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Abstract

In this thesis we study area-dependent quantum field theories. We classify
them in terms of regularized ∗-Frobenius algebras, which generalize the notion
of ∗-Frobenius algebras. We then give a way of building examples, the so-called
lattice construction. Finally we describe the example motivating the study of
these theories, the 2d Yang–Mills theory, with our newly developed techniques.
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Introduction

Quantum field theories in general depend on the metric on the manifold they
are defined on, therefore these theories are complicated to describe and an-
alyze mathematically. However one can consider simpler theories, where the
correlation functions depend for example only on the conformal structure of
the manifold, these are called conformal field theories. If the correlation func-
tions do not depend on the metric at all, only on the topology of the manifold,
we call the quantum field theory topological. Both types of theories have been
extensively discussed in the literature and an explicit mathematical description
is available for topological field theories (or TFTs) in any dimensions [1]. The
most widely known TFTs are however in 2 [2] and 3 dimensions [3, 4]. One can
also consider a theory, where the correlation functions depend on the metric
only through the volume of the manifold. Unlike the former two theories, the
latter has not been treated so thoroughly in the literature.

One can find a description of such 2-dimensional theories, called area-de-
pendent quantum field theories (or AQFTs), in [5, 6] and [7], but none of them
discusses the general theory in detail, they only describe an example. This
example of AQFTs, which motivates the detailed analysis of the general theory,
is the 2-dimensional Yang–Mills theory, explained in e.g. [8]. There the area
works as the regulator: a general correlation function is well-defined only for
non-zero area. While it is a well-known fact that the state spaces of 2d TFTs
are finite dimensional [2], this minor modification of allowing area-dependence
enables one to consider theories with infinite dimensional state spaces. This
can be seen in the Yang–Mills theory, where the state space is the Hilbert space
of square integrable class functions on a compact Lie group.

The thesis is structured as follows. Chapter 1 contains the algebraic tools
needed for the treatment of AQFTs. We start by summarizing the theory of
Frobenius algebras, then introduce the notion of ∗-categories and ∗-Frobenius
algebras. Then we give an overview of compact operators focusing on their
spectral theory. We give the definition of regularized ∗-Frobenius algebras (or
RFAs), generalizing the notion of ∗-Frobenius algebras and show that they are
governed by a family of compact operators. Then we show how under certain
continuity condition RFAs decompose into a family of ∗-Frobenius algebras
and that given a family of ∗-Frobenius algebras obeying certain non-trivial
convergence conditions how we can recover the notion of an RFA. We finally
show that these two constructions are inverse to each other.

In chapter 2 after discussing the category of smooth bordisms and topolog-
ical field theories, we introduce the category of bordisms with areas (which are
strictly positive). Using this notion we define area-dependent quantum field
theories as symmetric monoidal functors from the latter category to the cate-
gory of Hilbert spaces. We introduce the notion of strongly continuous AQFTs,
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which are described by strongly continuous RFAs, and which are therefore clas-
sified. Finally we consider AQFTs, which allow zero areas.

In chapter 3 we introduce a cell decomposition of bordisms, which we use to
describe the lattice construction of TFTs. Then we show how the data needed
for the lattice construction is encoded in a ∆-separable symmetric Frobenius
algebra, and that the state space of a lattice TFT is the center of this algebra.
We generalize this construction to the area-dependent case, show how a ∆-
separable symmetric RFA describes the lattice construction of an AQFT and
that its state space is given by a generalized version of the center.

Finally in chapter 4 we describe an example of AQFTs, the 2d Yang–Mills
theory using our new formalism. We show that the Boltzmann weights are well-
defined only for a non-zero area. We compute the state space of the theory
and calculate the RFA, which describes the lattice construction and compute
its center in order to make the connection of the general theory to this example
explicit. Finally we calculate some zero area limits and show explicitly that
the convolution product is an unbounded operator on L2(G).

In appendix A we describe the category of Hilbert spaces and show how one
can endow it with a symmetric monoidal structure, usually discussed only for
the full subcategory of finite dimensional Hilbert spaces.

The following results can to my knowledge not be found in the literature
and are new contributions:

• the definition of regularized Frobenius algebras, in particular the careful
treatment of their analytic properties,

• the classification of strongly continuous regularized ∗-Frobenius algebras,

• the classification of strongly continuous area-dependent quantum field
theories in terms of regularized Frobenius algebras,

• the lattice construction of area-dependent quantum field theories, how-
ever the general ideas for TFTs are taken from the literature [9],

• the convergence results in the 2d Yang–Mills theory, however the key
estimate is taken from from the literature [10].

This new formalism could allow one to systematically study 1-dimensional
defects in area dependent quantum field theories. We would like to describe
these as “bimodules” over regularized ∗-Frobenius algebras, which would gen-
eralize the results for TFTs [9]. Then we could apply this formalism to the 2d
Yang–Mills theory and we hope that we can identify Wilson loop observables
as examples of such defects.

Another goal is to fit the so-called q-deformed 2d Yang–Mills theory, which
is a gauge theory based on a quantum group [11], into this framework. Here we
would like to show that the observables - the gauge invariants - correspond to
1d defects. Then we will try to use this theory to calculate different quantities
in some higher dimensional supersymmetric gauge theories [12].

I am indebted to André Henriques for explaining the decomposition of
AQFTs into possibly infinite direct sums of TFTs combined with a simple
area law. This observation was the basis of the classification result of strongly
continuous AQFTs.
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Chapter 1

Algebraic Considerations

1.1 Frobenius Algebras

Let C be a strict monoidal category with tensor product ⊗ and tensor unit I.
An algebra in C is an object A together with morphisms µA : A ⊗ A → A,
ηA : I → A (called product and unit respectively) such that

• µA ◦ (idA ⊗ µA) = µA ◦ (µA ⊗ idA) (associativity) and

• µA ◦ (idA ⊗ ηA) = µA ◦ (ηA ⊗ idA) = idA (unitality).

A morphisms of algebras A,B ∈ C is a morphism A
ϕ−→ B in C, such that

• ϕ ◦ µA = µB ◦ (ϕ ◦ ϕ) and ϕ ◦ ηA = ηB .

A left module over an algebra A ∈ C (or an A-module in short) is an object
M ∈ C together with a morphism µM : A⊗M →M in C such that

• µM ◦ (idA ⊗ µM ) = µM ◦ (µA ⊗ idM ) and

• µM ◦ (ηA ⊗ idM ) = idM .

