω. Let [c] = u. Then ω − c is exact as a real cochain, and there exists T such

that δT = ω − c. Then T̃|Zn−1 defines a homomorphism f : Zn−1 → R/Z with the

property that f ◦ ∂ ∈ Ω̃n(M).

We will now investigate the kernels of the fieldstrength and characteristic class

maps.

Let f ∈ Ȟn(M) satisfy F(f) = 0. Then the real cochain T satisfies δT = −c. Hence
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δT̃ = 0, and thus T̃ is an R/Z-valued cocycle. If we consider another lift T
′
, equation

(5.2.4) implies that T̃
′
= T̃+δα̃, and hence [T

′
] = [T] ∈ Hn−1(M; R/Z). So an element

f with F(f) = 0 determines an R/Z cohomology class. Conversely, given an R/Z class

represented by a cocyle s, we have that s|Zn−1 defines a differential character f , and

such a definition is independent of the choice of the representing cocycle s.

Finally, let f ∈ Ȟn(M) satisfy c(f) = 0. Then δT = ω − c, with c = δe, for some

e ∈ Cn−1(M; Z). Hence, δ(T − e) = ω. Since [ω] = r([c]), by the deRham theorem

we have that ω = dθ, for some θ ∈ Ωn−1(M). Since δ(T − e − θ) = 0, we have that

T − e − θ = z, for some cocycle z ∈ Zn−1(M; R). Again by the deRham theorem,

there exists a closed form φ ∈ Ωn−1(M) such that φ|Zn−1 = z|Zn−1 , which implies that

f = T̃|Zn−1 = ˜θ + φ+ e = θ̃ + φ

Hence f is in the image of the map ω → ω̃|Zn−1 , with ω ∈ Ωn−1(M), whose kernel is

given by Ωn−1
Z (M).

We have then proved the following [28]

Proposition 5.3. There are natural exact sequences

0→ Hn−1(M; R/Z)→ Ȟn(M)
F−→ Ωn

Z(M)→ 0

0→ Ωk−1(M)/Ωk−1
Z (M)→ Ȟn(M)

c−→ Hn(M; Z)→ 0

Another useful exact sequence can be obtained as follows. Consider the group

An(M) := {(ω, u) ∈ Ωn
Z(M)× Hn(M; Z) : [ω] = r(u)}

We have then a surjective map

Ȟn(M)
(F,c)−−→ An(M)

The kernel of this map is given by elements f ∈ Ȟn(M) such that F(f) = 0 and

c(f) = 0. By the same argument as before, we have that δ(T − e) = 0, hence the

element f determines a class in Hn−1(M; R) represented by the closed form φ that

satisfies T|Zn−1 = φ + e. As φ is a closed form, T̃|Zn−1 is determined only by the

class [φ] ∈ Hn−1(M; R). Conversely, any class [φ] determines a differential character

f = φ̃|Zn−1 , and the kernel of such an assignment is given precisely by r(Hn−1(M; Z)).

We have then showed that the following exact sequence holds

0→ Hn−1(M; R)/r(Hn−1(M; Z))→ Ȟn(M)
(F,c)−−→ An(M)→ 0 (5.2.5)

The above sequences are very important, as they are usually the only computational

technique available since the groups Ȟn(M) are usually infinite dimensional.
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Notice that the group A∗(M) := ⊕nAn(M) carries an obvious ring structure given

by

(ω, u) · (φ, v) := (ω ∧ φ, u ∪ v)

We expect then that the group Ȟ∗(M) carries an analogous product. This is indeed

the case. However, the ring product of differential characters is more subtle to define:

this is due to the fact that given two forms ω1 and ω2 of degrees l and p, respectively,

in general we have

ω1 ∧ ω2 6= ω1 ∪ ω2

where on the right hand side ω1 and ω2 are realized as real cochains. However, one

has that

δE(ω1, ω2) = ω1 ∧ ω2 − ω1 ∪ ω2

for some E(ω1, ω2) ∈ Cl+p−1(M; R). The technical difficulty consists exactly in con-

structing the cochain E(ω1, ω2) in a canonical way, and we refer the reader to [28] for

details. A definition of the ring product can then be given in the following way. Let

f ∈ Ȟl(M) and g ∈ Ȟp(M), and choose the lifts Tf ∈ Cl−1(M; R) and Tg ∈ Cp−1(M; R)

for f and g respectively. Then we can define [28]

f ? g := T̃f ∪ ωf − (−1)l−1ω̃f ∪ Tg − ˜Tf ∪ δTg + E(ωf , ωg)|Zl+p−1

and it can be shown that f ? g is independent of the choice of Tf and Tg. Moreover,

the product ? is associative, graded commutative, and it is such that the fieldstrength

and characteristic class maps are ring homomorphisms. Even if the product ? is fairly

complicated in general, there are special cases in which it greatly simplifies. Indeed,

if g ∈ ker F ⊂ Ȟp(M), then f ? g is the image of (−1)lc(f) ∪ g, for f ∈ Ȟl(M), while

if g ∈ ker c ⊂ Ȟp(M), f ? g is the image of (−1)lF(f) ∧ g.

In the following we will give some examples.

Example 5.4. Let M = S1 and consider the group Ȟ1(S1). Since Z0(S1) is freely

generated by the points of S1, we have that Ȟ1(S1) ' C∞(S1, S1), where we have

realized R/Z as S1. Consider then a smooth function

f : S1 → S1

Any such function f can be expressed as

f(p) = e2πiΘ(f(p))
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where Θ = θ ◦ f , with θ the usual local angular coordinate on the circle. Then a lift

T of f is given by

T =
1

2πi
log f = Θ(p) + η(p)

where η is a locally constant Z-valued function. By assumption, we know that on any

curve γ on S1

δT̃(γ) = e2πi(Θ(b)−Θ(a))

where a and b are the endpoints of the curve. The right hand side of the above

equation can be written as

exp

{
2πi

∫
γ

dΘ

}
Notice that dΘ is not an exact 1-form, but it is integral, as dΘ = f ∗dθ. Hence we

have shown that

d

(
1

2πi
logf

)
is the fieldstrength of f . Since the group H1(S1; Z) contains no torsion, the field-

strength determines the characteristic class: hence, we have

[c] = f ∗[dθ]

The same argument can be applied to the group Ȟ1(M) for any smooth manifold M.

Example 5.5. For any smooth manifold M with n = dim M we have

Ȟn+1(M) ' Hn(M; R/Z)

Ȟk(M) = 0, k > n+ 1

This can be shown by using the exact sequences introduced above.

Example 5.6. Let M = pt. Then

Ȟn(M) =


Z, n = 0

R/Z, n = 1

0, otherwise

Example 5.7. Finally, we present an example coming from differential geometry,

which is in a certain sense the “canonical” one.

Consider a complex line bundle L → M with connection ∇, and denote with F∇ its

curvature form. Since
1

2π
F∇ represents the real first Chern class of L, we have that

F∇ ∈ Ω2
Z(M). Let γ be a closed curve, and define

f(γ) := hol∇(γ) ∈ R/Z
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where hol∇ denotes the holonomy of the connection ∇. We can extend the homo-

morphism f to the whole of Z1(M) as follows. Let z ∈ Z1(M). Represent z as

z =
∑

i niγi + ∂y, where γi is a closed curve, and y ∈ C2(M). Then we can define

f(z) :=
∏
i

f(γi)
ni +

1

2π
F̃∇(y)

The homomorphism f above is well defined, and independent of the presentation of

z, since F∇ has integral periods. Since f ◦ ∂ =
1

2π
F∇, we have that f ∈ Ȟ2(M).

Moreover, one can check that

F(f) =
1

2π
F̃∇

c(f) = c1(L)

Notice that the character f contains more information than F∇ and c1(L) together,

since both may vanish when f does not, e.g. when M = S1.

It is immediate to realize in the above example that if we perform a connection

preserving gauge transformation on L, the homomorphism f does not change, hence

it is a gauge invariant quantity. Conversely, given an element f ∈ Ȟ2(M) we can

construct up to isomorphism a line bundle L classified by c(f), equipped with a

connection ∇ defined by requiring that

hol∇(γ) := f(γ)

for any closed curve γ. Hence, for any smooth manifold M the group Ȟ2(M) is

equivalent to the space of all gauge equivalent complex line bundles with connection

over M: the group structure on the latter space is induced by tensor product of line

bundles. We have then realized that the group Ȟ2(M) is the set of orbits of the group

of gauge transformations acting on the space of connections on all line bundles over

M: noncanonically, this space can be expressed as⋃
c1∈H2(M;Z)

A(Lc1)/G

where A(Lc1) is the affine space of connections on the line bundle Lc1 classified by the

class c1, and G is the group of gauge transformations. As seen in section 5.1, this is

precisely the space of all possible gauge inequivalent solutions to Maxwell equations

on M, taking into account the Dirac quantization condition. Realizing this space as

the group Ȟ2(M) naturally suggests the following

Definition 5.8. A generalized abelian gauge theory on a smooth manifold M is a field

theory whose space of gauge inequivalent configurations is given by Ȟn(M), for some

n ∈ N.
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The generalized electromagnetism discussed in section 2.5.1, once provided with

a suitable Dirac quantization condition, is a generalized abelian gauge theory. Be-

cause of the relation between the group Ȟn(M) and gauge theories of n-forms, one

usually refers to Hn−1(M; R/Z) as the group of flat fields, while Ωn−1(M)/Ωn−1
Z (M)

is called the group of topologically trivial fields. Consequently, we can see that the

group Hn−1(M; R)/r(Hn−1(M; Z)) classifies the (gauge equivalence classes of) flat and

topologically trivial fields. Notice that if we classify inequivalent field configurations

only by curvature and characteristic class, we are not taking into account the effect

of flat and topologically trivial fields, which may be nonvanishing, according to the

topology of M.

Since the electromagnetic field can be described with complex line bundles and

connections thereon, this suggets that elements of Ȟn(M) should represent isomor-

phism classes of “higher” line bundles with “higher” connections. This is indeed the

case: for example, the group Ȟ3(M) is given by equivalence classes of bundle gerbes

with connections. However, to be able to talk about the gauge fields and higher line

bundles whose equivalent classes are the elements in Ȟn(M), we need a model repre-

senting such a group. Recall indeed, that the group Ȟ2(M) can be obtained as the set

of isomorphism classes for the groupoid of connections on M. To give such a model

is the aim of the next section.

5.2.2 Deligne cohomology

In this section we will describe a cochain model for the Cheeger-Simons groups. This

is done by introducing Deligne cohomology, which is defined via the cohomology of

a certain complex. The Deligne cohomology groups are isomorphic to the Cheeger-

Simons groups: however, we will not prove this result, and will focus instead on a

detailed construction of the cochain model, showing how it can naturally describe the

gauge fields in a generalized abelian gauge theory in topologically nontrivial back-

grounds. In the following we will describe the smooth Deligne cohomology3.

In a nutshell, the differential complex used to define Deligne cohomology is a “modi-

fication” of the Čech-de Rham complex: we will recall some basics about the Čech-de

Rham complex in order to clearly show the nature of such a modification.

Let M be a paracompact smooth manifold with n = dim M, and consider a good cover

3Deligne cohomology originated in the context of algebraic geometry.
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U = {Uα}α∈I, where the index set I may be infinite. Denote

Uα0α1···αp := Uα0 ∩ Uα1 ∩ · · · ∩ Uαp

Let Ωp(M) be the set of real valued p-forms, and denote with Ω0(M) the space of

smooth real functions C∞ (M; R). Since each Uα0α1···αp is contractible, Poincaré’s

Lemma implies that for any sequence α0, α1, · · · , αp we have an exact sequence

0→ C∞lc (Uα0α1···αp ; R)→ Ω0(Uα0α1···αp)
d−→ Ω1(Uα0α1···αp)

d−→ . . .
d−→ Ωn(Uα0α1···αp)→ 0

where C∞lc (M; R) denotes the space of smooth locally constant real valued functions.

Define the group of p-cochains of the cover U with values in the q-forms as

Čp(U; Ωq) :=
∏

α0<α1<···<αp

Ωq(Uα0α1···αp)

Notice that the inclusion

Uα0···αp ↪→ Uα0···α̂i···αp

induces a map

φαi : Ωq(Uα0···α̂i···αp)→ Ωq(Uα0···αp)

which is given by restriction. We can then define the homomorphism

δ : Čp(U; Ωq)→ Čp+1(U; Ωq)

which on ω ∈ Čp(U; Ωq) is defined as

δω :=

p+1∑
i=0

(−1)iφαi(ω)

The homomorphism δ satisfies δ2 = 0, hence it can be used to the define a cohomology

theory. However, we have the following Generalized Mayer-Vietoris exact sequence

[21]

0→ Ωq(M)→
∏

Ωq(Uα0α1)
δ−→
∏

Ωq(Uα0α1α3)
δ−→ · · ·

for any q ≥ 0, which tells us that the δ-cohomology of the complex Č∗(U; Ωq) vanishes

identically. Notice that for q = 0 this is related to the fact that Hp(M; R), the p-th

cohomology group of M valued in the sheaf of smooth real valued functions, is 0 for

all p ≥ 0, since R is a fine sheaf4.

Since the de Rham differential

d : Čp(U; Ωq)→ Čp(U; Ωq+1)

4A fine sheaf is loosely speaking a sheaf with a “partition of unity”.
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commutes with the coboundary homomorphism δ, we can form the following double

complex, called the Čech-de Rham complex

Č∗(M; Ω∗) :=
⊕
p,q≥0

Čp(U; Ωq)

with coboundary operator

D = δ + (−1)deg(·)d

where for ω ∈ Čp(U; Ωq), deg(ω) := p.

As usual for differential double complexes, we can consider the diagonal subcomplex

Kn :=
⊕
p+q=n

Čp(U; Ωq)

By “tic-tac-toeing”, i.e by chasing diagrams, one can prove that

H∗dR(M) ' H∗(K∗;D) ' Ȟ∗Ch(M; R)

where Ȟ∗Ch(M; R) denote Čech cohomology. The above isomorphism can be seen as

a consequence of the fact that all the “rows” and “columns” of the Čech-de Rham

complex are exact5.

The basic idea behind Deligne cohomology consists in constructing a complex analog

to the Čech-de Rham one, but based on the following exact sequence

Ω0
U(Uα0α1···αp)

d log−−→ Ω1(Uα0α1···αp)
d−→ . . .

d−→ Ωl(Uα0α1···αp)

where Ω0
U(V ) := C∞(V ; U(1)) for any open set V , and 0 ≤ l ≤ n. In other words,

we truncate the complex of forms on the right for some l, and we substitute in the 0

degree real valued functions with circle valued ones. We can then define a modified

Čech-de Rham complex as

Č∗[l](M; Ω∗) :=
⊕

p≥0,0≤q≤l

Čp(U; Ωq)

and the associated single complex

K[l]n :=
⊕
p+q=n

Čp(U; Ωq)

The Čech-de Rham coboundary D is unchanged, and we will refer to an element

ω ∈ K[l]∗ with Dω = 0 as a Deligne cochain. For a given l, the Deligne cohomology

is given by

H∗(M; Dl) := H∗(K[l]∗;D)

5Indeed, H∗
dR(M) and Ȟ∗

Ch(M; R) are the cohomology groups of the augmented column and row,

respectively.

127



Differential Cohomology

As for Čech cohomology, the result does not depend on the particular choice of good

cover.

Notice that it is no longer true that all the rows of the double complex Č∗[l](M; Ω∗)

are exact. Indeed, for q = 0 the sequence∏
Ω0
U(Uα0)

δ−→
∏

Ω0
U(Uα0α1)

δ−→
∏

Ω0
U(Uα0α1α2)

δ−→ · · ·

is in general not exact, and the δ-cohomology is given by Ȟ∗Ch(M; U(1)), the sheaf

cohomology with value in the circle functions. Moerover, one can prove that

Ȟ∗Ch(M; U(1)) ' Ȟ∗+1
Ch (U; Z)

for any good cover U. This innocuous modification implies interesting properties for

the groups Hn(M; Dl). Indeed, consider the case n < l. Then a Deligne class is

determined by an n-tuple

(ωn0 , ω
n−1
1 , · · · , ω0

n), ωij ∈
∏

Ωi(Uα0α1...αj)

satisfying the equations

dωn0 = 0

δωn0 − dωn−1
1 = 0

...

δω1
n−1 + (−1)nd logω0

n = 0

δω0
n = 0

Since the first equation implies that ωn0 = dαn−1
0 , for some αn−1

0 , one can “descend”

through the equations, showing that ω0
n = f + δα0, where f ∈

∏
C∞lc (Uα0α1...αn ; U(1)).

Moreover, by the last equation δf = 0, hence f represents a class in Ȟn
Ch(M; R/Z).

Conversely, any class [f ] in Ȟn
Ch(M; R/Z) determines a Deligne class up to D-exact

terms. We have then

Hn(M; Dl) ' Ȟn
Ch(M; R/Z), n < l

Consider now the case n > l. In this case a Deligne class is represented by an l-tuple

(ωln−l, ω
l−1
n−(l−1), · · · , ω

0
n)

satisfying the equations

δωln−l + (−1)n−(l−1)dωl−1
n−(l−1 = 0

δωl−1
n−l−1 + (−1)n−(l−2)dωl−2

n−(l−2) = 0
...

δω1
n−1 + (−1)nd logω0

n = 0

δω0
n = 0
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Notice that in this case the element ωln−l is not in general d-closed. Then ω0
n represents

a class in Ȟn
Ch(M; U(1)) ' Ȟn+1

Ch (M; Z). Conversely, given a class [f ] in Ȟn
Ch(M; U(1))

one can reconstruct the Deligne class up to D-exact terms. This is possible thanks

to the fact that any element ωij for j ≥ 1 which is δ-closed, is also δ-exact. Hence we

have that

Hn(M; Dl) ' Ȟn+1
Ch (M; Z), n > l

The case n = l is the most interesting one. Indeed, in this case the arguments above

cannot be applied. Instead, we have the following [23]

Theorem 5.9. Let M be a smooth manifold. Then

Hn(M; Dn) ' Ȟn+1(M)

for any n ≥ 0.

The complex above defined to compute Deligne cohomology constitutes then a

local description of differential characters, which instead are defined in an intrinsic

and global way. One can easily define the fieldstrength and the characteristic class

for the groups Hn(M; Dn) in the following way. A Deligne class ξ ∈ Hn(M; Dn) is

represented as

ξ = [(ωn0 , ω
n−1
1 , · · · , ω0

n)]

We can then define the fieldstrength of ξ as the n+ 1-form

F(ξ) := dωn0

This is a globally defined n+1-form, since

δdωn0 = dδωn0 = d2ωn−1
1 = 0

The characteristic class of ξ is instead defined as

c(ξ) := [ω0
n] ∈ Hn(M; Z)

By chasing diagrams one can prove that

[F(ξ)] = r(c(ξ))

The groups Hn(M; Dn) satisfy the same exact sequences as the Cheeger-Simons groups.

Moreover, the relation between the Cheeger-Simons groups and Deligne cohomology

clarifies the very use of the term “cohomology”. In other words, the groups Ȟn+1(M)
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can be realized as the cohomology of a differential complex, but this does not mean

that the collection of functors Ȟ∗(·) constitute a cohomology theory on the category

of manifolds in the sense of the Eilenberg-Steenrod axioms. First, notice that the

various groups Ȟn+1(M) are the cohomologies of different complexes, for different

n. Morever, they do not satisfy important cohomological properties like homotopy

invariance. This is clear, since the groups Ȟn+1(M) are extensions of the groups of

closed forms, which are not homotopy invariant.

As we have seen in section 5.2.1, the first few Cheeger-Simons groups have a

geometric interpretation. Indeed, for n = 0 we have shown that

Ȟ1(M) ' C∞(M, S1)

A Deligne class for H0(M; D0) is determined by an element

f ∈
∏

C∞(Uα0 ; U(1))

satisfying δf = 0, which implies that f is a globally defined function from M to U(1).

For n = 1, the group H1(M; D1) is given by isomorphism classes of line bundles with

connection. An element in H1(M; D1) can be represented as a pair

(ω1
0, ω

0
1)

satisying the equations

δω1
0 − d logω0

1 = 0

δω0
1 = 0

We can then see that ω1
0 gives local representatives {Aα} of a connection on the line

bundle with transition functions gαβ given by ω0
1. The representatives in the same

Deligne class differ by D-exact terms

(ω̃1
0, ω̃

0
1) = (ω1

0, ω
0
1) +Dξ0

0 = (ω1
0 + d logξ0

0 , ω
0
1 + δξ0

0)

which correspond to the gauge transformations

Ãα = Aα + d log fα

g̃αβ = f−1
β gαβfα

for some circle valued function fα. Notice that the gauge transformations above

correctly include a “change” in the transition functions of the line bundle.

The case n = 2 is in a sense the first interesting case for the application to abelian
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gauge theories of p-forms. Indeed, a Deligne class in H2(M; D2) can be represented

by a triple

(ω2
0, ω

1
1, ω

0
2)

satisfying the equations

δω2
0 − dω1

1 = 0

δω1
1 + d logω0

2 = 0

δω0
2 = 0

The triple (ω2
0, ω

1
1, ω

0
2) satisfies the equations (1.5.2)-(1.5.4) we used in section 1.5 to

define the B-field, apart from the fact that the functions ω0
2 are circle valued, rather

than real valued. This is due to the fact that Deligne classes in H2(M; D2) represent

gauge equivalence classes of B-fields with a Dirac quantization condition as dictated

by the group H3(M; Z). Having realized the B-field as a Deligne cochain, we also

have determined the correct notion of gauge transformation, which consists simply in

adding terms of the form Dα, with α = (α1
0, α

0
1).

Using the Deligne complex as a model for the groups Ȟn+1(M) clarifies the sense of

Definition 5.8, since, as we have shown above, the groups Hp(M; Dp) have a natural

description in terms of gauge equivalence classes of p-form gauge fields. From the

mathematical point of view, it is very natural to interpret the elements of Hp(M; Dp)

as higher circle bundles with connections [39]. In contrast to ordinary circle bun-

dles, these objects are not fiber bundles over a base, since there is no total space

which makes sense as a manifold. Neverthless, usual operations like pullback can be

performed. More importantly, a theory of integration can be constructed for such

objects, i.e one can define the notion of the holonomy of a Deligne class around a

suitable cycle. This is of major importance for physical applications, as the holonomy

usually describes the coupling term of the gauge field to the relative current. In String

theory, in particular, this is needed to make sense of the term∫
Σ

f ∗B

describing the coupling of a fundamental string with the B-field. In this sense, the

holonomy of a Deligne class ξ is exactly the differential character assigned to ξ by the

isomorphism in Theorem 5.9.

For more details on Deligne cohomology we refer the reader to [23, 27, 39].
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5.3 Ramond-Ramond fields and charge quantiza-

tion

As we have seen in the previous sections, differential cohomology, in the Cheeger-

Simons or the Deligne approach, represents a suitable formalism to describe fields in

generalized abelian gauge theories, and we have also seen how the formalism auto-

matically incorporates the Dirac quantization condition. It is natural then to try to

describe within this formalism the gauge theory of Ramond-Ramond fields. However,

because of the fact that D-branes, which are sources for Ramond-Ramond fields, have

charges taking values in K-theory, it turns out that Ramond-Ramond fields them-

selves, in the absence of branes, are classified by K-theory. In the following we will

present the main arguments developed in [74] which support this statement, and the

fact that the Dirac quantization condition for Ramond-Ramond fields should be ex-

pressed in a K-theoretic language. Some of the arguments we will present here are

of a heuristic nature, and should be understood as an educated guess for the use of

differential K-theory, which will be introduced in the next section.

Let us first consider the case of ordinary generalized electromagnetism on a d-dimensional

spacetime M = R×Y, where Y is noncompact. As discussed in section 2.5.1, in pres-

ence of a magnetic source jm we have the equation

dG = jm (5.3.1)

where the fieldstrength G is an n-form.

Recall that the (total) magnetic charge is given by the class [i∗t jm] ∈ Hn+1
cpt (Y; R).

However, to enforce equation (5.3.1), the class [i∗t jm] must be in the kernel of the

natural map

i : Hn+1
cpt (Y; R)→ Hn+1(Y; R)

which “forgets” the compact support condition. Let us define N as the boundary of

Y: the term boundary is used in a loose way, e.g. when Y = Rd−1, the boundary is

considered to be the sphere Sd−2 “at infinity”. We have then that

Hn+1
cpt (Y; R) ' Hn+1(Y,N; R)

By using the long exact cohomology sequence for the pair (Y,N) we have

· · · → Hn(Y; R)
j−→ Hn(N; R)→ Hn+1(Y,N; R)

i−→ Hn+1(Y; R)→ · · ·

where j is given by restriction. The sequence above can be “broken”, and we have

ker i ' Hn(N; R)/j(Hn(Y; R))
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The above isomorphism leads to the following interpretation: the total charge of the

source jm can be detected by classes of fields on the boundary N, i.e. at infinity, that

are not restrictions of fields defined on Y. Moreover, the group Hn(Y; R) classifies

field configurations G which do not contribute to the total charge. In other words, it

classifies gauge fields in the absence of sources.

The same reasoning can now be applied to type II String theory, where the sources

are classified by the integral K-theory group K(Y). Indeed, in type IIB String theory,

for D-branes with compact support in space, the brane charge can be realized as an

element in K0
cpt(Y). To ensure that the equations of motion for the Ramond-Ramond

field have a solution, the brane charge should take values in the kernel of the map

i : K0
cpt(Y)→ K0(Y)

As before, the long exact sequence

· · · → K−1(Y)
j−→ K−1(N)→ K0(Y,N)

i−→ K0(Y)→ · · ·

implies that

ker i ' K−1(N)/j(K−1(Y))

In analogy with the cohomological case, we can interpret the above isomorphism as

the fact that in type IIB, gauge equivalence classes of Ramond-Ramond fields in the

absence of D-branes are classified topologically by the group K−1(Y). By the same

argument, we find that in type IIA, Ramond-Ramond fields are topologically classified

by the group K0(Y).

Having extablished a relation between Ramond-Ramond fields and K-theory, we still

must determine the relation between Ramond-Ramond fields and cohomology. Indeed,

to be able to write equations of motion for such fields, we need to specify the de Rham

cohomology class associated to an element x ∈ K(Y) that determines (the class of) a

Ramond-Ramond fieldstrength G. Let us then first consider the type IIA case. Recall

that in type IIA the total Ramond-Ramond potential is of the form

C = C1 + C3 + · · ·

where Ci is a locally defined i-form on M = R × Y. Let us introduce a collection

of 8-branes and 8-branes with worldwolume p × Y, with p a point in R, and with

arbitrary Chan-Paton bundles (E,F) over Y. These D-branes are in a sense instantonic

configurations. The (electric) coupling term is given by∫
p×Y

C ∧ 1√
Â(TY)

(ch(E)− ch(F)) (5.3.2)
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where we have used

√
Â(TM) =

√
Â(TY). The Ramond-Ramond equations of mo-

tion can be formally written as

d ?G = δ(p)
1√

Â(TY)
(ch(E)− ch(F))

where δ(p) is a Dirac delta distribution supported on p × Y. By integrating both

sides, we have the relation

?GR − ?GL =
1√

Â(TY)
(ch(E)− ch(F)) (5.3.3)

where GR and GL denote the value of the field G on spatial slices on the “right”

and on the “left” of the D-brane, where the notion of left and right is given by the

orientation of M and Y. Now, by imposing the selfduality constraint on the total

Ramond-Ramond fieldstrength G, we have the following relation

GR −GL =
1√

Â(TY)
(ch(E)− ch(F)) (5.3.4)

Notice that this at best a heuristic conclusion, since requiring the Ramond-Ramond

field to be selfdual implies that the coupling (5.3.2) is not defined. Moreover, notice

that the right hand side of (5.3.3) and (5.3.4) are not selfdual, while the left hand

side is supposed to be. A way of circumnavigating the problem is to use selfduality

to eliminate half the fields in G. For G0,G2,G4 one would introduce the magnetic

coupling as arising from the equation

dG = δ(p)
1√

Â(TY)
(ch(E)− ch(F)) (5.3.5)

and introduce the magnetic coupling for G6,G8,G10 via the electric coupling (5.3.2)

[74].

Apart from these difficulties, equation (5.3.4) gives a good educated guess for the

cohomology class of a Ramond-Ramond field. Indeed, let b, a ∈ K0(Y) classify the

Ramond-Ramond field on the right and on the left of the collection of D-branes,

respectively. Then we have the following equation in de Rham cohomology

[GR(b)]− [GL(a)] =
[√

Â(TY)
]−1 ∪ [ch(x)] (5.3.6)

where x = [E] − [F]. Now, by considering the limit p → −∞, and requiring that for

a = 0, the associated de Rham cohomology class vanishes, equation (5.3.6) determines

the class of G on all of the spacetime M as

[G(x)] =
[√

Â(TY)
]−1 ∪ [ch(x)] (5.3.7)
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where we have used that the fact that the Chern character is an isomorphism over the

reals. In other words, in this particular configuration, the element x ∈ K0(Y) classifies

the class of Ramond-Ramond fields whose fieldstrength is a solution of the equation

(5.3.5). Morover, the fieldstrength form G associated to x must satisfy the condi-

tion (5.3.7). An analogous argument can be formulated for type IIB String theory,

by using the Chern character definition as in section 3.6.2. The condition (5.3.7) is

the Dirac quantization condition for Ramond-Ramond fieldstrengths in type II String

theory. It is a “quantization” condition since the Chern character

ch : K0,−1(Y)→ Hev,odd(Y; R)

maps the K-theory group to a lattice in real cohomology, since the group K0,−1(Y) is

a Z-module.

At this point, one assumes that the K-theoretical classification of Ramond-Ramond

fields in the absence of branes, and the condition (5.3.7), are valid for general space-

times M not of the form R× Y, and not only in the situation used to motivate it.

We are then left with the following mathematical problem: assign to any manifold

M abelian groups that can naturally be interpreted as classes of gauge inequivalent

fields carrying a topological charge with values in the group K0,−1(M), and such that

the associated fieldstrength satisfies the condition (5.3.7). We see that the differ-

ential cohomology defined in the previous section is not the suitable formalism to

solve this problem, since objects in Ȟp(M) or Hp(M; Dp) carry a topological charge in

integer cohomology. We then intuitively need a “generalized” version of differential

cohomology, which is the subject of the next section.

5.4 Generalized differential cohomology

As we have seen in the previous section, the K-theoretical description of Ramond-

Ramond fields requires a new framework which generalizes the differential cohomology

formalism. We need indeed a theory of some sort which is able to describe objects

with local degrees of freedom, and at same time takes into account global properties of

such objects. A hint on how to define such a theory is given by a closer inspection of

the Dirac quantization condition, as appeared in the examples before, along the lines

of the arguments proposed in [40, 41]. Essentially, given a gauge theory of fields Ǎ

with fieldstrength ω ∈ Ω∗(M), to impose a Dirac quantization condition is tantamount

to requiring that

[ω] ∈ Λ ⊂ H∗dR(M; R)
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where Λ is a lattice in H∗dR(M; R). For instance, in the case of ordinary electromag-

netism, the lattice ΛH is given by the image of the map

i : H∗(M; Z) ↪→ H∗dR(M; R)

while for Ramond-Ramond fields in type II String theory, the lattice ΛK is given by

the image of the map

ch : K0,1(M)→ Hev,odd
dR (M; R)

up to a “scale” factor.

Notice that both the above maps induce an isomorphism when tensored over the real

field. It is clear that the lattice Λ is greatly affected by the chosen (generalized)

cohomology theory which topologically classifies the fields in the given gauge theory,

and by the map realizing the free part of the relevant cohomology groups in real de

Rham cohomology. In general, as in the above cases, the choice of the cohomology

theory for the given gauge field is suggested by physical properties of the system. In

principle, though, there is no argument to exclude a given generalized cohomology

theory Γ∗. The above arguments suggest the following mathematical idea, which

constitute the starting point in [54] for the construction of generalized differential

cohomology theories. Let Γ∗ be an arbitrary multiplicative6 generalized cohomology

theory on the category of smooth manifolds. Denote with

π−∗Γ := Γ∗(pt)

the coefficient ring of the point. For example, for Γ∗ = H∗, we have

π−∗H = Z

while for Γ∗ = K∗ we have

π−∗K = Z[[u−1, u]]

where u−1 is an element of degree -2, and corresponds to the Bott generator. For any

generalized cohomology theory Γ∗ there exists a canonical map

ϕ : Γ∗(X)→ H(X; R⊗ π−∗Γ)∗

which induces an isomorphism when tensored over the reals for any topological space

X [54]. In the above expression, the grading on the cohomology groups is such that

H(X; R⊗ π−∗Γ)n :=
⊕
p+q=n

Hp(X; R⊗ π−qΓ)

6This condition can be relaxed.
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In the case Γ∗ = H∗, the map ϕ coincides with i, while for Γ∗ = K∗, the map ϕ is

given by the Chern character. Notice indeed that

H(X; R⊗ π−∗K)0 ' Hev(X; R), H(X; R⊗ π−∗K)1 ' Hodd(X; R)

We are then interested in assigning to any smooth manifold M an abelian group which

“completes the square”

? //

��

Ωcl(M; R⊗ π−∗Γ)∗

��
Γ∗(M)

ϕ // H(M; R⊗ π−∗Γ)∗

(5.4.1)

where the map

Ωcl(M; R⊗ π−∗Γ)∗ → H(M; R⊗ π−∗Γ)∗

is given by assigning to an element ω ∈ Ωcl(M; R⊗ π−∗Γ)∗ its de Rham class in

H(M; R⊗π−∗Γ)∗. A first guess to complete the square would be to consider the fibered

product of Γ∗(M) and Ωcl(M; R⊗ π−∗Γ)∗ over H(M; R⊗ π−∗Γ)∗, i.e. the group

A∗Γ := {(ω, u) ∈ Ωcl(M; R⊗ π−∗Γ)∗ × Γ∗(M) : [ω] = ϕ(u)}

However, we know that these groups, for each degree, are only a first approximation

to our desired generalized differential cohomology theory: indeed, we know that for

Γ∗ = H∗, the Cheeger-Simons groups are an extension of A∗Γ. In other words, by

considering only the fibered product we are losing information about the group of flat

and topologically trivial fields, which in general may be nonvanishing. Mathematically

this can be understood as follows: for the two cohomology classes [ω] and [v] to be

equal, the cocyle representatives must satisfy the equation

ω − δh = v

for some cycle h. The cycle h realizes the homotopy between the two representatives

ω and v, and the information about it is lost if we only consider cohomology classes.

In the case in which Γ∗ is obtained as the cohomology of a differential complex, the

square (5.4.1) could be completed by a homotopy refinement. The difficulty in doing

this is in the fact that the functor Ωcl(·; R ⊗ π−∗Γ)∗ is not a cohomology functor on

the category of manifolds. In the case in which Γ∗ = H∗ the problem can be solved by

regarding for each q ≥ 0 the space Ωq
cl(M; R) as the 0-th cohomology of the complex

Ωq(M; R)
d−→ Ωq+1(M; R)

d−→ · · · d−→ Ωn(M; R)→ 0
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where n = dim M. By using standard results, then, one can define for a given q the

complex [54]

Čp(q) :=

{
Cp(M; Z)× Cp−1(M; R)× Ωp(M; R) n ≥ q

Cp(M; Z)× Cp−1(M; R) n < q
(5.4.2)

with differential

d(c, h, ω) := (δc, ω − c− δh, dω)

and

d(c, h) :=

{
(δc,−c− δh, 0) n = q − 1

(δc,−c− δh) otherwise

Notice that a triple (c, h, ω) is a cocycle if it satisfies the equations

δc = 0

dω = 0

ω − c− δh = 0

(5.4.3)

The last of the above equations implies that [ω] = i([c]): this means that the coho-

mology groups

Ȟ(q)∗(M) := H∗(Č∗(q); d)

fit the square (5.4.1). The groups Ȟ(q)∗(M) are called the Cheeger-Simons cohomology

groups and as one can expect we have

Ȟ(q)p(M) ' Hp(M; Dq)

The fieldstrength map assigns to the class [(c, h, ω)] ∈ Ȟ(q)q(M) the closed form ω,

while the characteristic class map assigns the class [c]. Morever, the groups Ȟ(q)q(M)

satisfies the same exact sequences as the Cheeger-Simons groups.

Unfortunately, the approach followed in the above paragraph to construct the the-

ory completing the square (5.4.1) for ordinary cohomology cannot be used in general

for generalized cohomology theories as K-theory, since these are not obtained as the

cohomology of a certain differential complex. Neverthless, a homotopy refinement for

a given theory Γ can be obtained by substituting cocycles with maps to the classifying

space BΓ, and defining an analog of conditions (5.4.3). By using this strategy, Hopkins

and Singer showed in [54] that to any arbitrary generalized cohomology theory one

can assign a theory, that they call a generalized differential cohomology theory, which

fits the square (5.4.1) and satisfies analogous properties to the Cheeger-Simons or

Deligne cohomology groups. We will focus in the following on a particular definition
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of differential K-theory, which will be the basis in the following chapter for a suitable

generalization to the equivariant setting; we refer the reader to [54] for an extensive

and detailed introduction to this beautiful and exciting part of modern mathematics.

Let Fred denote the space of Fredholm operators on an infinite dimensional Hilbert

space: recall that Fred is a classifying space for the group K0(X) for a given topological

space, i.e.

K0(X) ' [X,Fred]

where the isomorphism above is given by considering the index bundle

[Ker Ff ]− [Coker Ff ] (5.4.4)

where
Ker Ff :=

⋃
x Ker f(x)

Coker Ff :=
⋃
x Coker f(x)

for a given map f : X → Fred. Of course, the expression (5.4.4) is naive, since the

dimension of Ker f(x) and Coker f(x) can change while x varies, and needs to be

stabilized, as shown in [4], for instance.

Let u denote a cocycle in

Z(Fred; R⊗ π−∗K)0 =
⊕
n

Z2n(Fred; R)

representing the universal Chern character, i.e. such that if f : X→ Fred classifies a

vector bundle E, f ∗u represents ch(E). For a manifold M, an element in the differential

K-theory group Ǩ0(M) is represented by a triple

(c, h, ω)

where c : M→ Fred, h ∈ Cev−1(M; R), and ω ∈ Ωev−1(M; R) such that

δh = ω − c∗u (5.4.5)

Moreover, the triples above defined must satisfy the following equivalence relation.

Two triples (c0, h0, ω0) and (c1, h1, ω1) are said to be equivalent if there exists a triple

(c, h, ω) on M× [0, 1], with ω constant along [0, 1], such that

(c, h, ω)|0 = (c0, h0, ω0)

(c, h, ω)|1 = (c1, h1, ω1)
(5.4.6)

Notice that equation (5.4.5) enforces the condition

[ω] = ch([c])
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The relations (5.4.6) can be rephrased [40] in a way that will be useful later on.

Indeed, two triple (c0, h0, ω0) and (c1, h1, ω1) are equivalent if there exists a map

f : M× [0, 1]→ Fred

and an element σ ∈ Ωev−2(M; R) such that

f |0 = c0

f |1 = c1

ω1 = ω0

h1 = h0 + π∗f
∗u+ dσ

where π : M × [0, 1] → M is the projection onto the first factor, and π∗ denotes

integration along the fibre, i.e. pairing with the fundamental class of [0, 1]. The last

of the above equations is obtained by imposing the condition (5.4.5).

To define the higher differential K-groups, recall that the iterated loop spaces ΩiFred

classify the functors K−i. Let u−i be the cocycle

u−i ∈ Z2n−i(ΩiFred; R)

defined as

u−i := Π∗ev
∗u

where

ev : Si × ΩiFred→ Fred

denotes the evaluation map, and Π∗ denotes the integration over the fiber of the

projection map Π : Si × ΩiFred→ ΩiFred. Hence, elements of the higher differential

groups Ǩ−i(M) are represented by triples

(c, h, ω)

where c : M→ ΩiFred, h ∈ Cev−i(M; R), and ω ∈ Ωev−i(M; R) such that

δh = ω − c∗u−i

and satisfying the equivalence relations (5.4.6).

The differential K-groups satisfy the following exact sequences

0→ K−i−1(M; R/Z)→ Ǩ−i(M)→ Ωev−i
K (M)→ 0

0→ Ωev−i−1(M)/Ωev−i−1
K (M)→ Ǩ−i(M)→ K−i(M)→ 0

0→ Hev−i−1(M)/ch(K−i−1(M))→ Ǩ−i(M)→ A−iK (M)→ 0

(5.4.7)
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where Ωev−i
K (M) denotes the elements in Ωev−i(M) whose cohomology class is in the

image of the Chern character. We will give a proof of the existence of the above exact

sequences in the context of equivariant K-theory in the next chapter. Finally, the

homotopy equivalence ΩnFred ' Ωn+2Fred induces Bott periodity on the differential

K-groups, and in particular it allows to define them for positive degrees as

Ǩn(M) := Ǩn−2N(M) n− 2N < 0

This definition of differential K-theory will be at the core of a generaliztion we will

propose in the next chapter. However, we should point out that there are different

models for differential K-theory, such as the one introduced in [26], where axioms for

generalized differential cohomology theories are given. We have seen that ordinary

differential cohomology admits different models, which lead to isomorphic theories,

characterized by the fact that they satisfy the same exact sequences. As shown in

[86], these exact sequences in a sense completely characterize ordinary differential

cohomology. As far as the author knows, a similar result does not exist for generalized

differential cohomology theories.
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Chapter 6

Ramond-Ramond fields and

Orbifold differential K-theory

As we have seen in the previous chapter, Ramond-Ramond fields in type II String

theory require the use of differential K-theory to be properly described. We have

also explained that this is due to the fact that the Dirac quantization condition for

Ramond-Ramond fieldstrength is dictated by K-theory, rather than integral cohomol-

ogy. Moreover, the lattice in which charges take their values has been suggested by

the form of the coupling between D-branes and Ramond-Ramond field.