One can define right modules analogously. We call a morphism ϕ :M → N in
C between two A-modules an A-module morphism, if ϕ◦µM = µN ◦ (idA⊗M).

A Frobenius algebra in C is an algebra A in C together with a morphism
εA : A → I, such that the morphism βA := εA ◦ µA : A⊗ A → I (the pairing)
is non-degenerate. By this we mean that there is a morphism γA : I → A⊗ A
(the copairing), such that

(idA ⊗ βA) ◦ (γA ⊗ idA) = (βA ⊗ idA) ◦ (idA ⊗ γA) = idA. (1.1)

Note that this equation determines the copairing uniquely. We will not write
the indices of the morphisms, when it is understood, which Frobenius algebra
we are talking about. We have an equivalent definition of Frobenius algebras
in any monoidal category C [2]:

Proposition 1. Let F be an object in C together with morphisms µF : F⊗F →
F , ηF : I → F , ∆F : F → F ⊗F and εF : F → I (the product, unit, coproduct
and counit respectively), such that the following relations hold:

1. µF ◦ (idF ⊗ ηF ) = µF ◦ (ηF ⊗ idF ) = idF (unitality),
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2. (idF ⊗ εF ) ◦∆F = (εF ⊗ idF ) ◦∆F = idF (counitality) and

3. µF ◦∆F = (µF ⊗ idF )◦ (idF ⊗∆F ) = (idF ⊗µF )◦ (∆F ⊗ idF ) (Frobenius
relation).

Then F together with µF , ηF and εF is a Frobenius algebra.
Conversely let F together with µF , ηF and εF be a Frobenius algebra in C,

with copairing γF . Set

∆F := (µF ⊗ idF ) ◦ (idF ⊗ γF ) : F → F ⊗ F. (1.2)

Then µF , ηF , ∆F and εF satisfy the relations 1-3.

The proof is essentially the same when one considers C = Vectk (defined
below), in which case the proof can be found in [2] section 2.3. Note that the
Frobenius relation can be used to show that associativity holds. Furthermore
it can be used to show coassociativity [2]:

(∆F ⊗ idF ) ◦∆F = (idF ⊗∆F ) ◦∆F . (1.3)

There is a useful tool in strict monoidal categories for doing calculations.
We draw string diagrams for morphisms, an example is shown on figure 1.1.
We draw the tensor product of morphisms by placing the two diagrams next
to each other, and we draw the composition of two morphisms by placing the
two diagrams on top of each other. Some examples are given on figure 1.2. For
more details on this graphical calculus see e.g. [13] chapter XIV.1.

Figure 1.1: Graphical notation of the Frobenius algebra maps and the braiding

Figure 1.2: Graphical notation of some relations in a Frobenius algebra

Let Frob(C) ⊂ C denote the category of Frobenius algebras in C. Its objects
are Frobenius algebras in C and its morphisms are morphisms A

ϕ−→ B in C for
A, B Frobenius algebras, which satisfy,

• ϕ ◦ µA = µB ◦ (ϕ ◦ ϕ), ϕ ◦ ηA = ηB ,

• (ϕ ◦ ϕ) ◦∆A = ∆B ◦ ϕ, εA = εB ◦ ϕ.
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There is an interesting feature of Frobenius algebras ([2] lemma 2.4.5).

Proposition 2. Frob(C) is a groupoid.

Proof. Let A
ϕ−→ B be a morphism in Frob(C) and set

ϕ := (εB ◦ µB ⊗ idA) ◦ (idB ⊗ ϕ⊗ idA) ◦ (idB ⊗∆A ◦ ηA) . (1.4)

Then we have ϕ ◦ ϕ = idB , calculated on figure 1.3 and ϕ ◦ ϕ = idA, which can
be calculated similarly, so ϕ is an isomorphism.

Figure 1.3: First use that ϕ ◦ µA = µB ◦ (ϕ ◦ ϕ), then that ϕ ◦ ηA = ηB . In the
last step use the Frobenius relation, then unitality and counitality.

If C is furthermore endowed with a braiding τ , then we call an algebra
A commutative, if µA ◦ τA,A = µA and write cFrob(C) for the subcategory
of commutative Frobenius algebras in C. Note that a Frobenius algebra is
commutative, if and only if it is cocommutative, i.e. τA,A ◦ ∆A = ∆A. Now
recall the definition of the pairing: βA = εA ◦ µA. We call a Frobenius algebra
A symmetric, if the pairing is symmetric: βA = βA◦τA,A. Then the uniqueness
of the copairing implies that γA = τA,A ◦ γA.

Let k be a field. We denote by Vectk the category of vector spaces over
k. It has objects vector spaces over k and morphisms k-linear maps. Vectk
becomes a monoidal category via the tensor product of vector spaces (⊗) and
tensor unit k and the flip map v ⊗ w 7→ w ⊗ v endows it with a symmetric
structure. This is not a strict monoidal category, but as usual1 we will work
with an equivalent strict monoidal category instead and use the same notation.

If C = Vectk with the above braiding then we call (c)Frob(Vectk) the
category of (commutative) Frobenius algebras over k and write (c)Frob

k
for

simplicity. Since the copairing exists for every A ∈ Frobk, A is finite dimen-
sional. For the proof see [2] proposition 2.3.24.

Proposition 3. Let A be an algebra in Vectk. Then the following are equiv-
alent:

1. A is semi-simple as a left module over itself,

2. every left A-module is semi-simple,

3. every left A-module is projective.

1See e.g. [13] chapter XI.5.
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For the proof see e.g. [14] proposition 13.9 and 17.2. We call an algebra
A semi-simple, if it satisfies the equivalent conditions of proposition 3. We
call a Frobenius algebra semi-simple, if it is semi-simple as an algebra. An
algebra A ∈ Vectk is called separable, if there exists an A-module morphism
ι : A → A⊗ A such that µA ◦ ι = idA. A Frobenius algebra A is ∆-separable,
if µA ◦∆A = idA.

Lemma 4. Let A ∈ Vectk be a separable algebra. Then A is semi-simple.

Proof. Let AM be a left A-module with action µM and consider the left A-
module AA ⊗M where A acts only on the A factor. Then AA ⊗M is a free
A-module.

Let

ιM := (idA ⊗ µM ) ◦ (ι ◦ ηA ⊗ idM ) : AM → AA⊗M.

Since A is separable we have

µM ◦ ιM = µM ◦ ((µM ◦ ι ◦ ηA)⊗ idM )) = µM ◦ (ηA ⊗ idM ) = idM ,

so AM is the direct summand of a free module, therefore it is a projective
module. Therefore A is a semi-simple algebra by proposition 3.

Corollary 5. If for A ∈ Frobk we have

µA ◦∆A = ξidA, (1.5)

with ξ ∈ k \ {0}, then A is semi-simple.

1.2 ∗-Frobenius Algebras

In order to define ∗-Frobenius algebras we need two new notions. A ∗-structure
or (dagger structure) on a category C is a contravariant functor ∗C : C → C,
which is the identity on objects and an involution on morphisms, i.e. ∗2C = IdC .
We call C a ∗-category, if it is equipped with a ∗-structure [15]. If the category
C is monoidal with associator α, left and right unit constraints r and l, then
we require that α∗ = α−1, r∗ = r−1 and l∗ = l−1, and furthermore that
(f ⊗ g)∗ = f∗⊗ g∗ for all morphisms f and g. If the category C is braided with
braiding c, then we require that c∗ = c−1.

Let C, D be categories with ∗-structures ∗C and ∗D respectively. We call a
functor F : C → D a ∗-functor, if it commutes with the ∗-structures, i.e.

F ◦ ∗C = ∗D ◦ F. (1.6)

A natural transformation of ∗-functors is a natural transformation of the func-
tors. If C and D were additionally monoidal and F was a monoidal functor with
natural isomorphisms ϕ2 and ϕ0, then we require that ϕ∗2 = ϕ−1

2 and ϕ∗0 = ϕ−1
0 .

Now let us see an example of a ∗-category.

Definition 6. Let Hilb denote the category of Hilbert spaces, whose

• objects are Hilbert spaces over C,

• morphisms are bounded linear maps between Hilbert spaces.
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We write B(H,K) for the set of bounded linear maps H → K, for H,
K Hilbert spaces. Note that Hilb is a symmetric monoidal category with
the completed algebraic tensor product (⊗̂), for details see appendix A. A ∗-
structure on Hilb is to take the adjoint of a bounded linear map. Let us keep
this ∗-structure on Hilb fixed from now on.

Definition 7. A ∗-Frobenius algebra is a Frobenius algebra in a monoidal ∗-
category such that

∆∗ = µ, ε∗ = η. (1.7)

A morphism of ∗-Frobenius algebras is a morphism of the Frobenius algebras.

Proposition 8. Every ∗-Frobenius algebra in Hilb is semi-simple.

Proof. Let E denote a ∗-Frobenius algebra in Hilb and let t := µ◦∆ = ∆∗ ◦∆.
It is a self-adjoint operator, so it can be diagonalized2 and E decomposes into
Hilbert spaces as

E =
N⊕

α=1

Fα, (1.8)

where Fα is the eigenspace of t with eigenvalue tα. Without loss of generality
we can assume that

tα ̸= tβ , if α ̸= β. (1.9)

Now we show that this is a direct sum of Frobenius algebras.
From the Frobenius relation and associativity we have

t ◦ µ =µ ◦ (∆ ◦ µ) = µ ◦ (µ⊗ id) ◦ (id⊗∆)

=µ ◦ (id⊗ µ) ◦ (id⊗∆) = µ ◦ (id⊗ t), (1.10)

i.e. t is a left module map and one similarly shows that it is a right module map
as well. Let α ̸= β and take a ∈ Fα, b ∈ Fβ . Then t(a) = tαa and t(b) = tβb
and we have

t(ab) =at(b) = tβab

=t(a)b = tαab (1.11)

using (1.10). Then (1.11) and (1.9) show that ab = 0, so (1.8) is a decomposition
as algebras.

Similarly one shows that equation 1.8 is a decomposition as coalgebras. We
have

∆ ◦ t =∆ ◦ µ ◦∆ = (µ⊗ id) ◦ (id⊗∆) ◦∆
=(µ⊗ id) ◦ (∆⊗ id) ◦∆ = (t⊗ id) ◦∆

using the Frobenius relation and coassociativity. One similarly shows that
∆ ◦ t = (id⊗ t) ◦∆. Thus we have for ∀a ∈ Fα, using Sweedler notation:

∆(t(a)) =t(a(1))⊗ a(2) = a(1) ⊗ t(a(2))

=tα∆(a) = tαa(1) ⊗ a(2), (1.12)

2It is also compact as E is finite dimensional, as noted at the end of section 1.1, so
proposition 12 applies.
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which shows that the comultiplication restricted to Fα lands in Fα ⊗ Fα.
Let F0 denote the kernel of t, which is a Frobenius algebra. We have t(x) =

∆∗ ◦ ∆(x) = 0 for every x ∈ F0, which is equivalent to 0 = ⟨y,∆∗ ◦ ∆(x)⟩ =
⟨∆(y),∆(x)⟩ for every y ∈ F0. So in particular ⟨∆(x),∆(x)⟩ = 0, so ∆(x) = 0
for every x ∈ F0, which is absurd in a Frobenius algebra, as counitality cannot
be satisfied. Therefore we conclude that t is injective.

Now the only thing left to show is that each summand Fα is semi-simple
but it follows from corollary 5.

By the Wedderburn–Artin theorem3 every semi-simple algebra over C, in
particular every ∗-Frobenius algebra, is isomorphic to a direct sum of matrix
algebras over C. Note that there are different Frobenius algebra structures on
Matn(C), the standard one is when one takes the trace to be the counit ε.

Let us now see an example of ∗-Frobenius algebras. Let Cϵ denote C with
its standard Hilbert space structure (and with basis vector 1), ϵ a non-zero
complex number, and set

• ε(1) := ϵ, η(1) := ϵ∗,

• ∆(1) := 1
ϵ 1⊗ 1, µ(1⊗ 1) := 1

ϵ∗ .

It is not hard to see that the above equations define a ∗-Frobenius algebra
structure and that Cϵ1 and Cϵ2 are isomorphic as Frobenius algebras, if and
only if |ϵ1| = |ϵ2|. The following corollary shows that actually all commutative
∗-Frobenius algebras are the sums of such.

Corollary 9. Every commutative ∗-Frobenius algebra E in Hilb is isomorphic
to

dimE⊕
i=1

Cϵi (1.13)

as ∗-Frobenius algebras for some values of ϵi.