In this chapter we will generalize the above arguments to the case of superstring

theory defined on an orbifold. To be precise, we will only consider the case of pre-

sentable orbifolds of the form [M/G], where M is a spin manifold, and G is a finite

group acting by spin structure preserving diffeomorphisms. In this case, as proposed

by Witten in [94], D-branes are classified by the equivariant K-theory of the “cover-

ing” space M. It is natural, then, to ask that the Dirac quantization condition for

the total fieldstrength of Ramond-Ramond fields on the orbifold [M/G] is given by a

Chern character homomorphism on the equivariant K-theory K∗G(M), which induces

an isomorphism when tensored over R. This is supported by the fact that we expect

to obtain type II String theory features when G = {e}. A Chern character with the

above properties has been constructed in [67], and makes use of Bredon cohomology,

an equivariant cohomology theory defined on the category of G-CW complexes. The

important feature of this equivariant cohomology theory is that it naturally takes into

account some important features of String theory on orbifolds, namely the presence of

twisted sectors. We then pass to propose a definition of differential K-theory suitable

for good orbifolds. Indeed, the existence theorem for generalized differential cohomol-

ogy theories developed in [54] cannot be applied to equivariant cohomology functors
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on the category of G-manifolds. More precisely, we define abelian groups that behave

as a natural generalization of the ordinary differential K-theory groups, in the sense

that they agree in the case of a trivial group and they satisfy analogous exact se-

quences. We will “test” our definition in the case of linear abelian orbifolds, and give

a proposal for the group of (equivalence classes of) flat fields. We will also make a

brief digression to describe D-branes using geometric equivariant K-homology, show-

ing that the use of K-cycle is well-suited to the description of fractional D-branes and

their topological charges computed using equivariant Dirac operator theory. By using

the Chern character, we will define electric Ramond-Ramond couplings to D-branes

on good orbifolds, and compare with previous examples in the literature. Finally, we

will support our definition of orbifold differential K-theory, or to be precise a com-

plex version of it, by generalizing Moore and Witten argument as introduced in the

previous chapter to the equivariant setting, and by expressing the Ramond-Ramond

equations of motion by writing an equivariant version of the Ramond-Ramond cur-

rent in term of the equivariant Chern character and an equivariant version of the

Riemann-Roch theorem.

6.1 G-CW complexes and equivariant cohomology

theories

In this section we will recall some basic notions about (generalized) equivariant coho-

mology theories. In the following, X denotes a topological space and G a finite group,

unless otherwise stated. In the following, a (left) action G×X→ X of G on X will be

denoted (g, x) 7→ g · x, and we will call X a G-space. The stabilizer or isotropy group

of a point x ∈ X is denoted Gx = {g ∈ G | g · x = x}. Recall that a continuous map

f : X→ Y of G-spaces is a G-map if f(g · x) = g · f(x) for all g ∈ G and x ∈ X.

Definition 6.1. A G-equivariant CW-decomposition of a G-space X consists of a

filtration Xn, n ∈ N0 such that

X =
⋃
n∈N0

Xn

and Xn is obtained from Xn−1 by “attaching” equivariant cells via the following pro-

cedure. Define

X0 =
∐
j∈J0

G/Kj ,

with Kj a collection of subgroups of G and the standard (left) G-action on any coset
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space G/Kj. For n ≥ 1 set

Xn =
(

Xn−1 q
∐
j∈Jn

(
Dn
j ×G/Kj

))/
∼ (6.1.1)

where the equivalence relation ∼ is generated by G-equivariant “attaching maps”

φnj : Sn−1
j ×G/Kj −→ Xn−1 . (6.1.2)

One requires that X carries the colimit topology with respect to (Xn), i.e., B ⊂ X

is closed if and only if B ∩ Xn is closed in Xn for all n ∈ N0. We call the image of

Dn
j × G/Kj (resp. D̊n

j × G/Kj) a closed (resp. open) n-cell of orbit type G/Kj. As

usual, we call the subspace Xn the n-skeleton of X. If X = Xn and X 6= Xn−1, then n

is called the (cellular) dimension of X and X is said to be of finite type. A G-space

with a G-equivariant CW-decomposition is called a G-complex.

When G = e is the trivial group, a G-complex is just an ordinary CW-complex.

In general, if X is a G-complex then the orbit space X/G is an ordinary CW-complex.

Conversely, there is an intimate relation between G-complexes and ordinary CW-

complexes whenever G is a discrete group. Let X be a G-space which is an ordinary

CW-complex. We say that G acts cellularly on X if

1) For each g ∈ G and each open cell E of X, the left translation g · E is again an

open cell of X; and

2) If g · E = E, then the induced map E→ E, x 7→ g · x is the identity.

Then we have the following [92]

Proposition 6.2. Let X be a CW-complex with a cellular action of a discrete group

G. Then X is a G-complex with n-skeleton Xn.

In the case that X is a smooth manifold, we require the G-action on X to be smooth

and there is an analogous result. Recall that the applicability of algebraic topology

to manifolds relies on the fact that any manifold comes equiped with a canonical

CW-decomposition. In the case in which a group acts on the manifold one has the

following result due to Illman [57, 57].

Theorem 6.3. If G is a compact Lie group or a finite group acting on a smooth

compact manifold X, then X is triangulable as a finite G-complex.
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The collection of G-complexes with G-maps as morphisms form a category. We

are interested in equivariant cohomology theories defined on this category (or on sub-

categories thereof).

We will now briefly spell out the main ingredients involved in building an equiv-

ariant cohomology theory on the category of finite G-complexes, leaving the details to

the comprehensive treatments of [92] and [66], and focusing instead on some explicit

examples. Fix a group G and a commutative ring R. A G-cohomology theory E∗G with

values in R-modules is a collection of contravariant functors En
G from the category of

G-CW pairs to the category of R-modules indexed by n ∈ Z together with natural

transformations

δnG(X,A) : En
G(X,A) −→ En+1

G (X) := En+1
G (X, ∅)

for all n ∈ Z satisfying the axioms of G-homotopy invariance, long exact sequence of

a pair, excision, and disjoint union. The theory is called ordinary if for any orbit G/H

one has Eq
G(G/H) = 0 for all q 6= 0. These axioms are formulated in an analogous way

to that of ordinary cohomology. The new ingredients in an equivariant cohomology

theory (which we have not yet defined) are the induction structures, which we shall

now describe.

Let α : H → G be a group homomorphism, and let X be an H-space. Define the

induction of X with respect to α to be the G-space indαX given by

indαX := G×α X .

This is the quotient of the product G×X by the H-action h · (g, x) := (g α(h−1), h ·x),

with the G-action on indαX given by g′ · [g, x] = [g′ g, x]. If H < G is a subgroup, and

α is the subgroup inclusion, the induced G-space is denoted G×H X.

An equivariant cohomology theory E∗(−) with values in R-modules consists of a

collection of G-cohomology theories E∗G with values in R-modules for each group G

such that for any group homomorphism α : H → G and any H-CW pair (X,A) with

ker(α) acting freely on X, there are for each n ∈ Z natural isomorphisms

indα : En
G

(
indα(X,A)

) ≈−→ En
H(X,A) (6.1.3)

satisfying

(a) Compatibility with the coboundary homomorphisms:

δnH ◦ indα = indα ◦ δnG ;
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(b) Functoriality: If β : G→ K is another group homomorphism such that ker(β◦α)

acts freely on X, then for every n ∈ Z one has

indβ◦α = indα ◦ indβ ◦ En
K(f1)

where

f1 : indβ
(
indα(X,A)

) ≈−→ indβ◦α(X,A)

(k, g, x) 7−→
(
k β(g) , x

)
is a K-homeomorphism and En

K(f1) is the morphism on K-cohomology induced

by f1; and

(c) Compatibility with conjugation: For g, g′ ∈ G define Adg(g
′ ) = g g′ g−1. Then

the homomorphism indAdg coincides with En
G(f2), where

f2 : (X,A)
≈−→ indAdg(X,A)

x 7−→
(
e , g−1 · x

)
is a G-homeomorphism, where throughout e denotes the identity element in the

group G.

Thus the induction structures connect the various G-cohomologies and keep track of

the equivariance. They will be very important in the construction of the equivari-

ant Chern character for equivariant K-theory in a later section, even if we are only

interested in a fixed group G.

Example 6.4 (Borel cohomology). Let H∗ be a cohomology theory for CW-pairs (for

example, singular cohomology). Define

Hn
G(X, A) := Hn

(
EG×G (X, A)

)
where EG is the total space of the classifying principal G-bundle EG→ BG which is

contractible and carries a free G-action. This is called (equivariant) Borel cohomol-

ogy, and is the most commonly used form of equivariant cohomology in the physics

literature. Note that H∗G is well-defined because the quotient EG ×G X is unique up

to the homotopy type of X/G. The ordinary G-cohomology structures on H∗G are

inherited from the cohomology structures on H∗. The induction structures for H∗G are

constructed as follows. Let α : H→ G be a group homomorphism and X an H-space.

Define

b : EH×H X −→ EG×G G×α X

(ε, x) 7−→
(
Eα(ε) , e , x

)
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where ε ∈ EH, x ∈ X and Eα : EH → EG is the α-equivariant map induced by α.

The induction map indα is then given by pullback

indα := b∗ : Hn
G(indαX) = Hn(EG×G G×α X) −→ Hn(EH×H X) = Hn

H(X) .

If ker(α) acts freely on X, then the map b is a homotopy equivalence and hence the

map indα is an isomorphism.

Example 6.5 (Equivariant K-theory). In [82], equivariant topological K-theory is de-

fined for any G-complex X as the abelian group completion of the semigroup VectC
G(X)

of complex G-vector bundles over X, with G a compact Lie group. Recall that for

a G-space X, a complex G-vector bundle is given by a G-space E, and a G-map

π : E → X such that E is the total space of a complex vector bundle, and such

that for any g ∈ G and any x ∈ X, the map g : Ex → Egx is an homomorphism.

The compactness property of G assures that the Grothendieck functor K∗G satisfies

the G-homotopy invariance1. The higher groups are defined via iterated suspension,

similarly to ordinary K-theory, and Bott periodicity holds.

To define the induction structures, recall that if X is an H-space and α : H→ G is a

group homomorphism, then the map

ϕ : X −→ G×α X

x 7−→ (e, x)

is an α-equivariant map which embeds X as the subspace H ×α X of G ×α X, and

which induces via pullback of vector bundles the homomorphism

ϕ∗ : K∗G(G×α X) −→ K∗H(X) .

This map defines the induction structure. It is invertible when ker(α) acts freely on

X, with inverse the “extension” map E 7→ G×H E for any H-vector bundle E over X.

This can be proven by using the following [82]

Theorem 6.6. Let G be a compact group, and let N be a normal subgroup acting

freely on X. Then

pr∗ : K∗G/N(X/N)
'−→ K∗G(X) (6.1.4)

where pr : X→ X/N is the usual projection.

1This is due to the fact that pullbacks of a G-bundle via G-homotopic maps are isomorphic only

if G is compact.
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By noticing that

X/N ' (G/N)×G X

and if we define denote with N the kernel of α : H→ G, then

K∗G
(
G×α X

)
' K∗H/N

(
(H/N)×α X

)
' K∗H/N(X/N) ' K∗H(X)

since N acts freely on X by hypothesis.

In the case in which X = pt, a G-vector bundle is just a G-module, hence we have

K0
G(pt) ' R(G), K−1

G (pt) ' 0 (6.1.5)

where R(G) is the respresentation ring of G, i.e. the ring generated over Z by the

irreducible representations of G.

We can use the above results to show that

K0
G(G/H) ' K0

G(G×H pt) ' K0
H(pt) ' R(H), K−1

G (G/H) ' 0

for H < G.

In the case in which the group G acts freely on the space X, theorem 6.6 implies

K∗(X/G)'K∗G(X)

On the other extreme, when G acts trivially on X, the following isomorphism holds

[82]

K∗G(X) ' K∗(X)⊗ R(G) (6.1.6)

6.2 The equivariant Chern character

As we mentioned in the beginning of this chapter, we expect that the Dirac quan-

tization condition for the total Ramond-Ramond fieldstrength on a good orbifold is

dictated by some homomorphism on equivariant K-theory which is a generalization

of the ordinary Chern character. One might naively think that the correct target

theory for the equivariant Chern character would naturally be Borel cohomology, as

defined in example 6.4, with real coefficients. This is not the case, as emphasised in

particular by a completion theorem of Atiyah and Segal, which we briefly summarize.

Any conjugacy classes of an element γ ∈ G induces a homomorphism

νγ : R(G)→ C

given by νγ(ρ) := χρ(γ), where χρ is the character associated to the representation

ρ, which is constant on conjugacy classes. The kernel of such a homomorphism is a
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prime ideal2 in the ring R(G). Let us denote with IG the prime ideal associated to

element e ∈ G. Then we have [8]

Theorem 6.7. For a G-space X, with G a compact Lie group, the Borel cohomology

H∗G(X; Q) is isomorphic to the completion of the R(G)-module K∗G(X)⊗Q with respect

to the ideal IG.

The completion of K∗G(X; Q) := K∗G(X) ⊗ Q is defined as the tensor product

K∗G(X; Q)⊗R(G)R̂(G), where R̂(G) is given by the limit of the quotients R(G)/InG ·R(G)

for n going to infinity.

The above theorem suggests then that Borel cohomology is not the correct target

theory for a Chern character inducing an isomorphism over R. If we think of R(G)

as the ring of functions over G, the prime ideal IG corresponds to the unit element

in G. Theorem 6.7 then states that Borel cohomology does not take into account

“contributions” of the non-trivial elements in G, and hence, in a sense, it is localised

around the unit element.

There are several approaches to the equivariant Chern character (see refs. [9, 87, 19,

43, 1], for example) which strongly depend on the types of groups involved (discrete,

continuous, etc.) and on the ring one tensors with (R, C, etc.). As we are interested

in finite groups and real coefficients, we will use the Chern character constructed in

[66] and [67].

In the following section we will briefly recall the basic constructions in Bredon coho-

mology [22, 66, 73], which will turn out to be the best suited equivariant cohomology

theory for all of our purposes. We will refer to Appendix A for some pertinent aspects

of functor categories.

6.2.1 Bredon cohomology

In the following, G will denote a discrete group. The orbit category Or(G) of G is

defined as the category whose objects are homogeneous spaces G/H, with H < G,

and whose morphisms are G-maps between them. From general considerations [92] it

follows that a G-map between two homogeneous spaces G/H and G/K exists if and

only if H is conjugate to a subgroup of K, and hence any such map is of the form(
gH 7−→ g aK

)
(6.2.1)

2A prime ideal P in a commutative ring R is an ideal such that whenever the product ab of two

elements in R lies in P, then a or b lies in P.
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for some a ∈ G such that a−1 H a < K. If F is any family of subgroups of G then there

is a subcategory Or(G,F) with objects G/H for H ∈ F. A simple example is provided

by the cyclic groups G = Zp with p prime, for which the orbit category has just two

objects, G/e = G and G/G = pt.

If Ab denotes the category of abelian groups, then a coefficient system is a functor

F : Or(G)op −→ Ab

where Or(G)op denotes the opposite category to Or(G). With such a functor and any

G-complex X,3 one can define for each n ∈ Z the group

Cn
G(X, F ) := HomOr(G)

(
C n(X) , F

)
(6.2.2)

where C n(X) : Or(G)op → Ab is the projective functor defined by

C n(X)(G/H) := Cn
(
XH
)
,

the cellular homology of the fixed point complex

XH :=
{
x ∈ X

∣∣ h · x = x ∀h ∈ H
}
. (6.2.3)

In equation (6.2.2), HomOr(G)(−,−) denotes the group of natural transformations

between two contravariant functors, with the group structure inherited by the images

of the functors in Ab. The functoriality property of C n(X) is the natural one induced

by the identification XH ' MapG(G/H,X). Indeed, the two maps

XH −→ MapG(G/H,X) , x 7−→ fx
(
[gH]

)
= g · x ,

MapG(G/H,X) −→ XH , f 7−→ f(H)

are easily seen to be inverse to each other, and the desired homeomorphism is obtained

by giving the space MapG(G/H,X) the compact-open topology. In particular, a G-map

(6.2.1) induces a cellular map XK → XH, x 7→ a · x.

These groups can be expressed in terms of the G-complex structure of X. If the

n-skeleton Xn is obtained by attaching equivariant cells as in equation (6.1.1) with

Kj the stabilizer of an n-cell of X, then the cellular chain complex C∗(X) consists of

G-modules Cn(X) =
⊕

j∈Jn Z[G/Kj] and hence

C n(X)(G/H) '
⊕
j∈Jn

Z
[
MorOr(G)(G/H,G/Kj)

]
.

3When G is an infinite discrete group, one should restrict to proper G-complexes, i.e., with finite

stabilizer for any point of X. Some further minor assumptions are needed when G is a Lie group.
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For each n ≥ 0, the group Cn
G(X , F ) is the direct limit functor over all n-cells of orbit

type G/Kj in X of the groups F (G/Kj). This follows by restricting equation (6.2.2)

to the full subcategory Or(G,F(X)), with F(X) the family of subgroups of G which

occur as stabilizers of the G-action on X [73].

The Z-graded group C∗G(X, F ) =
⊕

n∈Z C
n
G(X, F ) inherits a coboundary operator

δ, and hence the structure of a cochain complex, from the boundary operator on

cellular chains. To a natural transformation f : C n(X) → F , one associates the

natural transformation δf defined by

δf(G/H) : Cn
(
XH
)
−→ F (G/H)

σ 7−→ f(G/H)(∂σ)

for σ ∈ Cn−1(XH), with naturality induced from that of the cellular boundary operator

∂. Then the Bredon cohomology of X with coefficient system F is defined as

H∗G(X; F ) := H
(
C∗G(X, F ) , δ

)
.

This defines a G-cohomology theory. See [65] for the proof that H∗G(X; F ) is an

equivariant cohomology theory, i.e., for the definition of the induction structure. One

can also define cohomology groups by restricting the functors in equation (6.2.2) to

a subcategory Or(G,F). The definition of Bredon cohomology is independent of F as

long as F contains the family F(X) of stabilizers [73]. This fact is useful in explicit

calculations. In particular, by taking F = H to consist of a single subgroup, one shows

that the Bredon cohomology of G-homogeneous spaces is given by

H∗G(G/H; F ) = H0
G(G/H; F ) = F (G/H) . (6.2.4)

Example 6.8 (Trivial group). When G = e is the trivial group, i.e., in the non-

equivariant case, the functors C n(X) and F can be identified with the abelian groups

Cn(X) = C n(X)(e) and F = F (e). Then

Cn
e (X,F) = Cn(X,F)

and one has Hn
e (X; F ) = H (Cn(X,F), δ), i.e., the ordinary n-th cohomology group of

X with coefficients in F.

Example 6.9 (Free action). If the G-action on X is free, then all stabilizers Kj are

trivial and XH = ∅ for every H ≤ G, H 6= e. In this case one may take F = e to

compute the cochain complex

C∗G(X, F ) ' HomG

(
C∗(X) , F (G/e)

)
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and so the Bredon cohomology H∗G(X; F ) coincides with the equivariant cohomology

H∗G
(
X ; F (G/e)

)
of X with coefficients in the G-module F (G/e) = F (G). In the case of the constant

functor F = Z, with Z (G/H) = Z for every H ≤ G and the value on morphisms in

Or(G)op given by the identity homomorphism of Z, this group reduces to the ordinary

cohomology H∗(X/G; Z).

Example 6.10 (Trivial action). If the G-action on X is trivial, then the collection of

isotropy groups Kj for the G-action is the set of all subgroups of G and XH = X for

all H ≤ G. In this case the functor C n(X) can be decomposed into a sum over n-cells

of projective functors P Kj with Kj = G [73], and so one has

HomOr(G)

(
C n(X) , F

)
' Hom

(
Cn(X) , lim

←− Or(G)op F (G/H)
)

where the inverse limit functor is taken over the opposite category Or(G)op. It follows

that the Bredon cohomology

H∗G(X; F ) = H∗
(
X ; F (G/G)

)
is the ordinary cohomology of X with coefficients in the abelian group F (G/G) =

F (pt).