Proof. We know from proposition 8, that every ∗-Frobenius algebra is semi-
simple. By the Wedderburn–Artin theorem, every semi-simple algebra is iso-
morphic to a direct sum of matrix algebras over C and a commutative matrix
algebra is 1-dimensional. So

E ∼=
dimE⊕
i=1

C

as algebras, i.e. E has a basis {ei}dimE
i=1 , in which the multiplication is diagonal:

µE(ei⊗̂ej) = δijµE(ei⊗̂ei) ∝ ei.

Define ϵi, such that µE(ei⊗̂ei) = ei/ϵ
∗
i . Note that ϵi cannot be zero, because

then the pairing εE ◦µE would be degenerate. This basis can also be chosen to
be orthonormal w.r.t the inner product on E and therefore we get an isometry.

The above decomposition is a decomposition of coalgebras:

⟨ei⊗̂ej ,∆E(ek)⟩ = ⟨µE(ei⊗̂ej), ek⟩ =
δij
ϵi

⟨ei, ek⟩ =
δijδik
ϵi

,

where we used that ∆∗
E = µE .

3See e.g. [14] theorem 13.7.
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1.3 Compact Operators

It will be useful later on to collect some properties of compact operators. Let
H,K ∈ Hilb. We call T ∈ B(H,K) compact, if there exists a sequence of
finite-rank operators Tn ∈ B(H,K) (n = 1, 2, . . . ), such that

∥T − Tn∥
n→∞−−−−→ 0. (1.14)

In particular, finite-rank operators are compact.

Proposition 10. Let S ∈ B(K,K′) and T ∈ B(K′,K′′), one of them compact.
Then T ◦ S is compact.

Proof. See [16] theorem VI.12.

Proposition 11. Let T ∈ B(K,K) be a compact operator on K ∈ Hilb. Then

1. the spectrum of T is at most countably infinite,

2. if λ ̸= 0 is in the spectrum of T then it is an eigenvalue of T ,

3. the eigenspace of T for eigenvalue λ ̸= 0 is finite dimensional,

4. the only possible accumulation point of the spectrum of T is 0,

5. if K is infinite dimensional then 0 is in the spectrum of T .

Proof. See corollary 6.34. and proposition 6.35 of [17].

A resolution of the identity on K ∈ Hilb is a family {Ri}i∈I of orthogonal
projections (RiRj = δi,jRj) on K such that

∑
i∈I Rix = x for every x ∈ K.4

An operator T ∈ B(K,K) is called diagonalizable, if there exists a resolution
of the identity {Ri}i∈I on K and a bounded family of complex numbers {λi}i∈I

such that Tx = λix, when x is in the range of Ri. The operators X,Y ∈
B(K,K) are called simultaneously diagonalizable, if there exists a resolution of
the identity on K, which diagonalizes both X and Y .

Proposition 12. A compact operator T ∈ B(K,K) is diagonalizable, if and
only if it is normal (commutes with its adjoint).

Proof. See corollary 6.45. of [17].

Lemma 13. Let T ∈ B(K,K) be a compact diagonalizable operator. Then
there exists a family of Hilbert spaces {En}∞n=0, such that

• K =
⊕∞

n=0En,

• En is an eigenspace of T .

Proof. Since T is diagonalizable, there exists a resolution of identity {Ri}i∈I

with some index set I. Let us suppose that the eigenvalues corresponding to the
Ri’s are distinct. Then since T is compact the number of distinct eigenvalues
are at most countably infinite by proposition 11, so the index set I can actually
be taken to be the natural numbers.

4For details on sums indexed by an uncountable set see [17] section 5.7. Later we will see
that it is sufficient to consider separable Hilbert spaces and sums over countable sets.
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Let En be the range of Rn. Then we have K =
⊕∞

n=0En and closure is
necessary, if K is infinite dimensional and T has an infinite number of distinct
eigenspaces. The last point of proposition 11 shows that even an injective
compact operator has 0 in its spectrum and a diagonalizable (hence normal)
operator does not have 0 in its residual spectrum (see corollary 6.18 b) in [17]),
hence 0 has to be in its continuous spectrum. This means that the the image
of T is only dense in H.

This lemma in particular shows that if T ∈ B(H,H) is an injective compact
diagonalizable operator, then H is separable, since H is the completed direct
sum of countably many finite dimensional Hilbert spaces.

Lemma 14. Let T = {Ti ∈ B(K,K)}i∈I be a family of diagonalizable compact
operators, such that either one of the following conditions is satisfied:

1. I is a finite set, or

2. K is finite dimensional.

Then the operators in T are simultaneously diagonalizable, if and only if the
operators are pairwise commuting (TiTj = TjTi)

Proof. We will prove the statement for each case separately.

1. Assume that I is a finite set. Then it is enough to show this for two
operators S and T and then use induction on the number of operators.

It is clear that if they are simultaneously diagonalizable, then they com-
mute. Pick a common eigenvector v, then [S, T ]v = 0 and any vector in
K can be approximated by a linear combination of eigenvectors.

Now suppose that they commute and let
⊕∞

n=0En = K be the decom-
position of K into eigenspaces of S. Then En is a T invariant subspace,
as STx = TSx = λnTx, with x ∈ En and λn the eigenvalue of S on En.
Hence T can be diagonalized on En, giving the simultaneous diagonal-
ization of S and T .

2. Assume that K is finite dimensional. Then the subspace of B(K,K)
spanned by the operators Ti is finite dimensional. It is enough to show
the statement for the basis of this subspace and it is implied by the first
part.

Proposition 15. Let {Pa ∈ B(H,H), a > 0} denote a semi-group of diagonal-
izable compact operators (Pa ◦ Pb = Pa+b). Then there is a family of Hilbert

spaces {En}∞n=0, such that K =
⊕∞

n=0En and for every a

• E0 = KerPa,

• En is an eigenspace of Pa and is finite dimensional for every n ≥ 1.