We will now specialize the coefficient system for Bredon cohomology to the repre-

sentation ring functor R(−) defined on the orbit category Or(G) by sending the left

coset G/H to R(H), the representation ring of the group H. A morphism (6.2.1) is

sent to the homomorphism R(K)→ R(H) given by first restricting the representation

from K to the subgroup conjugate to H, and then conjugating by a. Since R(−) is a

functor to rings, the Bredon cohomology H∗G(X; R(−)) naturally has a ring structure.

By equation (6.2.4), we have

H∗G(G/H; R(−) ) = R(G/H) = R(H) = K∗G(G/H)

which is already an indication that Bredon cohomology is a better relative of equiv-

ariant K-theory than Borel cohomology. Indeed, using the induction structure of

Example 6.4 one shows that the Borel cohomology

H∗G(G/H) = H∗(BH)

coincides with the cohomology of the classifying space BH = EH/H, which computes

the group cohomology of H and is typically infinite-dimensional (even for finite groups

H).
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In the construction of the equivariant Chern character in the next section, it will be

important to represent the rational Bredon cohomology H∗G(X; Q⊗R(−)) as a certain

group of homomorphisms of functors, similarly to the cochain groups (6.2.2). For this,

we introduce another category Sub(G). The objects of Sub(G) are the subgroups of

G,4 and the morphisms are given by

MorSub(H,K) :=
{
f : H→ K

∣∣ ∃ g ∈ G , gH g−1 ≤ K , f = Adg
} /

Inn(K) .

In particular, there is a functor Or(G) → Sub(G) which sends the object G/H to H

and the morphism (6.2.1) in Or(G) to the homomorphism (g 7→ a−1 g a) in Sub(G).

If a lies in the centralizer

ZG(H) :=
{
g ∈ G

∣∣ g−1h g = h,∀ h ∈ H
}

(6.2.5)

of H in G, then the morphism (6.2.1) is sent to the identity map. Any functor

F : Sub(G)op → Ab can be naturally regarded as a functor on Or(G)op.

Define the quotient functors C qt
∗ (X) , H qt

∗ (X) : Sub(G)op → Ab by

C qt
∗ (X)(H) := C∗

(
XH/ZG(H)

)
and H qt

∗ (X)(H) := H∗
(
XH/ZG(H)

)
.

For any functor F : Sub(G)op → Ab one has

Hom
(
C∗(X

H/ZG(H)) , F (H)
)
' HomZG(H)

(
C∗(X

H) , F (H)
)
.

By observing that the centralizer (6.2.5) is precisely the group of automorphisms of

G/H in the orbit category Or(G) sent to the identity map in the subgroup category

Sub(G), we finally have

C∗G(X, F ) = HomOr(G)

(
C ∗(X) , F

)
' HomSub(G)

(
C qt
∗ (X) , F

)
. (6.2.6)

At this point one can apply equation (6.2.6) to the rational representation ring func-

tor F = Q ⊗ R(−), which by construction can be regarded as an injective functor

Sub(G)op → Ab, to prove the

Lemma 6.11 ([67]). For any finite group G and any G-complex X, there exists an

isomorphism of rings

ΦX : H∗G
(
X ; Q⊗ R(−)

) ≈−→ HomSub(G)

(
H qt
∗ (X) , Q⊗ R(−)

)
.

4If G is infinite then one should restrict to finite subgroups of G.
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6.2.2 Chern character in equivariant K-theory

Before spelling out the definition of the equivariant Chern character given in [67], we

recall some basic properties of the equivariant K-theory of a G-complex X. Let H be

a subgroup of G, and consider the fixed point subspace of X defined in (6.2.3). The

action of G does not preserve XH, but the action of the normalizer NG(H) of H in G

does. If we denote with i : XH ↪→ X the inclusion of XH as a subspace of X, and with

α : NG(H) ↪→ G the inclusion of NG(H) as a subgroup of G, then we naturally have

the equality

i(n · x) = α(n) · i(x)

for all n ∈ NG(H) and x ∈ XH. It follows that the induced homomorphism on equiv-

ariant K-theory is a map [82]

i∗ : K∗G(X) −→ K∗NG(H)

(
XH
)

which is called a restriction morphism.

We also need a somewhat less known property [67]. Let N < G be a finite normal

subgroup, and let Rep(N) be the category of (isomorphism classes of) irreducible

complex representations of N. Let X be a (proper) G/N-complex, and let G act on

X via the projection map G→ G/N. Then for any complex G-vector bundle E→ X

and any representation V ∈ Rep(N), define HomN(V,E) as the vector bundle over X

with total space

HomN(V,E) :=
⋃
x∈X

HomN(V,Ex)

where N acts on the fibres of E because of the action of G via the projection map.

Now if H ≤ G is a subgroup which commutes with N, [H,N] = e, then one can induce

an H-vector bundle from HomN(V,E) by defining (h · f)(v) = h · f(v), v ∈ V for any

h ∈ H and any f ∈ HomN(V,E) (remembering that G acts on E). Hence there is a

homomorphism of rings

Ψ : K∗G(X) −→ K∗H(X)⊗ R(N)

defined on G-vector bundles by

Ψ
(
[E]
)

:=
∑

V∈Rep(N)

[
HomN(V,E)

]
⊗ [V] . (6.2.7)

This homomorphism satisfies some naturality properties; see [67]. Note that the sum

(6.2.7) is finite, since N is a finite subgroup.
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We are now ready to construct the equivariant Chern character as a homomor-

phism

chX : K0,1
G (X) −→ Heven,odd

G

(
X ; Q⊗ R(−)

)
for any finite proper G-complex X. The strategy used in [67] is to construct Z2-graded

homomorphisms

chH
X : K∗G(X) −→ Hom

(
H∗(X

H/ZG(H)) , Q⊗ R(H)
)

(6.2.8)

for any finite subgroup H, and then glue them together as H varies through the finite

subgroups of G. To define the homomorphism (6.2.8), we first compose the ring

homomorphisms

K∗G(X)
i∗−→ K∗NG(H)

(
XH
) Ψ−→ K∗ZG(H)

(
XH
)
⊗ R(H)

π∗2⊗id
−−−→ K∗ZG(H)

(
EG× XH

)
⊗ R(H)

where π2 : EG × XH → XH is the projection onto the second factor. By using the

induction structure of Example 6.5, one then has

K∗ZG(H)

(
EG× XH

)
⊗ R(H)

≈−→ K∗
(
EG×ZG(H) XH

)
⊗ R(H)

ch⊗id−−−→ H∗
(
EG×ZG(H) XH ; Q

)
⊗ R(H)

where ch is the ordinary Chern character. One finally has

H∗
(
EG×ZG(H) XH ; Q

)
⊗ R(H)

≈−→ H∗
(
XH/ZG(H) ; Q

)
⊗ R(H)

' Hom
(
H∗(X

H/ZG(H)) , Q⊗ R(H)
)
,

where the first isomorphism follows from the Leray spectral sequence by observing

that the fibres of the projection

EG×ZG(H) XH −→ XH
/
ZG(H)

are all classifying spaces of finite groups, having trival reduced cohomology with Q-

coefficients and are therefore Q-acyclic.

The equivariant Chern character is now defined as5

chX =
⊕
H≤G

chH
X . (6.2.9)

By using the various naturality properties of the homomorphism (6.2.7) [67], one sees

that chX takes values in HomSub(G)

(
H qt
∗ (X) , Q⊗R(−)

)
, and by Lemma 6.11 it is thus

a Z2-graded map

chX : K∗G(X) −→ HomSub(G)

(
H qt
∗ (X) , Q⊗ R(−)

)
' H∗G

(
X ; Q⊗ R(−)

)
.

5If G is infinite then the direct sum in equation (6.2.9) is understood as the inverse limit functor

over the dual subgroup category Sub(G)op.
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This map is well-defined as a ring homomorphism because all maps involved above

are homomorphisms of rings. As with the definition of Bredon cohomology, the sum

(6.2.9) may be restricted to any family of subgroups of G containing the set of stabi-

lizers F(X).

To conclude, we have to prove that this map becomes an isomorphism upon ten-

soring over Q. For this, one proves that the morphism chX in equation (6.2.9) is

an isomorphism on homogeneous spaces G/H, with H a finite subgroup of G, and

then uses induction on the number of orbit types of cells in X along with the Mayer-

Vietoris sequences for the pushout squares induced by the attaching G-maps (6.1.2).

The isomorphism on G/H is a consequence of the isomorphisms (6.2.4) and (6.1.5).

The details may be found in [67]. Let π−∗K G(−) be the functor on Or(G) defined by

G/H 7→ K∗G(G/H). Then one has the following

Theorem 6.12. ([67]) For any finite proper G-complex X, the Chern character chX

extends to a natural Z-graded isomorphism of rings

chX ⊗Q : K∗G(X)⊗Q ≈−→ HG

(
X ; Q⊗ π−∗K G(−)

)∗
.

6.3 String theory on orbifolds

The techniques of equivariant cohomology and K-theory illustrated in the previous

section play an important role in understanding the behaviour of String theory defined

on orbifolds. As mentioned in the introduction to this chapter, we will be interested

in good orbifolds, which are obtained as the orbit space of the action of a finite group

G on a smooth manifold X. In particular, the action of G will be isometric, proper,

and cocompact6. It is know that when G acts on X with nontrivial stabilizers, the

orbit space X/G cannot be given a differential structure such that the usual projection

π : X → X/G is a smooth map. In the case in which all the stabilizers are trivial,

i.e. the group G acts freely, the orbit space naturally carries a manifold structure.

We will not attempt to give a definition of nonglobal orbifolds, since we will work

in the equivariant “regime”. We direct instead the reader to the seminal paper [81]

for a local description of orbifolds, and to [68] for a modern description in terms of

groupoids.

The quantum behaviour of String theory on an orbifold [X/G] is different from that of

6An action of a group G on a space X is said to be cocompact if the orbit space X/G is compact
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a quantum particle, as first realized in [35, 36]. Indeed, suppose that G acts freely on

X. To describe the quantum mechanics of a point particle propagating on the smooth

manifold X/G, one could think of first contructing the Hilbert space of states for a

particle on the manifold X, and then restrict to the Hilbert subspace of G invariant

states7. Following the same logic, the first step to the quantum string propagation on

X/G consists in constructing the Hilbert space H0 for a string propagating on X, and

restrict to the G-invariant states. In contrast to the particle case, this is not yet a

complete Hilbert space of states. Indeed, H0 does not contain states of strings which

are closed on the quotient manifold X/G, but are only modulo a G transformation.

More precisely, consider an embedding f : [0, 1]×R→ X of the worldsheet strip, with

local coordinates (σ, τ) ∈ [0, 1]× R. The open strings obeying

f(σ + 2π, τ) = h · f(σ, τ) (6.3.1)

for some h ∈ G are closed on the quotient X/G, since the point x and h · x are

identified8. Hence, the Hilbert space H for a quantum closed string propagating on

X/G is given by

H :=

(⊕
h∈G

Hh

)G

(6.3.2)

where the sector Hh is given by the space of states of an open string satisfying con-

dition (6.3.1).

At this point, notice that the action of G permutes the sectors in the conjugacy classes

of the associated element h. Indeed, for any f satisfying condition (6.3.1), for any

g ∈ G we have

g · f(σ + 2π, τ) = gh · f(σ, τ) = (ghg−1)g · f(σ, τ) (6.3.3)

We can then define

H[h] :=
⊕
l∈[h]

Hl =

nh⊕
i=1

Hpihp
−1
i

where nh is the number of element in the conjugacy class [h], and {pi} is an appropriate

set of elements of G. Any element ξ[h] can be expressed as

ξ[h] = (ξh, ξp1hp−1
1
, · · · )

7A choice of a “lift” of the action of G on the internal degrees of freedom, should be made,

if possible. In other words, the vector bundle whose the wave function is a section of must be

G-equivariant.
8In superstring theory X is a G − spinc manifold, and an analogous condition to (6.3.1) should

be imposed on the worldsheet fermion fields.
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and clearly the action of G preserves the vector space H[h]. Since we are interested in

G-invariant states, we have only to consider the action of elements g ∈ ZG(h), since

these are the only elements of G which do not permute the sectors. More precisely, if

we define the action of g ∈ ZG(h) on H[h] as

g · ξ[h] := (gξh, p1gp
−1
1 ξp1hp−1

1
, · · · )

we have

H '
⊕
[h]

H
ZG(h)
[h]

The subspaces H[h] associated to a nontrivial conjugacy class are called twisted sectors.

The above construction of the Hilbert space of closed strings also ensures that the

theory is modular invariant [35, 36]. One expects that these twistor sectors will appear

also in the case of a G-action with fixed points, and that the Hilbert space of states can

be constructed as above. Moreover, in contrast with ordinary quantum field theory,

String theory is usually well defined on the singular orbifold points.

As it is expected, the twisted sectors will play a role in the behaviour of the low-energy

limit of type II orbifold String theory and of D-branes. This will be illustrated in the

following sections.

We conclude this section with a basic result that will be constantly used later on.

Theorem 6.13. Let G be a finite group acting via isometries on a smooth Riemannian

manifold X. Then the set

Xg := {x ∈ X : g · x = x}

is naturally a (possibly disconnected) submanifold of X, for any g ∈ G.

Proof. Let x̄ be a fixed point for the action of g. The pushforward g∗ acts linearly

on the vector space Tx̄X: denote with K ⊂ Tx̄X the space which is left fixed by g∗.

Then the exponential map exp : Tx̄X→ X maps diffeomorphically the subspace K on

the fixed points of g, since g acts by isometries, and hence we can use this coordinate

system to define local charts for Xg.

6.3.1 D-branes and equivariant K-cycles

In this section we will make some remarks concerning the topological classification

of D-branes and their charges on global orbifolds of Type II superstring theory with

vanishing H-flux. As proposed by Witten in [94] and emphasised in [75, 46], Ramond-

Ramond charges in type II String theory on a global orbifold [X/G] are classified by
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the equivariant K-theory K∗G(X) of spacetime. The arguments are essentially the same

as those presented in chapter 3, hence we will avoid their restatement. Instead, we will

show how equivariant K-homology KG
∗ (X), dual to equivariant K-theory, leads to a

description of fractional D-branes in terms of equivariant K-cycles. In the following we

will refer to Appendix D for the definition of equivariant K-homology, both geometric

and equivariant.

Similarly to K-homology, the cycles for equivariant K-homology, called G-equivariant

K-cycles, live in an additive category DG(X) whose objects are triples (W,E, f) where

W is a G-spinc manifold without boundary, E is a G-vector bundle over W, and

f : W −→ X (6.3.4)

is a G-map. The group KG
∗ (X) is the quotient of this category by the equivalence

relation generated by bordism, direct sum, and vector bundle modification, as detailed

in Appendix B. Note that W need not be a submanifold of spacetime. However,

since X is a manifold, we can restrict the bordism equivalence relation to differential

bordism and assume that the map (6.3.4) is a differentiable G-map in equivariant

K-cycles (W,E, f) ∈ DG(X). In this way the category DG(X) extends the standard

K-theory classification to include branes supported on non-representable cycles in

spacetime. This definition of equivariant K-homology thus gives a concrete geometric

model for the topological classification of D-branes (W,E, f) in a global orbifold [X/G]

which captures the physical constructions of orbifold D-branes as G-invariant states of

branes on the covering space X. In the subsequent sections we will study the pairing

of Ramond-Ramond fields with these D-branes.

Consider a D-brane localized on the submanifold Xg of the covering space X. Since

the Chan-Paton bundle E is G-equivariant, the fiber of the restriction E to Xg at each

point carries a representation of the cyclic group < g >. In this case the D-brane

is said to be fractional. Fractional D-branes are stuck at the fixed points and they

couple to Ramond-Ramond fields coming for the twisted sector labelled by [g]. The

term fractional is used since fractional D-branes, in the simple examples known, carry

a fraction of the corresponding Ramond-Ramond charge.

We can use equivariant K-homology to geometrically describe a particular class of

fractional D-branes. Indeed, let G∨ denote the set of conjugacy classes [g] of elements

g ∈ G. There is a natural subcategory DG
frac(X) of DG(X) consisting of triples (W,E, f)

for which W is a G-fixed space, i.e., for which

Wg = W (6.3.5)
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for all g ∈ G. By G-equivariance this implies f(W)g = f(W) for all g ∈ G, and so

the image of the brane worldvolume lies in the subspace

f(W) ⊂
⋂
g∈G

Xg .

This is the set of G-fixed points of X, and so the objects (W,E, f) of the category

DG
frac(X) can naturally be intepreted in terms of fractional branes. More precisely, we

call DG
frac(X) the category of “maximally fractional D-branes”.

In this case, an application of Schur’s lemma shows that the Chan-Paton bundle

admits an isotopical decomposition and there is a canonical isomorphism of G-bundles

E '
⊕

[g]∈G∨

E[g] ⊗ 11[g] with E[g] = HomG

(
11[g] , E

)
, (6.3.6)

where E[g] is a complex vector bundle with trivial G-action and 11[g] is the G-bundle

W × V[g] with γ : G→ End(V[g]) the irreducible representation corresponding to the

conjugacy class [g] ∈ G∨.

From the direct sum relation in equivariant K-homology it follows that a fractional D-

brane, represented by a K-cycle (W,E, f) in DG
frac(X), splits into a sum over irreducible

fractional branes represented by the K-cycles (W,E[g] ⊗ 11[g], f), [g] ∈ G∨, which can

then be considered stable.

We then propose that in the framework of equivariant K-homology, the topological

charge of a fractional D-brane, in a given closed string twisted sector of the orbifold

String theory on a G-spinc manifold X, can be computed by using the equivariant

Dirac operator theory introduced in Appendix D. The equivariant index of the G-

invariant spinc Dirac operator D/ X
E coupled to a G-vector bundle E→ X takes values

in K∗G(pt) ' R(G). We can turn this into a homomorphism on KG
∗ (X) with values in

Z by composing with the projection R(G) → Z defined by taking the multiplicity of

a given representation

γ : G −→ End(Vγ) (6.3.7)

of G on a finite-dimensional complex vector space Vγ. There is a corresponding class

in the KK-theory group

[γ] ∈ KK∗
(
C[G] , End(Vγ)

)
which is represented by the Kasparov module (Vγ, γ, 0) associated with the extension

of the representation (6.3.7) to a complex representation of group ring C[G]. By

Morita invariance, the Kasparov product with [γ] is the homomorphism on K-theory

K0

(
C[G]

)
−→ K0

(
End(Vγ)

)
' K0(C) ' Z
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induced by γ : C[G]→ End(Vγ) [25]. We may then define a homomorphism

µγ : KG
0 (X) −→ Z

of abelian groups by

µγ
(
[W,E, f ]

)
= Indexγ

(
f∗[D/

W
E ]
)

:= ass
(
f∗[D/

W
E ]
)
⊗C[G] [γ] (6.3.8)

on equivariant K-cycles (W,E, f) ∈ DG(X) (and extended linearly), where

ass : KG
∗ (X) −→ K∗

(
C[G]

)
is the analytic assembly map mentioned in Appendix D. We then naturally interpret

6.3.8 as the topological charge of the D-brane represented by (W,E, f). Notice that

for G = e, (6.3.8) reduces to the ordinary expression for the charge of a D-brane.

We may now consider a simple class of examples. Let V be a complex vector

space of dimension dimC(V) = d ≥ 1, and let G be a finite subgroup of SL(V). Our

spacetime X is the G-space identified with the product

X = Rp,1 × V ,

where G acts trivially on the Minkowski space Rp,1, and p is odd. We will consider

fractional D-branes with worldvolume Rp,1 ↪→ Rp,1 × v, where v ∈ V is a fixed vector

under the linear action of G. In analogy with the nonequivariant case, the group

of charge of these fractional D-branes is given by the compact support equivariant

K-theory of the normal bundle, which in this case is given by [8]

K∗G,cpt(V) ' K∗G(pt) ' R(G) = Z|G∨| .

since V is G-contractible.

The same result can be obtained by considering the equivariant K-theory of the world

volume Rp,1, which is G-contactible. It follows that the fractional D-branes, as defined

by elements of equivariant K-theory, can be identified with representations of the

orbifold group

γ =

|G∨|⊕
a=1

Na γa

consisting of Na ≥ 0 copies of the a-th irreducible representation

γa : G −→ End(Va) , a = 1, . . . ,
∣∣G∨∣∣ ,
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which defines the action of G on the fibres of the Chan-Paton bundle. More precisely,

each irreducible fractional brane is associated to the G-bundle Rp,1 × Va over Rp,1.