Proof. Let us fix a0 and apply lemma 13 on Pa0 . Then K =
⊕∞

n=0 Fn, where
F0 is the kernel of Pa0 . Consider Fn for n ̸= 0, it is finite dimensional by
proposition 11, so we can simultaneously diagonalize on Fn the operators Pa
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for every a by lemma 14. Let x ∈ Fn be a common eigenvector for every Pa:
Pax = c(a)x, where c : R+ → C. Then we have

Pa ◦ Pbx = c(a)c(b)x = c(a+ b)x =⇒ c(a)c(b) = c(a+ b) (1.15)

as Pa ◦ Pb = Pa+b. This equation implies that either c(a) = 0 for every a or
c(a) ̸= 0 for every a (for details see [18] page 28). Since c(a0) ̸= 0, none of the
Fn for n ≥ 1 contain 0 eigenvalue eigenspaces of Pa for any a. We have just
shown that

KerPa ⊂ KerPa0 = F0 (1.16)

for every a. So if we exchange the role of a and a0, we get the converse inclusion,
therefore the kernels coincide, so set E0 = F0. The previous diagonalization
delivers the eigenspaces En for n ≥ 1.

1.4 Regularized Frobenius Algebras

Motivated by area-dependent quantum field theories (defined in chapter 2), we
would like to generalize the notion of ∗-Frobenius algebras, which will allow
infinite dimensional spaces.

Definition 16. A regularized Frobenius algebra F is an object in Hilb together
with families of morphisms{

µa : F ⊗̂2 → F
}
,

{
ηa : C → F

}
,{

∆a : F → F ⊗̂2
}
,
{
εa : F → C

}
,

where a ∈ R+, such that the following relations hold. Let ai, bi, ci, di ∈ R+

(i = 1, 2), such that a1+a2 = b1+ b2 = c1+ c2 = d1+d2 = a. Then we require
that

µa1 ◦
(
idF ⊗̂ηa2

)
= µb1 ◦

(
ηb2⊗̂idF

)
=
(
idF ⊗̂εc1

)
◦∆c2 =

(
εd1⊗̂idF

)
◦∆d2 =: Pa, (1.17)

∆a1 ◦ µa2 =
(
idF ⊗̂µb1

)
◦
(
∆b2⊗̂idF

)
=
(
µc1⊗̂idF

)
◦
(
idF ⊗̂∆c2

)
, (1.18)

Pa1 ◦ µa2 = µa, ∆a1 ◦ Pa2 = ∆a, (1.19)

and that Pa is injective. We call F a regularized ∗-Frobenius algebra, if fur-
thermore

µ∗
a = ∆a and η∗a = εa. (1.20)

We the abbreviation RFA for regularized ∗-Frobenius algebras, as these
will appear mostly in this work. Note that equations 1.17 and 1.18 generalize
the properties of a Frobenius algebra, the two equations in (1.20) generalize
∗-Frobenius algebras. Injectivity of Pa is also required in order to be able to
recover the definition of a Frobenius algebra. Using equations 1.18 and 1.19,
we also have that

µa1 ◦
(
idF ⊗̂Pa2

)
= µb1 ◦

(
Pb2⊗̂idF

)
= µa, (1.21)(

idF ⊗̂Pa1

)
◦∆a2 =

(
Pb1⊗̂idF

)
◦∆b2 = ∆a, (1.22)

Pa1 ◦ ηa2 = ηa, (1.23)

εb1 ◦ Pb2 = εa, (1.24)

Pa1Pa2 = Pa, (1.25)
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where ai, bi (i = 1, 2) and a are as in definition 16. Some of the relations in a
regularized Frobenius algebra are shown on figure 1.4, we write the parameters
of the morphisms next to their diagram.

Figure 1.4: Some relations in a regularized Frobenius algebra

Proposition 17. In a regularized ∗-Frobenius algebra the operators Pa are
self-adjoint and of trace class, hence compact.

Proof. To show that Pa are self-adjoint, just write using the definition of Pa in
equation 1.17 that

Pa =
(
idF ⊗̂εa/2

)
◦∆a/2 = µa/2 ◦

(
ηa/2⊗̂idF

)
and use equation 1.20. The proof of Pa being of trace-class is as follows: Set
βa = εa1 ◦ µa2 and γa = ∆a1 ◦ ηa2 . Then by equations 1.18 and 1.17 we have

Pa =
(
idF ⊗̂βa1

)
◦
(
γa2⊗̂idF

)
.

Let {ϕi}i∈I be a complete orthonormal set of F , βa(ϕi⊗̂ϕj) = βij
a and γa(1) =∑

i,j∈I γ
ij
a ϕi⊗̂ϕj . Using these we can calculate

TrPa =
∑
i∈I

⟨ϕi, Paϕi⟩ =
∑
i∈I

⟨ϕi,
(
idF ⊗̂βa1

)
◦
(
γa2⊗̂ϕi

)
⟩

=
∑

i,j,k∈I

⟨ϕi,
(
idF ⊗̂βa1

) (
γjka2

ϕj⊗̂ϕk⊗̂ϕi
)
⟩

=
∑

i,j,k∈I

⟨ϕi, γjka2
ϕjβ

ki
a1
⟩ =

∑
j,k∈I

βkj
a1
γjka2

.

On the other hand we have

βa1 ◦ τF,F (γa2(1)) =
∑
j,k∈I

βa1 ◦ τF,F
(
γjka2

ϕj⊗̂ϕk
)
=
∑
j,k∈I

βkj
a1
γjka2

,

which is a convergent sum as βa, τF,F and γa are bounded maps, and, which
equals TrPa.

To see that trace class implies compact, look at problem 5.66 c) and d) in
[17].

Recall that in definition 16 we required that the operators Pa are injec-
tive. Assume for a second that we have the set of data with the properties in
definition 16, including equation 1.20, but the operators Pa are not injective.
They form a semigroup of normal compact (and hence diagonalizable) opera-
tors, hence by proposition 15 they have the same kernel, so restricting them to
the closure of their image gives injective operators and by equations 1.19, 1.21
and 1.22 we do not lose anything by restricting to the image of Pa.

A regularized Frobenius algebra F is
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• commutative, if µa ◦ τF,F = µa,

• symmetric, if εa1 ◦ µa2 = εb1 ◦ µb2 ◦ τF,F ,

• ∆-separable, if µa1 ◦∆a2 = Pa,

• strongly continuous, if the map x 7→ Px is strongly continuous,

for any a = a1 + a2 = b1 + b2. Note that symmetric implies ∆a1
◦ ηa2

=
τF,F ◦∆b1 ◦ ηb2 .5 The center of F is the subspace{

c ∈ F|µa(c⊗̂x) = µa(x⊗̂c), for every x ∈ F and a > 0
}
. (1.26)

Lemma 18. The center of a regularized Frobenius algebra is closed.