We can then consider the K-cycles (Rp,1,Rp,1×Va, iv), where iv : Rp,1 → Rp,1 × v ⊂ X.

In equivariant K-homology, these cycles can be contracted to [pt,Va, i], where i is the

inclusion of a point pt ⊂ V whose induced homomorphism

i∗ : KG
∗ (pt) −→ KG

∗ (X)

can be taken to be the identity map R(G)→ R(G). The G-invariant Dirac operator

D/ pt
Va

is just Clifford multiplication twisted by the G-module Va, and thus the topologi-

cal charges (6.3.8) of the corresponding fractional branes in the twisted sector labelled

by b are given by

µb
(
[pt,Va, i]

)
= Indexγb

(
[D/ pt

Va
]
)

=
[
Va ⊗ (∆+ ⊕∆−)

]
⊗C[G] [γb] ,

where ∆± are the half-spin representations of SO(p + 1) on C
p+1
2 . Acting on the

character ring the projection gives [W]⊗C[G] [γb] = γ∗([W]), where

γ∗ : K0

(
C[G]

)
−→ K0

(
End(Vγ)

)
is the map induced by γ.

6.3.2 Delocalization and Ramond-Ramond fields

As discussed in chapter 1, the gauge theory of Ramond-Ramond fields arises as a low-

energy limit of type II superstring theory from the Hilbert space of states of closed

superstrings. Intuitively, the low-energy limit is the limit in which the string becomes

pointlike, i.e. the lenght of the string goes to zero. As we have seen in the previous

section, the Hilbert space for type II superstring theory defined on the good orbifold

[X/G] is given by

H :=

(⊕
h∈G

Hh

)G

where the subspaces Hh are spaces of states of open strings satisfying the boundary

condition (6.3.3); we have also noticed that such open strings “look like” closed strings

on the submanifolds Xh. We then expect massless fields, in particular Ramond-

Ramond fields, arising from each of these sectors, defined on Xh. This is due to the

fact that the center of mass of an open string satisfying condition (6.3.3) is constrained

to be a point of Xh. We can mathematically “organize” the information about these
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Ramond-Ramond fields in the following way. We can associate to each G-manifold

the space

X̂ :=
∐
h∈G

Xh (6.3.9)

Notice that we have an action of G on X̂, with g ∈ G inducing the diffeomorphism

Xh → Xghg−1
. We can then consider Ramond-Ramond fields as elements of the

differential complex

Ω∗G(X; R) := Ω∗(X̂; R)G =

(⊕
h∈G

Ω∗(Xh; R)

)G

(6.3.10)

equiped with the differential

dG :=
⊕
h∈G

dh

where dh : Ω∗(Xh; R)→ Ω∗(Xh; R) is the usual deRham exterior derivative. Since Xh

is diffeomorphic to Xghg−1
for any g ∈ G, by making a choice of submanifolds Xg we

have

Ω∗G(X; R) '
⊕

[h]∈G∨

Ω∗(Xh; R)ZG(h) (6.3.11)

The cohomology of the complex (6.3.10) with respect to the differential dG is given

by

H∗ (Ω∗G(X; R); dG) =

(⊕
h∈G

H∗(Xh; R)

)G

'
⊕

[h]∈G∨

H∗(Xh; R)ZG(h)

where we have used

H∗(Xh/ZG(h); R) ' H∗(Xh; R)ZG(h)

The cohomology groups above correspond to the delocalized equivariant cohomology

theory defined by Baum and Connes [12]. Notice that the group H∗ (Ω∗G(X; R); dG) is

non-canonically isomorphic to H∗(X; R)⊗ R(G) when the G-action on X is trivial.

We will now show how Bredon cohomology can be used to compute the cohomology

of the complex (6.3.10) of orbifold Ramond-Ramond fields by giving a delocalized

description of Bredon cohomology with real coefficients, following [73] and [67] where

further details can be found.

Denote with R(−) the real representation ring functor R⊗R(−) on the orbit category

Or(G). Let 〈G〉 denote the set of conjugacy classes [C] of cyclic subgroups C of G.

Let R C(−) be the contravariant functor on Or(G) defined by R C(G/H) = 0 if [C]

contains no representative gC g−1 < H, and otherwise R C(G/H) is isomorphic to the

163



String theory on orbifolds

cyclotomic field R(ζ|C|) over R generated by the primitive root of unity ζ|C| of order

|C|. A standard result from the representation theory of finite groups then gives a

natural splitting

R(−) =
⊕

[C]∈〈G〉

R C(−) .

By definition, for any module M (−) over the orbit category one has

HomOr(G)

(
M (−) , R C(−)

)
' HomNG(C)

(
M (G/C) , R C(G/C)

)
' Hom (M (G/C); Z)⊗NG(C) R C(G/C)

where the normalizer subgroup NG(C) acts on R C(G/C) ' R(ζ|C|) via identification

of a generator of C with ζ|C|.

These facts together imply that the cochain groups (6.2.2) with F = R(−) admit

a splitting given by

C∗G
(
X , R(−)

)
'
⊕

[C]∈〈G〉

C∗
(
XC
)
⊗NG(C) R C(G/C) .

As the centralizer ZG(C) acts properly on XC, the natural map⊕
[C]∈〈G〉

C∗
(
XC
)
⊗NG(C) R C(G/C) −→

⊕
[C]∈〈G〉

C∗
(
XC/ZG(C)

)
⊗WG(C) R C(G/C)

is a cohomology isomorphism, where WG(C) := NG(C)/ZG(C) is the Weyl group

of C < G which acts by translation on XC/ZG(C). Since R C(G/C) is a projective

R[WG(C)]-module, it follows that for any proper G-complex X the Bredon cohomology

of X with coefficient system R⊗ R(−) has a splitting

H∗G
(
X ; R⊗ R(−)

)
'
⊕

[C]∈〈G〉

H∗
(
XC/ZG(C) ; R

)
⊗WG(C) R C(G/C) . (6.3.12)

At this point, we note that the dimension of the R-vector space

R C(G/C)WG(C) ' R⊗WG(C) R C(G/C)

is equal to the number of G-conjugacy classes of generators for C. We also use the

fact that for a finite group G a sum over conjugacy classes of cyclic subgroups is

equivalent to a sum over conjugacy classes of elements in G, and that X〈g〉 = Xg and

ZG(〈g〉) = ZG(g). One finally obtains a splitting of real Bredon cohomology groups9

H∗G
(
X ; R⊗ R(−)

)
'
⊕

[g]∈G∨

H∗
(
Xg ; R

)ZG(g)
(6.3.13)

9This splitting in fact holds over Q [73].
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which is the cohomology of the differential complex (6.3.10).

By using Theorem 6.12, one also has a decomposition for equivariant K-theory with

real coefficients given by

K∗G(X)⊗ R '
⊕

[g]∈G∨

(
K∗(Xg)⊗ R

)ZG(g)
.

6.3.3 Delocalization of the equivariant Chern character

It is well known that the ordinary Chern character, when tensored over R, admits a

Chern-Weyl refinement, expressed in terms of the curvature of an arbitrary connection

on the given vector bundle. This is not the case for the equivariant Chern character

defined in section 6.2.2. This is expected, since the equivariant Chern character was

constructed in terms of homomorphisms between K-theory and cohomology, without

any reference to any geometric description. However, when tensored over C, the

equivariant Chern character admits a more geometric description. We will now explain

this construction, referring the reader to [25] for the technical details. Consider a

complex G-bundle E over X equiped with a G-invariant hermitean metric and a G-

invariant metric connection ∇E. One can then define a closed G-invariant differential

form

ch(E) ∈ Ω∗(X; C)G

in the usual way by the Chern-Weil construction

ch(E) := Tr
(

exp(−FE/2π i )
)

where FE is the curvature of the connection ∇E. It represents a cohomology class[
ch(E)

]
∈ H∗(X; C)G

in the fixed point subring of the action of G as automorphisms of H∗(X; C). By using

the definition of the homomorphisms (6.2.8), with Q substituted by C and H = e,

one can establish the equality [
ch(E)

]
= cheX

(
[E]
)
.

Let C < G be a cyclic subgroup, and define the cohomology class[
ch(g,E)

]
∈ H∗

(
XC ; C

)ZG(C) ' H∗
(
XC/ZG(C) ; C

)
' H

(
Ω∗(XC; C)ZG(C) , d

)
represented by

ch(g,E) := Tr
(
γ(g) exp(−FE

C/2π i )
)

165



String theory on orbifolds

where g is a generator of C, FE
C is the restriction of the invariant curvature two-form

FE to the fixed point subspace XC, and γ is a representation of C on the fibres of

the restriction bundle E|XC which is an NG(C)-bundle over XC. The character χC

naturally identifies R(C) ⊗ C with the C-vector space of class functions C → C. By

using the splitting (6.3.12) for complex Bredon cohomology, one can then show that

chC
X

(
[E]
)
(g) =

[
ch(g,E)

]
up to the restriction homomorphism R(C)⊗ C→ C C(G/C) of rings with kernel the

ideal of elements whose characters vanish on all generators of C.

Using (6.2.9) we can then define the map

chC : VectC
G(X) −→ Ωeven

G

(
X ; C

)
from complex G-bundles E→ X given by

chC(E) =
⊕

[g]∈G∨

Tr
(
γ(g) exp(−FE

g /2π i )
)
. (6.3.14)

At the level of equivariant K-theory, from Theorem 6.12 it follows that this map

induces an isomorphism

chC : K∗G(X)⊗ C ≈−→ HG

(
X ; C⊗ π−∗K G(−)

)∗
(6.3.15)

where we have used the splitting (6.3.13). The map (6.3.14) coincides with the equiv-

ariant Chern character defined in [9].

6.3.4 Ramond-Ramond couplings with D-branes

We now have all the necessary ingredients to define a coupling of the Ramond-Ramond

fields to a D-brane in the orbifold [X/G]. In this section we will only consider Ramond-

Ramond fields which are topologically trivial, i.e., elements of the differential complex

(6.3.10), and use the delocalized cohomology theory above by working throughout with

complex coefficients. Moreover, we will only consider electric couplings to D-branes,

i.e. we will not impose selfduality. Under these conditions we can straightforwardly

make contact with existing examples in the physics literature and write down their

appropriate generalizations.

To this aim, we introduce the bilinear product

∧G : Ω∗G(X; R)⊗ Ω∗G(X; R) −→ Ω∗G(X; R)

166



String theory on orbifolds

defined on ω =
⊕

g∈G ωg and η =
⊕

g∈G ηg by

ω ∧G η :=
⊕
g∈G

ωg ∧g ηg (6.3.16)

where ∧g = ∧ is the usual exterior product on Ω∗(Xg; R). There is also an integration∫ G

X

: Ω∗G(X; R) −→ R .

If ω ∈ Ω∗G(X; R) then we set∫ G

X

ω :=
1

|G∨ |
∑

[g]∈G∨

∫
Xg
ω[g] .

where we have used in the above construction that for a G-manifold X admitting a

G-equivariant spin structure, the fixed point manifold Xg is naturally oriented, for

any g ∈ G [17].

The normalization ensures that
∫ G

X
ω =

∫
X
ω when G acts trivially on X, and ω is

“diagonal” in Ω∗(X)⊗ R(G).

Suppose now that f : W → X is the smooth immersed worldvolume cycle of

a wrapped D-brane state (W,E, f) ∈ DG(X) in the orbifold [X/G], i.e., W is a G-

spinc manifold equiped with a G-bundle E → W and an invariant connection ∇E on

E. We define the Wess-Zumino pairing

WZ : DG(X)× Ω∗G(X; C) −→ C

between such D-branes and Ramond-Ramond fields as

WZ
(
(W,E, f) , C

)
=

∫ G

W

C̃ ∧G chC(E) ∧G R(W, f) , (6.3.17)

where C̃ = f ∗C is the pullback along f : W→ X of the total Ramond-Ramond field

C =
⊕

[g]∈G∨

C[g]

and the equivariant Chern character is given by (6.3.14) with γ giving the action

of G on the Chan-Paton factors of the D-brane. The closed worldvolume form

R(W, f) ∈ Ωeven
G,cl (W; C) represents a complex Bredon cohomology class which ac-

counts for gravitational corrections due to curvature in the spacetime X and depends

only on the bordism class of (W, f). We refer the reader to [91], where a construction

of R(W, f) can be found.
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Modulo the curvature contribution R(W, f), the very natural expression (6.3.17)

reduces to the usual Wess-Zumino coupling of topologically trivial Ramond-Ramond

fields to D-branes in the case G = e. But even if a group G 6= e acts trivially

on the brane worldvolume W (or on the spacetime X), there can still be additional

contributions to the usual Ramond-Ramond coupling if E is a non-trivial G-bundle.

This is the situation, for instance, for fractional D-branes

(W,E, f) ∈ DG
frac(X)

placed at orbifold singularities. In this case, we may use the isotopical decomposition

(6.3.6) of the Chan-Paton bundle along with (6.3.5). Then the Wess-Zumino pairing

(6.3.17) descends to a pairing

WZfrac : DG
frac(X)× Ω∗G(X; C) −→ C

with the additive subcategory of fractional branes at orbifold singularities.

Example 6.14. We will now “test” our definition (6.3.17) on the class of examples

considered in section 6.3.1. These are flat orbifolds for which there are no non-trivial

curvature contributions, i.e., R(W, f) = 1. Let us specialize to the case of cyclic

orbifolds having twist group G = Zn with n ≥ d. In this case, as Zn is an abelian

group, one has Z∨n = Zn (setwise) and we can label the non-trivial twisted sectors of

the orbifold String theory on X by k = 1, . . . , n− 1. The untwisted sector is labelled

by k = 0. We take a generator g of Zn whose action on V ' Cd is given by

g ·
(
z1 , . . . , zd

)
:=
(
ζa1 z1 , . . . , ζad zd

)
,

where ζ = exp(2π i /n) and a1, . . . , ad are integers satisfying a1 + · · ·+ad ≡ 0 mod n10.

In this case the action of any element in Zn has only one fixed point, an orbifold

singularity at the origin (0, . . . , 0). Hence for any g 6= e one has

Xg ' Rp,1

and the differential complex (6.3.10) of orbifold Ramond-Ramond fields is given by

Ω∗Zn(X; R) = Ω∗(X; R)⊕
( n−1⊕

k=1

Ω∗
(
Rp,1; R

))
.

10Both the requirement that the representation V be complex and the form of the G-action are

physical inputs ensuring that the closed string background X preserves a sufficient amount of super-

symmetry after orbifolding.
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Consider now a fractional D-brane (W,E, f) ∈ DZn
frac(X) with worldvolume cycle

f(W) ⊂ Rp,1 placed at the orbifold singularity, i.e., f : W → Rp,1 × (0, . . . , 0) ⊂ X.

Let the generator g act on the fibres of the Chan-Paton bundle E → W in the n-

dimensional regular representation γ(g)ij = ζ i δij. The action on worldvolume fermion

fields is determined by a lift Ẑn acting on the spinor bundle S → W. Then the

pairing (6.3.17) contains the following terms. First of all, we have the coupling of the

untwisted Ramond-Ramond fields to W given by

1

n

∫
W

C̃ ∧ Tr
(

exp(−FE/2π i )
)
,

which is just the usual Wess-Zumino coupling and hence the untwisted Ramond-

Ramond charge of the brane is 1. Then there are the contributions from the twisted

sectors, which by recalling (6.3.5) are given by the expression

1

n

∫
W

n−1∑
k=1

C̃k ∧ Tr
(
γ(gk) exp(−FE/2π i )

)
where gk is an element of Zn of order k. Since γ(gk)ii = ζ ik, the brane associated

with the i-th irreducible representation of Zn has charge ζ ik/n with respect to the top

Ramond-Ramond field in the k-th twisted sector. For d = 2 and d = 3, the form of

these couplings agrees with those computed in [37].

6.4 An equivariant Riemann-Roch formula

Let X,W be smooth compact G-manifolds, and f : W→ X a smooth proper G-map.

If we want to make sense of the equations of motion for the Ramond-Ramond field C,

which is a quantity defined on the spacetime X, then we need to pushforward classes

defined on the brane worldvolume W to classes defined on the spacetime. This will

enable the construction of Ramond-Ramond currents in a later section induced by

the background and D-branes which appear as source terms in the Ramond-Ramond

field equations.

As we have seen in chapter 3, given a smooth embedding f : W → X with normal

bundle ν →W equiped with a spinc structure, we have

ch
(
fK

! (ξ)
)

= fH
!

(
ch(ξ) ∪ Todd(ν)−1

)
(6.4.1)

for any class ξ ∈ K∗(W), where f! denote the Gysin homomorphism defined in chap-

ter 3, and Todd(E) ∈ Ωeven
cl (W; C) denotes the Todd genus characteristic class of a
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hermitean vector bundle E over W, whose Chern-Weil representative is

Todd(E) =

√
det
( FE/2π i

tanh
(
FE/2π i

) )
where FE is the curvature of a hermitean connection ∇E on E. The important aspect

is that the Chern character does not commute with the Gysin pushforward maps, and

the defect in the commutation relation is precisely the Todd genus of the bundle ν.

This “twisting” by the bundle ν over the D-brane contributes in a crucial way to the

Ramond-Ramond current in the non-equivariant case [29, 71, 75].

We will now attempt to find an equivariant version of the Riemann-Roch theorem.

We will consider G-equivariant embeddings f : W → X: in this case normal bundle

ν is itself a G-bundle. We assume that ν is KG-oriented. This requirement is just the

Freed-Witten anomaly cancellation condition [45] in this case, generalized to global

worldsheet anomalies for D-branes represented by generic G-equivariant K-cycles. It

enables, analogously to the non-equivariant case, the construction of an equivariant

Gysin homomorphism

fKG
! : K∗G(W ) −→ K∗G(X) . (6.4.2)

We will show that, under some very special conditions, one can construct a complex

Bredon cohomology class which is analogous to the Todd genus and which plays the

role of the equivariant commutativity defect as above.

For this we will need the following11

Lemma 6.15. Let π : E→ X be an equivariant G-vector bundle, where G is a finite

group acting properly. Then for any g ∈ G the map π|Eg : Eg → Xg is vector bundle

projection.

Proof. Consider a point w ∈ E. Then dπ : TwE → Tπ(w)X is surjective, since it is

the projection map of a fiber bundle. If w ∈ Eg, then π(w) belongs to Xg, and the

element g acts linearly on Tπ(w)X. If v ∈ Tπ(w)X is a g-fixed vector, one can then find

a g-fixed preimage in TwE by taking any preimage and averaging with respect to the

action of g. By using that (TX)g = TXg, we have that the map TwEg → Tπ(w)X
g is

surjective, hence the restricted map πEg is a proper surjection. Any proper submersion

is automatically a fibre bundle, and the linear structure on the fibers of Eg → Xg is

inherited by that on the fibers of E→ X.

11We are grateful to U.Bunke for suggesting this result to us.
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Notice that the above lemma strongly use the properties that the group G is

finite and acting properly. To see what can happen when these conditions are not

satisfied12, let X = R and G = R+ the group of positive reals under multiplication.

Consider the G-bundle X×V→ X given by projection onto the first factor, where V

is a finite-dimensional real vector space and the G-action is

g · (x, v) =
(
x , gx v

)
for all g ∈ G. For any g 6= 1, (X × V)g is not a fibre bundle over Xg = X, as the

G-invariant fibre space over x = 0 is V while it is the null vector over any other point.

In particular, (X× V)g is not even a manifold.

Consider now two G-manifolds W and X equiped with G-invariant spinc structure,

and a proper G-equivariant embedding f : W → X. For any g ∈ G, the vector

bundle νg = ν(W; f)g → Wg is the normal bundle νg = f ∗|Wg(TXg) ⊕ TWg over the

immersion f |Wg : Wg → Xg. Recall that this is a ZG(g)-bundle. We will suppose that

νg is equiped with a ZG(g)-invariant spinc structure.

As we have seen in section 6.3.2, equivariant K-theory “delocalizes” when tensored

over R, thanks to the equivariant Chern character. We will show in the following that

when working over C the delocalization of equivariant K-theory is compatible, in a

certain sense, with the complex equivariant Chern character defined in (6.3.14).

Let E be a G-vector bundle over a X. For any g ∈ G, the restriction Eg of E to the fixed

point subspace Xg gives a ZG(g)-invariant vector bundle carrying a representation γ

of < g > on the fibers, where < g > is the cyclic group generated by g. The

decomposition of the representation γ in terms of irreducible representations γα of

< g > induces the homomorphism

K∗G(X)→ K∗(Xg)⊗ R(< g >)

given on vector bundles by

E→ Eg '
⊕
γα

Eα ⊗ γα

where Eα := Hom<g>(E, 11α), where 11α = Xg × Vα, with Vα carrying the irreducible

representation γα. We can then define the morphism

K∗(Xg)⊗ R(< g >)→ K∗(Xg)⊗ C

by tracing over the second factor, i.e.