Proof. We can alternatively write the center C as an intersection:

C =
∩
x∈F
a>0

Kerφx
a,

where φx
a(y) = µa(x⊗̂y) − µa(y⊗̂x). These are clearly bounded linear maps,

hence their kernel is closed. The intersection of closed sets is closed.

A morphism of regularized Frobenius algebras is a morphism ϕ : F → F ′

in Hilb such that

ϕ ◦ µa = µ′
a ◦
(
ϕ⊗̂ϕ

)
, ϕ ◦ ηa = η′a, (1.27)(

ϕ⊗̂ϕ
)
◦∆a = ∆′

a ◦ ϕ, ε = ε′a ◦ ϕ, (1.28)

where the primed morphisms are the morphisms of F ′. We have the analogue
of proposition 2.

Proposition 19. Any morphism of regularized Frobenius algebras is injective.
A morphism of regularized Frobenius algebras is an isomorphism, if its target
is finite dimensional.

Proof. Let F ϕ−→ F ′ be a morphism of regularized Frobenius algebras. Set

ϕa :=
(
ε′a1

◦ µ′
a2
⊗̂idF

)
◦
(
idF ′⊗̂ϕ⊗̂idF

)
◦
(
idF ′⊗̂∆a3 ◦ ηa4

)
, (1.29)

with
∑4

i=1 ai = a. Then we have ϕa ◦ ϕ = Pa, by a same argument shown on
figure 1.3. So ϕ is injective because Pa is injective.

By a similar argument we have ϕ◦ϕa = P ′
a. If F ′ is finite dimensional, then

P ′
a is surjective, hence ϕ is surjective.

Note that the converse of the second statement is not true: the identity on
an infinite dimensional RFA is bijective.

LetRFrob denote the category of regularized ∗-Frobenius algebras, cRFrob
the category of commutative RFAs and RFrobsc the category of strongly con-
tinuous RFAs. From now on we only treat regularized ∗-Frobenius algebras.

5 One just needs to use the naturality of the braiding, the definition of Pa and equation
1.19.
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1.5 Classification of Strongly Continuous RFAs

In this section we will see how the additional requirement of strong continuity
allows an explicit description of the eigenvalues of Pa and the classification of
regularized ∗-Frobenius algebras.6

Proposition 20. Let F be a strongly continuous RFA, and use the notation
of proposition 15. Then the eigenvalues of Pa are of the form e−aσ for σ ∈ R.

Proof. Let f ∈ En be a common eigenvector of Pa, Pb and Pa+b with eigenval-
ues c(a), c(b) and c(a+ b) respectively, none of which is zero. We have

PaPbf = c(a)c(b)f = Pa+bf = c(a+ b)f =⇒ c(a)c(b) = c(a+ b) (1.30)

as in proposition 15. Furthermore we have

∥Paf − Pbf∥ = ∥c(a)f − c(b)f∥ = |c(a)− c(b)| · ∥f∥, (1.31)

which, by strong continuity, goes to 0 as a→ b, hence the function c : R+ → R+

is continuous.
The unique continuous solution of the functional equation 1.30 is

c(a) = e−aσ (1.32)

for some σ ∈ R, see [18] theorem 3.5.

Corollary 21. Using the notation of proposition 20 we have

lim
a→0

Pa = idF (1.33)

in the strong operator topology.

Proof. Let f ∈ F and write f =
∑∞

n=1 fn, where fn ∈ En. Notice that

∥∥Paf
2
∥∥ =

∞∑
n=1

e−2aσn ∥fn∥2
a→0−−−→

∥∥f2∥∥
using propostion 20. We can calculate

∥(Pa − idF )f∥2 = ⟨(Pa − idF )f, (Pa − idF )f⟩ = ⟨f, (Pa − idF )
2f⟩

=
∞∑

n=1

e−2aσn ∥fn∥2 − 2
∞∑

n=1

e−aσn ∥fn∥2 +
∞∑

n=1

∥fn∥2 .

Each of the three infinite sums individually go to ∥f∥2 as a→ 0, hence

∥(Pa − idF )f∥2
a→0−−−→ ∥f∥2 − 2 ∥f∥2 + ∥f∥2 = 0.

Proposition 22. A strongly continuous RFA F decomposes into the direct
sum of a family of ∗-Frobenius algebras ΦF =

{
(EΦ

k , σk)
}∞
k=1

, where Ek is an
eigenspace of Pa with eigenvalue e−aσk .

6 The idea of decomposing an area-dependent quantum field theory into the sum of topo-
logical field theories was explained to us by André Henriques, for which I am indebted to him.
This idea is used to decompose regularized Frobenius algebras into direct sums ∗-Frobenius
algebras, yielding their classification.
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Proof. We know from proposition 15 that F =
⊕∞

n=1En, with En the eigen-
space of Pa and proposition 20 shows that the corresponding eigenvalue is of
the form e−aσn . Let us assume that the σn’s are pairwise distinct. We need to
show that En are ∗-Frobenius algebras.

Claim: Fix n and write E = En, σ = σn and RE for the projection onto E.
Then E becomes a ∗-Frobenius algebra via the following maps:

• ηE = RE ◦ ηa · e+aσ, µE = µa ↾E⊗̂E ·e+aσ,

• εE = εa ↾E ·e+aσ, ∆E = ∆a ↾E ·e+aσ.

We will show this in the following steps.

• First we need to show that µE , ηE , ∆E and εE are independent of the
choice of a. This can be done by the following calculation by equation
1.23:

ηE =RE ◦ ηa · e+aσ = REPa−a′ ◦ ηa′ · e+aσ = Pa−a′RE ◦ ηa′ · e+aσ

=e−(a−a′)σRE ◦ ηa′ · e+aσ = RE ◦ ηa′ · e+a′σ,

and similarly for the rest.

• Let v ∈ En, w ∈ Em and let us show the following:

µa(v⊗̂w)

{
= 0, if n ̸= m,

∈ En if n = m.
(1.34)

We can write by equation 1.21 that

µa(v⊗̂w) = µa−a′ ◦ (Pxa′⊗̂P(1−x)a′)(v⊗̂w)

=µa−a′(v⊗̂w)e−a′(xσn+(1−x)σm),

for any 0 ≤ x ≤ 1, but on the other hand we have by equation 1.19 that

µa(v⊗̂w) = Pa′ ◦ µa−a′(v⊗̂w) =
∞∑
k=1

cke
−a′σkfk,

with µa−a′(v⊗̂w) =
∑∞

k=1 ckfk, fk ∈ Ek. So for every k and x we have

ck

(
e−a′σk − e−a′(xσn+(1−x)σm)

)
= 0,

so either ck = 0 or σk = (xσn + (1− x)σm). The latter can only happen
if σk0 = σn = σm for some k0 and if this is not the case, then all ck = 0,
hence µa(v⊗̂w) = 0.

• Equation 1.34 shows that µE lands in E and we can use this equation to
calculate

µE ◦ (idE⊗̂ηE) = µa ◦ (idE⊗̂ηa′) ↾E ·e(a+a′)σ = Pa+a′ ↾E ·e(a+a′)σ = idE ,

by the equations in (1.17), so ηE is the unit of µE .
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• Let us show now that the coproduct ∆E lands in E⊗̂E. We have again
by equation 1.22 for v ∈ E

∆E(Pav) = eaσ∆E(v) =
(
Pa′⊗̂Pa−a′

)
(∆E(v)) ,

which shows by an argument similar to the proof of equation 1.34 that
∆E(v) ∈ E⊗̂E. This implies counitality via equation 1.17.

• Finally equation 1.18 provides the Frobenius relation.

Corollary 23. A commutative RFA F decomposes into ΦF = {(Cϵi , σi)}
∞
i=1.

Proof. Corollary 9 shows that commutative ∗-Frobenius algebras decompose
into direct sums of Cϵ’s.

Corollary 24. The center C of a strongly continuous RFA F decomposes as

C =
∞⊕

n=1

Z(En), (1.35)

where Z(En) is the center of En, using the notation of proposition 22.

Proof. Show C ⊂
⊕∞

n=1 Z(En): Let z ∈ C, then we can write it as z =∑∞
n=1 zn with zn ∈ En. Calculate for yn ∈ En

µa(z⊗̂yn) = µa(zn⊗̂yn),

by equation 1.34. On the other hand we have

µa(z⊗̂yn) = µa(yn⊗̂z) = µa(yn⊗̂zn),

because z ∈ C, so zn ∈ Z(En).
To show the converse inclusion let x =

∑∞
n=1 xn with xn ∈ Z(En). Then

µa(x⊗̂y) =
∞∑

m,n=1

µa(xn⊗̂ym) =
∞∑

m,n=1

µa(ym⊗̂xn) = µa(y⊗̂x),

because µa is a bounded linear map, so x ∈ C.

Now we would like to investigate, under which circumstances can we build
RFAs from ∗-Frobenius algebras and for this we need a few considerations first.
Note that in a ∗-Frobenius algebra ∥η∥ = ∥ε∥ and ∥µ∥ = ∥∆∥.

Proposition 25. Let Ψ = {(Fk, σk)}∞k=1 be a family of ∗-Frobenius algebras
and real numbers such that for all a > 0

∞∑
k=1

e−2aσk ∥ηk∥2 <∞, (1.36)

sup
k

{
e−aσk ∥µk∥

}
<∞. (1.37)

This data defines a strongly continuous RFA GΨ via
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GΨ :=
⊕∞

k=1 Fk,

ηΨa :=
∑∞

k=1 e
−aσkηk, εΨa :=

∑∞
k=1 e

−aσkεk,

µΨ
a :=

∑∞
k=1 e

−aσkµk, ∆Ψ
a :=

∑∞
i=1 e

−aσk∆k.

Here ηk, εk, µk and ∆k are the unit, counit, product and coproduct of Fk pre-
and postcomposed with the projections Rk : GΨ → Fk and injections Fk → GΨ

mutatis mutandis.

Proof. We need to show that the above defined maps are bounded, check the
relations in the definition of RFAs and that the assignment a 7→ Pa is strongly
continuous and that Pa is injective for every a. Write G = GΨ, ηa = ηΨa ,
etc. . . for simplicity.

• Equation 1.36 shows that ηa is bounded:

∥ηa∥2 = ∥ηa(1)∥2 =

∥∥∥∥∥
∞∑
k=1

e−aσkηk(1)

∥∥∥∥∥
2

=

∞∑
k=1

e−2aσk ∥ηk(1)∥2

=
∞∑
k=1

e−2aσk ∥ηk∥2 <∞.

• It also implies that εa is bounded: Define ε′a to be the adjoint of ηa, i.e.
ε′a(f) = ⟨ε′a(f), 1⟩ = ⟨f, ηa(1)⟩ for f =

∑∞
k=1 fk ∈ G, with fk ∈ Fk. This

is a bounded linear map G → C. Then observe that

ε′a(f) =⟨f, ηa(1)⟩ =

⟨ ∞∑
j=1

fj ,
∞∑
k=1

e−aσkηk(1)

⟩
=

∞∑
j,k=1

e−aσk⟨fj , ηk(1)⟩

=

∞∑
k=1

e−aσk⟨fk, ηk(1)⟩ =
∞∑
k=1

e−aσk⟨εk(fk), 1⟩ =
∞∑
k=1

e−aσkεk(fk),

as η∗k = εk, so ε
′
a = εa and in particular η∗a = εa.

• Equation 1.37 shows that µa and ∆a are bounded: Let h =
∑∞

i,j=1 hij ∈
G⊗̂2 with hij ∈ Fi⊗̂Fj and calculate

∥µa(h)∥2 =

∥∥∥∥∥
∞∑
k=1

e−aσkµk(h)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∞∑

i,j,k=1

e−aσkµk(hkk)δi,kδj,k

∥∥∥∥∥∥
2

=
∞∑
k=1

e−2aσk ∥µk(hkk)∥2 ≤
∞∑
k=1

e−2aσk ∥µk∥2 ∥hkk∥2

≤
(
sup
k

{
e−aσk ∥µk∥

})2 ∞∑
k=1

∥hkk∥2 ,

∥∆a(f)∥2 =

∥∥∥∥∥
∞∑
k=1

e−aσk∆k(f)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∞∑

i,k=1

e−aσk∆k(fk)δi,k

∥∥∥∥∥∥
2

=
∞∑
k=1

e−2aσk ∥∆k(fk)∥2 ≤
∞∑
k=1

e−2aσk ∥∆k∥2 ∥fk∥2

≤
(
sup
k

{
e−aσk ∥∆k∥

})2 ∞∑
k=1

∥fk∥2 ,
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as ∥µk∥ = ∥∆k∥.