[Eg]→
∑
α

[Eα]Tr(γα(g))

12We are grateful to J.Figueroa-O’Farrill for suggesting this example to us
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Denoting φg the composition of the above morphism, we can define

φ := ⊕[g]∈G∨φg

Recalling that Eg is a ZG(g)-invariant bundle, we have the isomorphism [9]

φ : K∗G(X)⊗ C '
⊕

[g]∈G∨

(K∗(Xg)⊗ C)ZG(g) (6.4.3)

By using that [25]

Tr
(
γ(g) exp(−FE

g /2π i )
)

=
∑
α

Tr
(

exp(−FE
α/2π i )

)
Tr (γα(g))

where FE
α is the restriction of the curvature form FE

g to the subbundle Eα, we have

that the complex equivariant Chern character (6.3.14) coincides on the components

of the decomposition (6.4.3) with the ordinary Chern character.

Suppose now that the equivariant Thom class ThomG(ν) ∈ K∗G,cpt(ν) can be de-

composed according to the splitting (6.4.3) in such a way that the component in any

subgroup

Thom
(
νg
)
∈
(
K∗cpt(ν

g)⊗ C
)ZG(g)

coincides with the (ordinary) Thom class of the vector bundle νg →Wg. Under these

conditions, the equivariant Gysin homomorphism (6.4.2) decomposes according to the

splitting

fKG
! =

⊕
[g]∈G∨

fK
g

where fK
g is the K-theoretic Gysin homomorphism associated to the smooth map

f
∣∣
Wg : Wg −→ Xg .

Define the characteristic class ToddG by

ToddG(ν) :=
⊕

[g]∈G∨

Todd
(
νg
)

(6.4.4)

This class defines an element of the even degree complex Bredon cohomology of the

brane worldvolume W. Under the conditions spelled out above, we can now use the

equivariant Chern character (6.3.15) and the usual Riemann-Roch theorem for each

pair (Wg,Xg) to prove the identity

fHG
!

(
chC(ξ) ∪G ToddG(ν)−1

)
= chC(fKG

! (ξ)
)

(6.4.5)
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for any class ξ ∈ K∗G(W) ⊗ C, as all quantities involved in the expression (6.4.5) are

compatible with the G-equivariant decompositions given above.

This equivariant Riemann-Roch formula will be important when we will argue the

flux quantization for Ramond-Ramond fields on orbifolds.

6.5 Orbifold differential K-theory and flux quanti-

zation

In this section we will propose an extension of differential K-theory as defined in sec-

tion 5.4 to incorporate the case of a G-manifold. These are the groups needed to

extend the analysis of the previous section to topologically non-trivial, real-valued

Ramond-Ramond fields. While we do not have formal arguments that this is a proper

definition of an equivariant differential cohomology theory, we will see that it matches

exactly with expectations from String theory on orbifolds and also has the correct

limiting properties. For this reason we dub the theory that we define ‘orbifold’ differ-

ential K-theory, defering the terminology ‘equivariant’ to a more thorough treatment

of our model. We will use the Riemann-Roch formula developed in the last section to

argue that the Dirac quantization condition for Ramond-Ramond fieldstrengths on a

good orbifold is dictated by equivariant K-theory via the equivariant Chern charac-

ter, suggesting that our orbifold differential K-theory is the correct guess for the space

gauge equivalent classes of Ramond-Ramond fields. Finally, we will study the classi-

fication of Ramond-Ramond fields on the linear orbifolds considered in section 6.3.1,

and give a definition for the group of flat Ramond-Ramond fields on more general

good orbifolds.

6.5.1 Orbifold differential K-groups

As mentioned above, we will generalize the definition of differential K-theory given in

section 5.4 to accomodate the action of a finite group.

First, let us recall some further basic facts about equivariant K-theory. Similarly to

ordinary K-theory, a model for the classifying space of the functor K0
G is given by

the G-algebra of Fredholm operators FredG acting on a separable Hilbert space which

is a representation space for G in which each irreducible representation occurs with

infinite multiplicity [4]. Then there is an isomorphism

K0
G(X) ' [X,FredG]G
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where [−,−]G denotes the set of equivalence classes of G-homotopic maps, and the

isomorphism is given by taking the index bundle.

There is also a universal space VectnG, equiped with a universal G-bundle Ẽn
G, such

that [X,VectnG]G corresponds to the set of isomorphism classes of n-dimensional G-

vector bundles over X [67]. These spaces are constructed as follows. Let EG be the

category whose objects are the elements of G and with exactly one morphism between

each pair of objects. The geometric realization (or nerve) of the set of isomorphism

classes in EG is, as a simplicial space, the total space of the classifying principal

G-bundle EG. With Vectn(pt) the category of n-dimensional complex vector spaces

V ' Cn, the universal space VectnG is defined to be the geometric realization of the

functor category [EG,Vectn(pt)]. The universal n-dimensional G-vector bundle Ẽn
G is

then defined as

Ẽn
G = ṼectnG ×GL(n,C) Cn −→ VectnG , (6.5.1)

where ṼectnG is the geometric realization of the functor category defined as above

but with Vectn(pt) replaced with the category consisting of objects V in Vectn(pt)

together with an oriented basis of V.

We assume sufficient regularity conditions on the infinite-dimensional spaces FredG

and Ẽn
G. Since FredG and the group completion VectG are both classifying spaces for

equivariant K-theory, they are G-homotopic and we can thereby choose a cocycle

uG ∈ Zeven
G (FredG; R)

representing the equivariant Chern character of the universal G-bundle (6.5.1). Gen-

erally, the group Zeven
G (X; R) is the subgroup of closed cocycles in the complex

Ceven
G (X; R) :=

⊕
[g]∈G∨

Ceven
(
Xg ; R

)ZG(g)
(6.5.2)

which, by the results of section 6.3.2, is a cochain model for the Bredon cohomology

group Heven−1
G (X; R ⊗ R(−)). The equivariant Chern character is understood to be

composed with the delocalizing isomorphism of section 6.3.2. Since it is a natural

homomorphism, for any G-bundle E → X classified by a G-map f : X → FredG one

has

chX

(
[E]
)

=
[
f ∗uG

]
.

Definition 6.16. The orbifold differential K-theory Ǩ0
G(X) of the (global) orbifold

[X/G] is the group of triples (c, h, ω), where c : X → FredG is a G-map, ω is an

element in Ωeven
G,cl (X; R), and h is an element in Ceven−1

G (X; R) satisfying

δh = ω − c∗uG . (6.5.3)
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Two triples (c0, h0, ω0) and (c1, h1, ω1) are said to be equivalent if there exists a triple

(c, h, ω) on X× [0, 1], with the group G acting trivially on the interval [0, 1] and with

ω constant along [0, 1], such that

(c, h, ω)
∣∣
t=0

= (c0, h0, ω0) and (c, h, ω)
∣∣
t=1

= (c1, h1, ω1) .

In (6.5.3) the closed orbifold differential form ω is regarded as an orbifold cochain

in the complex (6.5.2) by applying the de Rham map componentwise on the fixed point

submanifolds Xg, g ∈ G. The higher orbifold differential K-theory groups Ǩ−nG (X) are

defined analogously to those of section 5.4. To confirm that this is a suitable extension

of the ordinary differential K-theory of X, we should show that the orbifold differential

K-theory groups fit into exact sequences which reduce to those given by (5.4.7) when

G is taken to be the trivial group. For this, we define the group

A0
KG

(X) :=
{

(ξ, ω) ∈ K0
G(X)× Ωeven

G,cl (X; R)
∣∣ chX(ξ) = [ω]G−dR

}
.

Theorem 6.17. The orbifold differential K-theory group Ǩ0
G(X) satisfies the exact

sequence

0 −→
Heven−1

G

(
X ; R⊗ R(−)

)
chX

(
K−1

G (X)
) −→ Ǩ0

G(X) −→ A0
KG

(X) −→ 0 (6.5.4)

Proof. Consider the subgroup of Heven−1
G (X; R ⊗ R(−)) defined as the image of the

equivariant K-theory group K−1
G (X) under the Chern character chX. It consists of

Bredon cohomology classes of the form [c̃∗u−1
G ], where c̃ : X → ΩFredG. There is a

surjective map

f : Ǩ0
G(X) −→ A0

KG
(X)[

(c, h, ω)
]
7−→

(
[c] , ω

)
which is a well-defined homomorphism, i.e., it does not depend on the chosen rep-

resentative of the orbifold differential K-theory class. By definition, the kernel of

f consists of triples of the form ( c , h, 0), where c is G-homotopic to the constant

(identity) map. We also define the map

g : Heven−1
G

(
X ; R⊗ R(−)

)
−→ Ǩ0

G(X)

[h] 7−→
[
( c , h, 0)

]
,
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which is a well-defined homomorphism because the class [( c , h, 0)] depends only on

the Bredon cohomology class [h] ∈ Heven−1
G (X; R⊗ R(−)). Then by construction one

has im(g) = ker(f).

The homomorphism g is not injective. To determine the kernel of g, we use the

fact that the zero element in Ǩ0
G(X) can be represented as[

( c , 0, 0)
]

=
[
( c , π∗ F

∗uG + dGσ, 0)
]

with F : X × S1 → FredG and σ ∈ Ωeven−2
G (X; R). To the map F we can associate a

map c̃ : X→ ΩFredG such that F = ev◦(c̃× idS1). This follows from the isomorphism

K−1
G (X) ' ker

(
i∗ : K0

G(X× S1)→ K0
G(X)

)
where i is the inclusion i : X ↪→ X× pt ⊂ X× S1. Now use the fact that at the level

of (real) Bredon cohomology one has an equality

π∗
(
c̃× idS1

)∗
= c̃∗Π∗

since the projection homomorphisms π∗ and Π∗ both correspond to integration (slant

product) along the S1 fibre. Then one has the identity[
π∗ F

∗uG

]
=
[
π∗ (c̃× idS1)∗ ev∗uG

]
=
[
c̃∗Π∗ ev∗uG

]
=
[
c̃∗u−1

G

]
.

It follows that ker(g) is exactly the group chX(K−1
G (X)), and putting everything to-

gether we arrive at (6.5.4).

The torus Heven−1
G

(
X; R⊗R(−)

)
/chX

(
K−1

G (X)
)
' K−1

G (X)⊗R/Z is called the group

of topologically trivial flat fields.

Consider now the characteristic class map

fcc : Ǩ0
G(X) −→ K0

G(X)[
(c, h, ω)

]
7−→ [c]

and the map

gcc : Ωeven−1
G (X; R) −→ Ǩ0

G(X)

h 7−→
[
( c , h, dGh)

]
.

Let Ωeven−1
KG

(X; R) be the subgroup of elements in Ωeven−1
G,cl (X; R) whose Bredon coho-

mology class lies in chX(K−1
G (X)). Then by using arguments similar to those used in

arriving at the sequence (6.5.4), one finds the
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Corollary 6.18 (Characteristic class exact sequence). In analogy with the ordi-

nary case, the orbifold differential K-theory group Ǩ0
G(X) satisfies the exact sequence

0 −→ Ωeven−1
G (X; R)

Ωeven−1
KG

(X; R)
−→ Ǩ0

G(X) −→ K0
G(X) −→ 0 . (6.5.5)

The quotient space of orbifold differential forms in the exact sequence (6.5.5) is

called the group of topologically trivial fields.

Finally, consider the field strength map

ffs : Ǩ0
G(X) −→ Ωeven

G,cl (X; R)[
(c, h, ω)

]
7−→ ω . (6.5.6)

The kernel of the homomorphism ffs is the group which classifies the flat fields (which

are not necessarily topologically trivial) and is denoted K−1
G (X; R/Z). This group will

be described in more detail in the next section, where we shall also conjecture an

essentially purely algebraic definition of K−1
G (X; R/Z) which explains the notation. In

any case, we have the

Corollary 6.19 (Field strength exact sequence). The orbifold differential K-

theory group Ǩ0
G(X) satisfies the exact sequence

0 −→ K−1
G (X; R/Z) −→ Ǩ0

G(X) −→ Ωeven
KG

(X; R) −→ 0 (6.5.7)

Higher orbifold differential K-theory groups satisfy analogous exact sequences,

with the appropriate degree shifts throughout. It is clear from our definition that

one recovers the ordinary differential K-theory groups in the case of the trivial group

G = e, and in this sense our orbifold differential K-theory may be regarded as its

equivariant generalization. At this point we hasten to add that, although our groups

are well-defined and satisfy desired properties which are useful for physical applica-

tions such as the various exact sequences above, we have not showed that our orbifold

theory generalizes all the properties of an ordinary differential cohomology theory.

For instance, it would be interesting to define a ring structure and an integration on

Ǩ∗G(X). We have not developed these constructions in this thesis.
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6.5.2 Flux quantization of orbifold Ramond-Ramond fields

In this section we will argue the flux quantization condition for Ramond-Ramond

fieldstrengths on orbifolds of Type II superstring theory with vanishing H-flux, show-

ing that it is dictated by equivariant K-theory via the complex equivariant Chern

character. Essentially, we will closely follow the Moore-Witten argument discussed in

section 5.3.

Suppose that our spacetime X is a non-compact G-manifold. Suppose further that

there are D-branes present in Type II superstring theory on X/G. Their Ramond-

Ramond charges are classified by the equivariant K-theory Ki
G,cpt(X) with compact

support, where i = 0 in Type IIB theory and i = −1 in Type IIA theory.

We require that the brane be a source for the equation of motion for the total

Ramond-Ramond field strength ω. This means that it creates a Ramond-Ramond

current J . If we require that the worldvolume W be compact in equivariant K-cycles

(W,E, f) ∈ DG(X), then J is supported in the interior X̊ of X. Let X∞ be the

“boundary of X at infinity”, which we assume is preserved by the action of G. Then

K∗G,cpt(X) ' K∗G(X,X∞). Since J is trivialized by ω in X̊, the D-brane charge lives in

the kernel of the natural forgetful homomorphism

f∗ : K∗G,cpt(X) −→ K∗G(X) (6.5.8)

induced by the inclusion (X, ∅) ↪→ (X,X∞). We denote by i : X∞ ↪→ X the canonical

inclusion.

The long exact sequence for the pair (X,X∞) in equivariant K-theory truncates,

by Bott periodicity, to the six-term exact sequence

K−1
G (X∞) // K0

G(X,X∞)
f0 // K0

G(X)

i∗

��
K−1

G (X)

i∗

OO

K−1
G (X,X∞)

f−1
oo K0

G(X∞) .oo

It follows that the charge groups are given by

ker
(
f0
)
' K−1

G (X∞)

i∗
(
K−1

G (X)
) and ker

(
f−1
)
' K0

G(X∞)

i∗
(
K0

G(X)
) .

This formula means that the group of Type IIB (resp. Type IIA) brane charges is mea-

sured by the group K−1
G (X∞) (resp. K0

G(X∞)) of “orbifold Ramond-Ramond fluxes at

infinity” which cannot be extended to all of spacetime X. We may then interpret,

for arbitrary spacetimes X, the group K−1
G (X) (resp. K0

G(X)) as the group classify-

ing Ramond-Ramond fields in the orbifold X/G in absence of branes in Type IIB

(resp. Type IIA) String theory.
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The Ramond-Ramond current can be described explicitly by using the delocaliza-

tion of Bredon cohomology over C. The Wess-Zumino pairing (6.3.17) between a topo-

logically trivial, complex Ramond-Ramond potential and a D-brane represented by

an equivariant K-cycle (W,E, f) ∈ DG(X) contributes a source term to the Ramond-

Ramond equations of motion, which is the class[
Q(W,E, f)

]
∈ Heven

G

(
X ; C⊗ R(−)

)
represented by the pushforward

Q(W,E, f) = fHG
!

(
chC(E) ∧G R(W, f)

)
.

We now use the Riemann-Roch formula (6.4.5) and the fact that fHG
! ◦f ∗ = idH∗G(X; C(−)).

Using the explicit expression for the curvature form and the definition for ΛG(X) given

in [91], we can then rewrite this class as

Q(W,E, f) = chC(fKG
! (E)

)
∧G

√
ToddG(TX) ∧G ΛG(X) . (6.5.9)

This is the complex Bredon cohomology class of the Ramond-Ramond current J

created by the D-brane (W,E, f). In the case G = e, the expression (6.5.9) reduces

to the standard class of the current for Ramond-Ramond fields in Type II superstring

theory on X [29, 71, 74, 75]. We can then formally conclude, in analogy with the

non-equivariant case, that the complex Bredon cohomology class associated to a class

ξ ∈ K∗G(X)⊗ C representing a Ramond-Ramond field is assigned by the equivariant

Chern character, and that the total Ramond-Ramond fieldstrength ω associated to ξ

satisfies

[ω(ξ)]

2π [
√

ToddG(TX) ∧G ΛG(X)]
= [chC(ξ)] . (6.5.10)

The above expression the suggests that the orbifold differential K-theory developed

in the previous section is a suitable candidate to describe Ramond-Ramond fields

with Dirac quantization condition, at least in the complex case. Moreover, we should

stress that this analysis of the delocalized theory assumes the strong conditions spelled

out in section 6.4, which require a deep geometrical compatibility of the equivariant

K-cycle (W,E, f) with the orbifold structure of [X/G]. The example of the linear

orbifolds considered in section 6.3.1 is simple enough to satisfy these conditions. It

would be very interesting to find a geometrically non-trivial explicit example to test

these requirements on. However, the linear orbifolds case is very useful to understand
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certain aspects of the orbifold differential K-theory groups.

Since the C-linear G-module X is equivariantly contractible, one has

Hodd
G (X; R⊗ R(−)) = 0

and K0
G(X) = R(G). From Theorem 6.17 it then follows that

Ǩ0
G(X) ' A0

KG
(X) '

{
(γ, ω) ∈ R(G)× Ωeven

G,cl (X; R)
∣∣ chpt(γ) = [ω]G−dR

}
.

Since the equivariant Chern character chG/H : R(H)→ R(H) for H ≤ G is the identity

map, the setwise fibre product truncates to the lattice of quantized orbifold differential

forms and one has

Ǩ0
G(V) = Ωeven

KG
(V; R) . (6.5.11)

This is the group of Type IIA Ramond-Ramond fieldstrengths on X. It naturally

contains those fields which trivialize the Ramond-Ramond currents sourced by the

stable fractional D0-branes of the Type IIA theory, corresponding to characteristic

classes [c] in the representation ring R(G).

This can be explicitly described as an extension of the equivariant K-theory of X by

the group of topologically trivial Ramond-Ramond fields C of odd degree, as implied

by Corollary 6.18. Since X is connected and G-contractible, one has Ω0
G,cl(X; R) =

R⊗ R(G) and the group (6.5.11) has a natural splitting

Ǩ0
G(X) = R(G)⊕

( d⊕
k=1

Ω2k
G,cl(X; R)

)
. (6.5.12)

Any closed orbifold form ω on X of positive degree is exact, ω = dGC, with the gauge

invariance C 7→ C + dGξ. It follows that there is a natural map

d⊕
k=1

Ω2k
G,cl(X; R) −→ Ωeven−1

G (X; R)

Ωeven−1
KG

(X; R)

which associates to the field strength ω the corresponding globally well-defined Ramond-

Ramond potential C.

On the other hand, the orbifold differential K-theory group Ǩ−1
G (X) of Type IIB

Ramond-Ramond fields on X can be computed by using the characteristic class exact

sequence (6.5.5) with degree shifted by −1. Using K−1
G (X) = 0, one finds

Ǩ−1
G (X) =

Ωeven
G (X; R)

Ωeven
KG

(X; R)
. (6.5.13)
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This result reflects the fact that the Type IIB theory has no stable fractional D0-

branes. Hence there is no extension and the Ramond-Ramond fields are induced

solely by the closed string background. Their field strengths ω = dGC are determined

entirely by the potentials C, which are globally defined differential forms of even

degree.

Setting X = pt, we obtain the orbifold differential K-theory of the point, which are

given by

Ǩ0
G(pt) ' R(G)

and

Ǩ−1
G (pt) ' R(G)⊗ R/Z

For G = e, these groups reduce to the usual differential K-teory groups of the point.

In the previous section we defined the group of flat Ramond-Ramond fields on a

general orbifold [X/G] as the subgroup of orbifold differential K-theory with vanishing

curvature. In the following we will conjecture a very natural algebraic definition of

these groups which ties them somewhat more directly to equivariant K-theory groups.

To motivate this conjecture, we first compute the groups K∗G(X; R/Z) for the linear

orbifolds above, wherein the associated differential K-theory groups were determined

explicitly. Using the field strength exact sequence (6.5.7), by definition one has

K−1
G (X; R/Z) ' ker

(
ffs : Ǩ0

G(X)→ Ωeven
KG

(X; R)
)

which from the natural isomorphism (6.5.11) trivially gives

K−1
G (X; R/Z) = 0 . (6.5.14)

Similarly, using K−1
G (X) = 0 one has

K0
G(X; R/Z) ' ker

(
ffs : Ǩ−1

G (X)→ Ωodd
G,cl(X; R)

)
.

Using the natural isomorphism (6.5.13), the field strength map is

ffs

(
[C]
)

= dGC for C ∈ Ωeven
G (X; R) ,

giving

K0
G(X; R/Z) '

Ωeven
G,cl (X; R)

Ωeven
KG

(X; R)
.

Similarly to (6.5.12), there is a natural splitting of the vector space of closed orbifold

differential forms given by

Ωeven
G,cl (X; R) =

(
R(G)⊗ R

)
⊕
( d⊕

k=1

Ω2k
G,cl(X; R)

)
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and we arrive finally at

K0
G(X; R/Z) = R(G)⊗ R/Z . (6.5.15)

These results of course simply follow from the fact that X is G-contractible, so

that every dG-closed Ramond-Ramond field is trivial, except in degree zero where

the gauge equivalence classes are naturally parametrized by the twisted sectors of the

String theory in (6.5.15). Note that both groups of flat fields (6.5.14) and (6.5.15) are

unchanged by (equivariant) contraction of the G-module X to a point, as an analogous

(but simpler) calculation shows. This suggests that the groups K∗G(X; R/Z) have

at least some G-homotopy invariance properties, unlike the differential KG-theory

groups. This motivates the following conjectural algebraic framework for describing

these groups.

We will propose that the group K∗G(X; R/Z) is an extension of the torus of topolog-

ically trivial flat orbifold Ramond-Ramond fields by the torsion elements in K∗+1
G (X),

as they have vanishing image under the equivariant Chern character chX. The result-

ing group may be called the “equivariant K-theory with coefficients in R/Z”. The

short exact sequence of coefficient groups

0 −→ Z −→ R −→ R/Z −→ 0

induces a long exact sequence of equivariant K-theory groups which, by Bott period-

icity, truncates to the six-term exact sequence

K0
G(X) // K0

G(X; R) // K0
G(X; R/Z)

β
��

K−1
G (X; R/Z)

β

OO

K−1
G (X; R)oo K−1

G (X) .oo

(6.5.16)

The connecting homomorphism β is a suitable variant of the usual Bockstein homo-

morphism. We assume that the equivariant K-theory with real coefficients is defined

simply by the Z2-graded ring

K∗G(X; R) = K∗G(X)⊗ R ' H∗G
(
X ; R⊗ R(−)

)
,

where we have used Theorem 6.12. The maps to real K-theory in (6.5.16) may then

be identified with the equivariant Chern character chX, whose image is a full lattice in

the Bredon cohomology group H∗G(X; R⊗R(−)). Then the abelian group K∗G(X; R/Z)

sits in the exact sequence

0 −→ K∗G(X)⊗ R/Z −→ K∗G(X; R/Z)
β−→ Tor

(
K∗+1

G (X)
)
−→ 0 . (6.5.17)
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When G = e, (6.5.16) is the usual Bockstein exact sequence for K-theory. In this

case, an explicit geometric realization of the groups K∗(X; R/Z) in terms of bundles

with connection has been given by Lott [64]. Moreover, in [54] a geometric construc-

tion of the map K−1(X; R/Z) → Ǩ0(X) in the field strength exact sequence is given.

Unfortunately, no such geometrical description is immediately available for our equiv-

ariant differential K-theory, due to the lack of a Chern-Weil theory for the homotopy

theoretic equivariant Chern character. Our conjectural definition (6.5.17) is satisfied

by the linear orbifold groups (6.5.14) and (6.5.15).

In [32] a very different definition of the groups K∗G(X; R/Z) is given, by defining

both equivariant K-theory and cohomology using the Borel construction of Exam-

ple 6.4. Then the Bockstein exact sequence (6.5.16) is written for the ordinary K-

theory groups of the homotopy quotient XG = EG×G X. While these groups reduce,

like ours, to the usual K-theory groups of flat fields when G = e, they do not obey

the exact sequence (6.5.17). The reason is that the equivariant Chern character used

is not an isomorphism over the reals, as explained in section 6.2. Moreover, an asso-

ciated differential K-theory construction would directly involve differential forms on

the infinite-dimensional space XG which is only homotopic to the finite-dimensional

CW-complex X/G. The physical interpretation of such fields is not clear. Even in the

simple case of the linear orbifolds X studied above, this description predicts an infi-

nite set of equivariant fluxes of arbitrarily high dimension on the infinite-dimensional

classifying space BG, and one must perform some non-canonical quotients in order

to try to isolate the physical fluxes. In contrast, with our constructions the relation

between orbifold flux groups and Bredon cohomology is much more natural, and it

involves Ramond-Ramond fields defined on submanifolds of the covering space X.

6.6 K-homology and flat fields in Type II String

theory

In this final section, we will briefly comment on how the flat Ramond-Ramond fields

can in principle couple to the wrapped D-branes defined in section 4.8. The analysis

will be restricted to type IIA String theory.

As we have seen in the previous sections, the Ramond-Ramond fields in ordinary

type IIA String theory are described by differential K theory. Hence, the group of flat

Ramond-Ramond fields is given by K−1(X; R/Z). Consider the short exact sequence
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of coefficient groups given by

1 −→ Z −→ R −→ R/Z −→ 1 ,

It induces the corresponding long exact sequence

· · · −→ Ki(X) −→ Ki(X)⊗ R −→ Ki(X; R/Z) −→ Ki+1(X) −→ · · · .

By truncating the above long exact sequence, we have

0 → K−1(X)⊗ R/Z −→ K−1(X; R/Z)
β−→ Tor(K0(X)) −→ 0 (6.6.1)

where β is the Bockstein homomorphism. Thus the identity component of the circle

coefficient K-theory group is the torus K−1(X; R/Z). Suppose now that K−1(X) is

pure torsion. In this case, K−1(X; R/Z) ' Tor(K0(X)) , and the corresponding flat

Ramond-Ramond fields can be represented by virtual vector bundles over X. A torsion

Ramond-Ramond flat field ξ ∈ K0(X) gives an additional phase factor to a D-brane

in the String theory path integral [32]. Generally, the origin of these phases can be

understood from the topological classification of the physical coupling between Type I

D-branes and Ramond-Ramond fields.

Let W be a compact spinc submanifold of X of dimension p+ 1, and let the spacetime

manifold X be a spherical spinc fibration π : X→W such that X/W ' S9−p.

The group of flat Ramond-Ramond fields is given by

K−1
(
X; R/Z

)
= Hom

(
Kt
−1(X) , R/Z

)
' Hom

(
Kt
p−10(W) , R/Z

)
where we have use the following exact sequence [95, 80]

0 → Ext
(
Kt
i−1(X) , G

)
→ Ki

(
X; G

)
→ Hom

(
Kt
i(X) ,G

)
→ 0

for G = R/Z, and the Thom isomorphism.

Using Bott periodicity, we have finally

K−1
(
X; R/Z

)
' Hom

(
Kt
p+2(W) , R/Z

)
. (6.6.2)

The K-homology group Kt
p+2(W) consists of wrapped D-branes [M,E, φ] with the

properties dimM = p + 2 and φ(M) ⊂ W. The dimension shift is related to the

topological anomaly in the worldvolume fermion path integral [74], as the following

argument seems to suggest.

Consider a one-parameter family of p + 1-dimensional brane worldvolumes specified

by a circle bundle U → W whose total space U is a p + 2-dimensional submanifold
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of spacetime X with the topology of W × S1. Complex vector bundles Eg of rank n

over generic fibres U/W ' S1 are determined by elements g ∈ U(n) by the clutching

construction. Thus the family of self-adjoint Atiyah-Singer operators /DS1

Eg determined

by (4.9.1) is parametrized by the group U(n). The anomaly [74] arises as the deter-

minant line bundle of this family, which is essentially defined as the highest exterior

power of the kernel of the family. This defines a non-trivial line bundle on the group

U(n) called the Pfaffian line bundle, which has the property that its lift to Spin(n)

is the trivial line bundle. One can also construct a connection and holonomy of the

Pfaffian line bundle [45]. The manifold U is wrapped by D-branes in Kt
p+2(U). One

can now restrict to the subgroup Kt
p+2(W) ⊂ Kt

p+2(U) by keeping only those D-branes

which are wrapped on the embedding W ↪→ U by the zero section of U → W. The

isomorphism (6.6.2) reflects the fact that the topological anomaly could in principle be

cancelled by coupling D-branes to the Ramond-Ramond fields through a phase factor.
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Appendix A

Linear algebra in Functor categories

In this appendix we will summarize some notions about algebra in functor categories

that were used in the main text of the paper. They generalize the more commonly

used concepts for modules over a ring. For further details see [92].

Let R be a commutative ring, and denote the category of (left) R-modules by

R−Mod. Let Γ be a small category, i.e., its class of objects Obj(Γ) is a set. If C is

another category, then one denotes by

[Γ,C]

the functor category of (covariant) functors Γ→ C. The objects of [Γ,C] are (covari-

ant) functors φ : Γ → C and a morphism from φ1 to φ2 is a natural transformation

α : φ1 → φ2 between functors.

In particular, in the main text we used the functor category

RΓ−Mod := [Γ,R−Mod]

whose objects are called left RΓ-modules. If one denotes with Γop the dual category

to Γ, then there is also the functor category

Mod−RΓ := [Γop,R−Mod]

of contravariant functors Γ → R−Mod, whose objects are called right RΓ-modules.

As an example, let G be a discrete group regarded as a category with a single object

and a morphism for each element of G. A covariant functor G→ R−Mod is then the

same thing as a left module over the group ring R[G] of G over R.

As the name itself suggests, all standard definitions from the linear algebra of

modules have extensions to this more general setting. For instance, the notions of

submodule, kernel, cokernel, direct sum, coproduct, etc. can be naturally defined

objectwise. If M and N are RΓ-modules, then HomRΓ(M,N) is the R-module of all

natural transformations M→ N. This notation should not be confused with the one

used for the set of all morphisms between two objects in Γ, and usually it is clear

from the context.

If M is a right RΓ-module and N is a left RΓ-module, then one can define their

categorical tensor product

M⊗RΓ N
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in the following way. It is the R-module given by first forming the direct sum

F =
⊕

λ∈Obj(Γ)

M(λ)⊗R N(λ)

and then quotienting F by the R-submodule generated by all relations of the form

f ∗(m)⊗ n−m⊗ f∗(n) = 0 ,

where (f : λ → ρ) ∈ Mor(Γ), m ∈ M(ρ), n ∈ N(λ) and f ∗(m) = M(f)(m), f∗(n) =

N(f)(n). This tensor product commutes with coproducts. If M and N are functors

from Γ to the category of vector spaces over a field K, then their tensor product is

naturally equiped with the structure of a vector space over K. When Γ is the orbit

category Or(G) and R = Z, the tensor product has precise limiting cases. For an ar-

bitrary contravariant module M and the constant covariant module N, the categorical

product M⊗ZOr(G) N is the tensor product of the right Z[G]-module M(G/e) with the

constant left Z[G]-module N(G/e), M(G/e)⊗Z[G] N(G/e). On the other hand, if the

contravariant module M is constant and the covariant module N is arbitrary, then

M⊗ZOr(G) N is just N(G/G).
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Appendix B

Clifford algebras and Spin manifolds

In this appendix we will briefly recall some basic properties of Clifford algebras and

Spin manifolds used throughout this thesis. We direct the reader to [5, 63] for an

extensive treatment of these topics.

Let V be a real vector space, and let q : V → R be a quadratic form. Consider the

tensor algebra of V

F(V) :=
∞∑
r=0

r⊗
V

and denote with Iq(V) the two-sided ideal in F(V) generated by all elements of the

form

v ⊗ v + q(v)1 for v ∈ V . Then the Clifford algebra C`(V; q) associated to V and q is

the associative algebra with unit defined as

C`(V; q) := F(V)/Iq(V)

The algebra C`(V; q) is generated by the vector space V ⊂ C`(V; q) subject to the

relations

v · v = −q(v)1

which give a “universal” characterization of the algebra.

Given two vector spaces V,V′, equiped with quadratic forms q, q′, respectively, any

linear map f : V → V′ preserving the quadratic forms induces a homomorphism

f̃ : C`(V; q) → C`(V′; q′). An important example is given by the homomorphism α̃

induced by the map α(v) = −v on V. Since α2 = id, there is a decomposition

C`(V; q) = C`0(V; q)⊕ C`1(V; q)

where C`i(V; q) := {ϕ ∈ C`(V; q) : α(ϕ) = (−1)iϕ}. The vector space C`0(V; q) is a

subalgebra of C`(V; q), and it is called the even part, while the subspace C`1(V; q) is

called the odd part of C`(V; q).

Given a Clifford algebra C`(V; q), we can define the multiplicative group of units as

C`∗(V; q) :=
{
ϕ ∈ C`(V; q) : ∃ ϕ−1 ∈ C`(V; q) such that ϕ−1 · ϕ = ϕ · ϕ−1 = 1

}
When dimV = n < ∞, C`∗(V; q) is a Lie group of dimension 2n. Consider the

subgroup P(V; q) ⊂ C`∗(V; q) generated by the elements v ∈ V with q(v) 6= 0.
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Then the Pin group associated to the pair (V; q) is the subgroup Pin(V; q) of P(V; q)

generated by elements v ∈ V with q(v) = ±1. The associated Spin group of (V; q) is

defined as

Spin(V; q) := Pin(V; q) ∩ C`0(V; q)

We will now restrict to the case in which V = Rn, and

q(x) := x2
1 + x2

2 + · · ·+ x2
n

is the quadratic form induced by the usual scalar product. Denote with C`n the

Clifford algebra C`(Rn; q). If e1, e2, · · · , en is any orthonormal basis of Rn, then C`n

is generated as an algebra by e1, e2, · · · , en and 1 subject to the relations

ei · ej + ej · ej = −2δij 1

It is straightforward to see that C`1 ' C, and C`2 ' H. Moreover, one can prove

that dimR(C`n) = 2n. The decomposition of C`n in even and odd part induces the

following isomorphism

C`n ' C`0
n+1

An important result concerning the Clifford algebra C`n is the following. There is a

canonical isomorphism C`n ' Λ∗Rn, according to which the Clifford multiplication

between v ∈ Rn and any ϕ ∈ C`n can be written as

v · ϕ ' v ∧ ϕ− vbϕ

where we have identified Rn with its dual via the scalar product, and b denotes the

contraction of the vector v with an element of Λ∗Rn. The Clifford algebras can be

described as matrix algebras over R,C, or H. Indeed, denote with C`n the complexi-

fication C`n ⊗R C of C`n. Then for all n ≤ 0 we have the periodicity isomorphisms

C`n+8 ' C`n ⊗ C`8

C`n+2 ' C`n ⊗C C`2

The above isomorphisms allow to deduce all the algebras C`n and C`n from the

following table

1 2 3 4 5 6 7 8

C`n C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)

C`n C⊕ C C(2) C(2)⊕ C(2) C(4) C(4)⊕ C(4) C(8) C(8)⊕ C(8) C(16)

where K(n) denotes the algebra of n× n matrices over the field K, with K = R,C,H.
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The above table also dictates the theory of representations of Clifford algebras. In-

deed, if we see K(n) as an algebra over R, the natural representation of K(n) on the

vector space Kn is the only irreducible real representation of K(n) up to isomorphism,

while the algebras K(n)⊕K(n) have exactly two equivalence classes of irreducible real

representations [63].

Given a module An important role is played by the Spin groups associated to Rn with

the Euclidean quadratic form. Indeed, if we denote with Spinn the group Spin(Rn; q),

we have the following exact sequence

0→ Z2 → Spinn
ξ0−→ SOn → 0

for all n ≥ 3. In particular, the map ξ0 denotes the universal covering homomorphism

of SOn. The representation theory of Clifford algebras can be used to construct

representations of Spinn ⊂ C`0
n which are not trivial on the element -1, hence they do

not arise from representation of the orthogonal group SOn. Indeed, we can define the

real spinor representation of Spinn as the homomorphism

∆n : Spinn → GL(S)

induced by retricting an irreducible real representation C`n → HomR(S, S) to Spinn.

We can also define the complex spinor representation of Spinn as the homomorphism

∆C
n : Spinn → GLC(S)

induced by restricing an irreducible complex representation C`n → HomC(S, S) to

Spinn ⊂ C`0
n ⊂ C`n. In particular, for n odd, the complex spinor representation ∆C

n is

irreducible, and independent of which irreducible represention of C`n is used. When

n = 2m , there is a decomposition

∆C
2m = ∆C+

2m ⊕∆C−
2m

into a direct sum of irreducible complex representations of Spinn. The representation

∆C±
2m is given by the composition of ∆C

2m with the projection 1± ωC, where

ωC = ime1 · e2 · · · e2m

is the complex volume element. Notice that ∆C±
2m is not a representation of C`n.

Similar results hold for the real spinor representation.

Finally, a Z2-graded module for C`n is a module W with a decomposition W = W0 ⊕
W1 such that

C`inWj ⊆W(i+j)(mod2)
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Given a Z2-graded module W over C`n, the even part W0 is a module over C`0
n.

Conversely, given a module W0 over C`0
n, we can form the Z2-graded module

W := C`n ⊗C`0n
W0

Hence there is an equivalence between the category of Z2-graded modules over C`n

and the category of ungraded modules over C`n−1.

Let E be an oriented n-dimensional Riemannian vector bundle over a manifold X,

and suppose n ≥ 3. Let PSO(E) denote the orthonormal frame bundle of E. Then

a spin structure on E is a principal Spinn-bundle PSpin(E) together with a double

covering

ξ : PSpin(E)→ PSO(E)

such that ξ(p · g) = ξ(p) · ξ0(g) for all p ∈ PSpin(E) and all g ∈ Spinn.

For n = 2, a Spin structure on E is defined analogously, with Spin2 replaced by SO2

and ξ0 : SO2 → SO2 the connected double covering.

For n = 1, PSO(E) ' X and a spin structure is simply defined to be a double covering

of X.

The existence of a spin structure on a vector bundle E is dictated by the vanishing

of the first and second Stiefel-Whitney class w1(E) and w2(E), respectively.

A spin manifold is an oriented Riemannian manifold X with a spin structure on its

tangent bundle. Moreover, the inequivalent spin structures on X are in one-to-one

correspondence with elements of H1(X; Z2). Given an oriented Riemannian vector

bundle, we can construct the associated Clifford bundle defined as

C`(E) := PSO(E)×c`(ρ) C`n

where c`(ρ) : SOn → Aut(C`n) is induced by lifting orthogonal transformations of Rn

to the Clifford algebra C`n. The Clifford bundle C`(E) is a bundle of Clifford algebras

over X, and the fibrewise multiplication in C`(E) gives an algebra structure to the

space of sections of C`(E). Hence, all the notions regarding Clifford algebras carry

over to Clifford bundles. We can then look for bundles of irreducible modules over the

Clifford bundle C`(E). These bundles can be constructed if E has a spin structure.

Indeed, a real spinor bundle of E is a bundle of the form

S(E) := PSpin(E)×µ W

where W is a left module for C`n, and where Spinn acts on W by left multiplication

by elements of Spinn ⊂ C`n. Analogously, a complex spinor bundle of E is given by

SC(E) := PSpin(E)×µ WC
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where WC is a complex left module for C`n. One can easily prove that the sec-

tions of the spinor bundle are a module over the sections of the Clifford bundle. A

spinor bundle S(E) is called irreducible if the left module W(WC) is the irreducible

real(complex) spinor representation of Spinn. In particular, when the vector bundle

E has rank n = 2m, the complex spinor bundle SC(E) associated to the irreducible

representation of C`2m decomposes as

SC(E) = S+
C(E)⊕ S−C(E)

where S±C(E) is the ±1 eigenbundle for Clifford multiplication by the complex volume

element ωC, and can be represented as

S+
C(E) ' PSpin(E)×∆C±

2m
C2m−1

Let E be now equiped with a covariant derivative

∇ : Γ(E)→ Γ(E⊗ T∗X)

induced by a connection τ on PSO(E). Since C`(E) is an associated vector bundle to

PSO(E), τ induces a covariant derivative ∇C` on C`(E) with the property that

∇C`(ϕ · ψ) = (∇C`ϕ) · ψ + ϕ · (∇C`ψ)

Moreover, the covariant derivative ∇C` preserves the subbundles C`0(E) and C`1(E),

and the volume element ω = e1e2 · · · en is globally parallel, i.e. ∇C`ω = 0.

Suppose E is also equiped with a spin structure ξ : PSpin(E)→ PSO(E). We can then

lift the connection τ on PSO(E) to a connection τ̃ on PSpin(E). Since a spinor bundle

S(E) is an associated vector bundle to PSO(E), the connection τ̃ induces a covariant

derivative ∇S on S(E). In particular, the covariant derivative ∇S is compatible with

∇C`, in the sense that

∇S(ϕ · σ) = (∇C`ϕ) · σ + ϕ · (∇Sσ)

for any ϕ ∈ Γ(C`(E)) and any σ ∈ Γ(S(E)).

Given an n-dimensional oriented Riemannian manifold X, we denote with C`(X) the

Clifford bundle associated to TX. The Clifford bundle carries a canonical covariant

derivative, which is induced by the Levi-Civita connection on PSO(TX). Consider now

any bundle S of left modules over C`(X), not necessarily a spinor bundle, and suppose

S is Riemannian and equiped with a Riemannian connection. We can then define a
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first-order elliptic differential operator D : Γ(S) → Γ(S) called the Dirac operator of

S, defined as

Dσ|x :=
n∑
j=1

ej · (∇ejσ)|x

at x ∈ X, where e1, e2, . . . , en is an orthonormal basis of TxX.

If we let S = C`(X) with its canonical Riemannian connection, and view C`(X) as a

bundle of left modules over itself by Clifford multiplication, then the Dirac operator

is a square root of the classical Hodge laplacian.

Another case of major importance is the following. Let X be a spin manifold, and

let S be any spinor bundle. The vector bundle S is Riemannian and carries a canon-

ical covariant derivative ∇Spin, called the spin connection, induced by the lift of the

Levi-Civita connection on PSO(TX). The Dirac operator in this case is called the

Atiyah-Singer operator, and plays a fundamental role in the Index theorem. Finally,

a Dirac operator associated to a bundle S of left modules over C`(X) can be twisted

by a Riemannian vector bundle with connection E by considering the Clifford multi-

plication on Γ(S⊗ E) induced by

ϕ · (σ ⊗ e) := (ϕ · σ)⊗ e

and equiping S⊗ E with the tensor product connection ∇ defined on sections of the

form σ ⊗ e by

∇(σ ⊗ e) := (∇Sσ)⊗ e+ σ ⊗ (∇Ee)

where ∇S and ∇E are the covariant derivatives on S and E, respectively.

Finally, we conclude this appendix by giving the definition of a Spinc manifold.

This involves first constructing the group Spinc. Consider the complex spinor repre-

sentation

∆C : Spinn → GLC(WC)

and let z : U(1) → GLC(WC) denote the multiplication by scalar. We then get the

homomorphism ∆C × z : Spinn × U(1) → HomC(WC,WC), which has the element

(−1,−1) in its kernel. Dividing by this element gives the group

Spinc
n := Spinn ×Z2 U(1)

which satisfies the short exact sequence

0→ Z2 → Spinc
n

ξ0−→ SOn × U(1)→ 1
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Let E be an oriented Riemannian vector bundle of rank n over a manifold X. A Spinc-

structure on E consists of a principal Spinc
n-bundle PSpinc

n
(E), and also a principal

U(1)-bundle PU(1)(E) over X with a bundle map

PSpinc
n
(E)

ξ−→ PSOn(E)× PU(1)(E)

such that ξ satisfies ξ(p · g) = ξ(p)ξ0(g) for all p ∈ PSpinc
n
(E) and all g ∈ Spinc

n. The

first Chern class d(E) of the U(1)-bundle PU(1)(E) is called the canonical class of the

Spinc-structure.

A Spinc-manifold is an oriented Riemannian manifold X with a Spinc-structure on

the tangent bundle TX.
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Appendix C

Characteristic classes for vector bundles

In this appendix we will briefly recall some basic facts from the theory of character-

istic classes, as developed in [70].

All the spaces are assumed to be of the homotopy type of countable CW-complexes.

Let G be a Lie group. A classifying space for G is a connected topological space BG,

together with a principal G-bundle EG → BG such that for any compact Hausdorff

space X the set of homotopy classes of maps from X to BG is in bijective correspon-

dence with the set of equivalence classes of principal G-bundles over X. In particular,

the above correspondence is induced by associating to each map f : X→ BG the

pullback bundle f ∗EG over X.

The principal bundle EG→ BG is called the universal principal G-bundle. It can be

proven by direct construction that for any Lie group a classifying space does exist.

Moreover, by the very properties of a classifying space, it is unique up to homotopy

type.

Consider the singular cohomology H∗(BG; Λ) with coefficients in a ring Λ. Each non-

zero class in H∗(BG; Λ) is a universal characteristic class for principal G-bundles.

Fix a class c ∈ H∗(BG; Λ). For each principal G-bundle P → X we define the c-

characteristic class c(P) ∈ H∗(X; Λ) as

c(P) := f∗P(c)

where fP : X→ P is a classifying map for P, and is well defined, since fP is uniquely

defined up to homotopy. Moreover, any such characteristic class is “natural”, in the

sense that given a principal G-bundle P over X and a continuous map ϕ : Y → X we

have

c(ϕ∗P) = ϕ∗c(P)

We will now specialize to the case G = BOn ,BUn . In these particular cases, the

universal bundle EG can be obtained as the appropriate bundle of frames of a uni-

versal real (or complex) vector bundle En over BOn (or BUn), which classifies real (or

complex) vector bundles. Moreover, despite still difficult to compute, the cohomology

rings of the classifying spaces BOn and BUn are quite manageable. The cohomology

ring H∗(BOn; Z2) is a Z2-polynomial ring

Z2[w1, w2, . . . , wn]
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where wk is a canonical generators of Hk(BOn; Z2), and is called the universal k-th

Stiefel-Whitney class. To any n-dimensional real vector bundle E → X classified

by a map fE : X → BOn , we can associate the k-th Stiefel-Whitney class of E,

wk(E) := f∗E(wk). In particular, the total Stiefel-Whitney class w := 1 +w1 + · · ·+wn

satisfies

w(E⊕ E′) = w(E) ∪ w(E′)

If X is a smooth manifold, we can define the k-th Stiefel-Whitney class wk(X) of X as

wk(TX). An important property of the Stiefel-Whitney classes is that for a compact

smooth manifold they are invariants of the homotopy type of the manifold.

Given an n-dimensional real vector bundle E, the first and second Stiefel-Whitney

vanish exactly when E is orientable and admits a Spin structure, respectively. This

can be seen by using the following equivalent definition of w1(E) and w2(E).

Recall that any isomorphism class of principal G-bundles on a space X can be rep-

resented as a class in H1(X; G), the cohomology of X with coefficients in the sheaf of

G-valued functions, via the transition functions. When G is not abelian, H1(X; G)

is not a group, but rather a set with a distinguished element given by the trivial G-

bundle. However, it still preserves some cohomological properties. Indeed, consider

the short exact sequence

0→ SOn
i−→ On

ρ−→ Z2 → 0,

which induces the exact sequence

H1(X; SOn)
i∗−→ H1(X; On)

ρ∗−→ H1(X; Z2)

Given a rank n vector bundle, we can define w1(E) = ρ∗([PO(E)]), where [PO(E)]

denotes the class of the orthonormal frame bundle of E. Hence, when w1(E) = 0 we

have that the class [PO(E)] is the image of the class of an SOn-principal bundle, which

is possible if and only if E is orientabale.

Similarly, the short exact sequence

0→ Z2 → Spinn
ξ0−→ SOn → 0

induces the exact sequence

H0(X; SOn)
δ0−→ H1(X; Z2)→ H1(X; Spinn)

ξ0∗−→ H1(X; SOn)
δ−→ H2(X; Z2)
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We can define the second Stiefel-Whitney class by w2(E) = δ([PSO(E)]). Hence,

w2(E) = 0 if and only if PSO(E) is equivalent to the Z2-quotient of a principal Spinn-

bundle on X.

For the classifying space BUn, we have that the cohomology ring H∗(BUn; Z) is a

Z-polynomial ring

Z[c1, c2, · · · , cn]

where ck ∈ Hk(BUn; Z) is a canonical generator, and is called the universal k-th

Chern class. Thus, to any n-dimensional complex vector E → X classified by a map

fE : X→ BUn we can associated the k-the Chern class ck(E) = f∗E(ck). We can define

the total Chern class c = 1 + c1 + · · ·+ cn, which satisfies

c(E⊕ E′) = c(E) ∪ c(E′) (C.1)

For a given complex n-dimensional vector bundle E→ X, we can compute the Chern

classes which are nontorsion in the following geometric way. Let F be the curvature

of an arbitrary covariant derivative on E. Recall that F is a differential form valued

in the adjoint representation of U(n), hence in n × n antihermitian matrices. Then

the k-th Chern class of E is given by the deRham class of αk(E), where

det(I +
Ft

2π
) =

n∑
k=1

αk(E)tk

The Chern classes defined above can be used as the basic ingredient to define other

important characteristic class of vector bundle over a manifold. This is due to the

following

Theorem C.1 Let E be a n-dimensional complex vector bundle over a manifold X.

Then there exists a manifold ME and a smooth and proper fibration π : ME → X such

that

i) the homomorphism π∗ : H∗(X)→ H∗(ME) is injective

ii) the bundle π∗E splits into the direct sum of complex line bundles

π∗E ' L1 ⊕ L2 ⊕ · · · ⊕ Ln

The above theorem “induces” the following splitting principle: all polynomial

identities in the Chern classes of complex vector bundles can be proven under the

assumption that all vector bundles are direct sums of line bundles.
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For a real vector bundle E of dimension 2n one can prove that the complexification

E⊗ C splits on ME as

π∗(E⊗ C) ' L1 ⊕ L1 ⊕ · · · ⊕ Ln ⊕ Ln

where L1 denotes the complex conjugate of the L1.

Notice that by naturality property, any c-characteristic class of π∗E is in the image

of the homomorphism π∗. We can then construct characteristic classes as the unique

preimage via the splitting homomorphism π∗ of functions of the Chern classes of the

splitting line bundles. For instance, by using the property (C.1) of the total Chern

class, we have

c(E) =
n∏
k=1

(1 + xk)

where xk = c1(L1).

In this way, we can associate to formal power series rational characteristic classes. We

can define the total Todd class of a complex vector bundle E by

Td(E) :=
n∏
k=1

xk
1− e−xk

Given a real vector bundle E of dimension 2n, the total Â-class can be defined by

Â(E) :=
n∏
k=1

xk/2

sinh(xk/2)

Finally, we can define the total Chern character by

ch(E) :=
n∑
k=1

exk

The Chern charater can be represented in the deRham cohomology of X as

ch(E) = [Tr(eF/2π)] ∈ Hev(X; R)

where F is the curvature of a covariant derivative on E, and the trace Tr is in the

adjoint representation of U(n).
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Appendix D

Equivariant K-homology

Spectral definition

A natural way to define the equivariant homology theory KG
• is by means of a spec-

trum for equivariant topological K-theory K•G, which is a particular covariant functor

VectG(−) from the orbit category Or(G) to the tensor category Spec of spectra [31, 73].

Given any G-complex X, the corresponding pointed G-space is X+ = Xq pt and one

defines the loop spectrum X+ ⊗G VectG(−) by

X+ ⊗G VectG(−) =
∐

G/H∈Or(G)

(
XH

+ ∧ VectG(G/H)
) /
∼ , (D.1)

where the equivalence relation∼ is generated by the identifications f ∗(x)∧s ∼ x∧f∗(s)
with (f : G/K → G/H) ∈ Mor(Or(G)), x ∈ XH

+, and s ∈ VectG(G/K)∗. One then

puts

KG
∗ (X) := π∗

(
X+ ⊗G VectG(−)

)
. (D.2)

By using various G-homotopy equivalences of the loop spectra (D.1), one shows

that this definition of equivariant K-homology comes with a natural induction struc-

ture. For the trivial group it reduces to the ordinary K-homology Ke
∗ = K∗ given by

the Bott spectrum BU . If G is a finite group, any finite-dimensional representation of

G naturally extends to a complex representation of the group ring C[G]. Then there

is an analytic assembly map

ass : KG
∗ (X) −→ K∗

(
C[G]

)
to the K-theory of the ring C[G], induced by the collapsing map X → pt and the

isomorphisms

K∗
(
C[H]

) ∼= π∗
(

VectG(G/H)
) ∼= KG

∗ (G/H) ∼= R(H)

for any subgroup H ≤ G [73]. In the following we will give two concrete realizations

of the homotopy groups (D.2).
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Analytic definition

The simplest realization of the equivariant K-homology group KG
∗ (X) is within the

framework of an equivariant version of Kasparov’s KK-theory KKG
∗ . Let A be a

G-algebra, i.e., a C∗-algebra A together with a group homomorphism

λ : G −→ Aut(A) .

By a Hilbert (G,A)-module we mean a Hilbert A-module E together with a G-action

given by a homomorphism Λ : G→ GL(E) such that

Λg(ε · a) = Λg(ε) · λg(a) (D.3)

for all g ∈ G, ε ∈ E and a ∈ A. Let L(E) denote the ∗-algebra of A-linear maps

T : E → E admitting an adjoint with respect to the A-valued inner product on E.

The induced G-action on L(E) is given by g · T := Λg ◦ T ◦ Λg−1 . Let K(E) be the

subalgebra of L(E) consisting of generalized compact operators.

Given a pair (A,B) of G-algebras, let DG(A,B) be the set of triples (E, φ,T) where

E is a countably generated Hilbert (G,B)-module, φ : A→ L(E) is a ∗-homomorphism

which commutes with the G-action,

φ
(
λg(a)

)
= Λg ◦ φ(a) ◦ Λg−1 (D.4)

for all g ∈ G and a ∈ A, and T ∈ L(E) such that

1) [T, φ(a)] ∈ K(E) for all a ∈ A; and

2) φ(a) (T− T∗), φ(a) (T2 − 1), φ(a) (g · T− T) ∈ K(E) for all a ∈ A and g ∈ G.

The standard equivalence relations of KK-theory are now analogously defined. The set

of equivalence classes in DG(A,B) defines the equivariant KK-theory groups KKG
∗ (A,B).

If X is a smooth proper G-manifold without boundary, and G acts on X by dif-

feomorphisms, then the algebra A = C0(X) of continuous functions on X vanishing

at infinity is a G-algebra with automorphism λg on A given by

λg(f)(x) :=
(
g∗f
)
(x) = f

(
g−1 · x

)
,

where g∗ denotes the pullback of the G-action on X by left translation by g−1 ∈ G.

We define

KG
∗ (X) := KKG

∗
(
C0(X) , C

)
(D.5)

with G acting trivially on C. The conditions (D.3) and (D.4) naturally capture the

physical requirements that physical orbifold string states are G-invariant and also that

the worldvolume fields on a fractional D-brane carry a “covariant representation” of

the orbifold group [37].
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The equivariant Dirac class

We can determine a canonical class in the abelian group (D.5) as follows. We refer to

Appendix B for basic notions of Clifford algebras.

Let dim(X) = 2n, and let G be a finite subgroup of the rotation group SO(2n).13 A

choice of a complete G-invariant riemannian metric on X naturally lieft the Clifford

bundle C`(X).

The G-manifold X is said to have a G-spinc structure or to be KG-oriented if there

is an extension of the orthonormal frame bundle PSO2n(X) to a principal Spinc(2n)-

bundle PSpinc
2n

(X) over X which is compatible with the G-action. The extension

PSpinc
2n

(X) may be regarded as a principal circle bundle over PSO2n(X),

U(1)

wwnnnnnnnnnnnnn

��

Ĝ //

��

Spinc(2n) //

��

PSpinc
2n

(X) //

��

X ,

G // SO(2n) // PSO2n(X)

99ssssssssss

where the pullback square on the bottom left defines the required covering of the orb-

ifold group G < SO(2n) by a subgroup of the spinc group Ĝ < Spinc(2n). The kernel of

the homomorphism Ĝ→ G is identified with the circle group U(1) < Spinc(2n). We fix

a choice of lift and hence assume that G is a discrete subgroup of the spinc group. Z2-

graded Clifford modules are likewise extended to representations of C[G]⊗Cliff(2n),

with C[G] the group ring of G, called G-Clifford modules.

Since G lifts to Ĝ in the spinc group, the the spinor bundles bundles S± associated to

PSpinc
2n

(X) are naturally G-bundles. The G-invariant Levi-Civita connection deter-

mines a connection on PSO2n(X), and together with a choice of G-invariant connection

form on the principal U(1)-bundle PSpinc
2n

(X)→ PSO2n(X), they determine a connec-

tion one-form on the principal bundle PSpinc
2n

(X) → X which is G-invariant. This

determines an invariant covariant derivative

∇S⊗E : Γ
(
S+ ⊗ E

)
→ Γ

(
T∗X ⊗ S+ ⊗ E

)
where ∇E is a G-invariant connection on a G-bundle E → X. The contraction given

by Clifford multiplication defines a map

C` : Γ
(

T∗X ⊗ S+ ⊗ E
)
→ Γ

(
S− ⊗ E

)
13Throughout the extension to KG

1 or K−1
G and dim(X) odd can be described in the same way as

in degree zero by replacing X with X× S1.
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which graded commutes with the G-action, and the G-invariant spinc Dirac operator

on X with coefficients in E is defined as the composition

D/ X
E = C` ◦ ∇S⊗E . (D.6)

We will view the operator (D.6) as an operator on L2-spaces

D/ X
E : L2

(
X , S+ ⊗ E

)
−→ L2

(
X , S− ⊗ E

)
.

It induces a class
[
D/ X

E

]
∈ KG

0 (X) as follows. The G-algebra C0(X) acts on the Z2-

graded G-Hilbert space E := L2(X, S ⊗ E) by multiplication. Define the bounded

G-invariant operator T := D/ X
E

(
(D/ X

E)2 + 1
)−1/2 ∈ FredG. Then

[
D/ X

E

]
is represented by

the G-equivariant Fredholm module (E,T).

Geometric definition

Geometric equivariant K-homology can be defined for an arbitrary discrete, countable

group G on the category of proper, finite G-complexes X and proven to be isomor-

phic to analytic equivariant K-homology [15]. Recall that the topological equivariant

K-theory K∗G(X) is defined by applying the Grothendieck functor K∗ to the addi-

tive category VectC
G(X) whose objects are complex G-vector bundles over X, i.e.,

K∗G(X) := K∗
(
VectC

G(X)
)
. In the homological setting, the relevant category is instead

the additive category of G-equivariant K-cycles DG(X), whose objects are triples

(W,E, f) where

(a) W is a manifold without boundary with a smooth proper cocompact G-action

and G-spinc structure;

(b) E is an object in VectC
G(W); and

(c) f : W→ X is a G-map.

Two G-equivariant K-cycles (W,E, f) and (W′,E′, f ′ ) are said to be isomorphic if

there is a G-equivariant diffeomorphism h : W→W′ preserving the G-spinc structures

on W,W′ such that h∗(E′ ) ∼= E and f ′ ◦ h = f .

Define an equivalence relation ∼ on the category DG(X) generated by the opera-

tions of

i) Bordism: (Wi,Ei, fi) ∈ DG(X), i = 0, 1 are bordant if there is a triple (M,E, f)

where M is a manifold with boundary ∂M, with a smooth proper cocompact

G-action and G-spinc structure, E → M is a complex G-vector bundle, and f :
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M → X is a G-map such that (∂M,E|∂M, f |∂M) ∼= (W0,E0, f0) q (−W1,E1, f1).

Here −W1 denotes W1 with the reversed G-spinc structure;

ii) Direct sum: If (W,E, f) ∈ DG(X) and E = E0 ⊕ E1, then

(W,E, f) ∼= (W,E0, f)q (W,E1, f) ;

and

iii) Vector bundle modification: Let (W,E, f) ∈ DG(X) and H an even-dimensional

G-spinc vector bundle over W. Let Ŵ = S(H ⊕ 11) denote the sphere bundle

of H ⊕ 11, which is canonically a G-spinc manifold, with G-bundle projection

π : Ŵ→W. Let

S(H) = S(H)+ ⊕ S(H)−

denote the Z2-graded G-bundle over W of spinors on H. Set Ê = π∗
(
(S(H)+)∨⊗

E
)

and f̂ = f ◦ π. Then
(

Ŵ , Ê , f̂
)
∈ DG(X) is the vector bundle modification

of (W,E, f) by H.

We set

KG
0,1(X) = DG

even,odd(X)
/
∼

where the parity refers to the dimension of the K-cycle, which is preserved by ∼.

Using the equivariant Dirac class, one can construct a homomorphism from the

geometric to the analytic K-homology group. On K-cycles we define (W,E, f) 7→
f∗
[
D/W

E

]
and extend linearly. This map can be used to express G-index theorems

within this homological framework and it extends to give an isomorphism between

the two equivariant K-homology groups [15]
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