• It easily follows from the ∗-Frobenius algebra property of the Fk’s that the
relations in (1.17), (1.18) and (1.20) hold. So let us write for a = a1 + a2
that

Pa := µa1 ◦
(
idG⊗̂ηa2

)
=

∞∑
k=1

e−aσkRk. (1.38)

The last equality immediately shows that the relations in (1.19) hold as
well and that the Pa are injective as e−aσk ̸= 0.

• To show strong continuity calculate

∥(Pa − Pa0)f∥
2
= ⟨(Pa − Pa0)f, (Pa − Pa0)f⟩ = ⟨f, (Pa − Pa0)

2f⟩

= ∥P2af∥2 − 2 ∥Pa+a0f∥
2
+ ∥P2a0f∥

2

a→0−−−→ ∥P2a0f∥
2 − 2 ∥P2a0f∥

2
+ ∥P2a0f∥

2
= 0

as in the proof of corollary 21.

Note that the two conditions of proposition 25 imply that the set {σk}∞k=0

is bounded from below. This can also be seen from equation 1.38 as Pa is the
composition of bounded maps.

Corollary 26. Let Ψ = {(Cϵi , σi)}∞i=1 be a family of commutative ∗-Frobenius
algebras and real numbers such that for all a > 0

∞∑
i=1

e−2aσi |ϵi|2 <∞, (1.39)

sup
i

{
e−aσi |ϵi|−1

}
<∞. (1.40)

This data defines a commutative RFA GΨ via proposition 25.

Proof. From corollary 9 have ∥ηi∥ = |ϵi| and ∥µi∥ = |ϵi|−1, hence the conditions
of proposition 25 are satisfied.

Theorem 27. The above two constructions are inverse to each other in the
following sense.

1. Let Φ be a family of ∗-Frobenius algebras and numbers satisfying (1.36)
and (1.37). Then we obtain a strongly continuous RFA GΦ from proposi-
tion 25. We can use proposition 22 to get a family of ∗-Frobenius algebras
and numbers ΨGΦ

. Then we have

ΨGΦ = Φ. (1.41)

2. Let F be an RFA. Then we obtain a family of ∗-Frobenius algebras and
numbers ΦF from proposition 22. Now use proposition 25 to get an RFA
GΦF , we have

GΦF = F . (1.42)
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Proof. Let us start with proving the second part, write ΦF = {(Fk, σk)}∞k=1

and {Rk}∞k=1 for the resolution of identity that diagonalizes Pa of F . We need
to reassemble the RFA that we have disassembled:

GΦF =
∞⊕
k=1

Fk = F ,

ηΦF
a =

∞∑
k=1

e−aσkηk =

∞∑
k=1

e−aσkRk ◦ ηa · e+aσk =

( ∞∑
k=1

Rk

)
◦ ηa = ηa,

µΦF
a =

∞∑
k=1

e−aσkµk =
∞∑
k=1

e−aσkµa ◦ (Rk⊗̂Rk) · e+aσk =
∞∑

l,k=1

µa ◦ (Rk⊗̂Rl) = µa,

εΦF
a =

∞∑
k=1

e−aσkεk =

∞∑
k=1

e−aσkεa ◦Rk · e+aσk =

∞∑
k=1

εa ◦Rk = εa,

∆ΦF
a =

∞∑
k=1

e−aσk∆k =
∞∑
k=1

e−aσk∆a ◦Rk · e+aσk =
∞∑
k=1

∆a ◦Rk = ∆a,

where we used equation 1.34. Note that the conditions of proposition 25 hold:
Just calculate the norm of ηa to see that the first condition is satisfied:

∥ηa∥2 = ∥ηa(1)∥2 =

∥∥∥∥∥
∞∑
k=1

Rkηa(1)

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
k=1

ηk(1)e
−aσk

∥∥∥∥∥
2

=

∞∑
k=1

∥ηk(1)∥2 e−2aσk =

∞∑
k=1

∥ηk∥2 e−2aσk <∞.

For the second let F ∈ F⊗̂F , then we have

∥∥µk(F )e
−aσk

∥∥ = ∥µa(F )∥ ≤ ∥µa∥ ∥F∥ ,

hence ∥µk∥ e−aσk ≤ ∥µa∥.

To prove the first part, let us first write Φ = {(Fk, σk)}∞k=1. Then GΦ =⊕∞
j=1 Fj and let Rk denote the projection GΦ → Fk. Then we have

PΦ
a =

( ∞∑
k=1

e−aσkµk

)
◦

 ∞∑
j=1

e−aσj (idFj ⊗̂ηj)


=

 ∞∑
j,k=1

e−aσkµk ◦ (idFk
⊗̂ηk)δj,k

 =

∞∑
k=1

e−aσkRk,

from which we can directly read off the diagonalizing resolution of identity
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{Rk}∞k=1 of PΦ
a . So we have

FGΦ

k = Rk

 ∞⊕
j=1

Fj

 = Fk,

ηGΦ

k = Rk ◦
∞∑
j=1

e−aσjηj · e+aσk = ηk,

µGΦ

k =
∞∑
j=1

e−aσjµj ◦
(
Rk⊗̂Rk

)
· e+aσk = µk,

εGΦ

k =

∞∑
j=1

e−aσjεj ◦Rk · e+aσk = εk,

∆GΦ

k =
∞∑
j=1

e−aσj∆j ◦Rk · e+aσk = ∆k.
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Chapter 2

Area-Dependent Quantum
Field Theories

2.1 Topological Field Theories in 2 Dimensions

We start with a short summary of 2-dimensional topological field theories as
the area-dependent theories will heavily rely on notions form topological field
theories. First we need to introduce the notion of smooth surfaces and their
boundaries.

Let S1 denote a unit circle on the complex plane C. In order to be able to
speak about smooth manifolds, we need the notion of a collar of S1, which is
a neighborhood of S1. Two collars are equivalent, if they are the same on a
neighborhood of S1, and we call a germ of collars an equivalence class of collars.
Let U be such a disjoint union of circles with collars and let Uin ⊂ U denote
the disjoint union of points |z| ≤ 1 of each collar and Uout ⊂ U the disjoint
union of points |z| ≥ 1 of each collar.

A bordism M : U → V between circles with collars U and V is a compact
oriented 2-dimensional smooth manifold, whose boundary ∂M is identified by a
boundary parametrization with the circles of −U⨿V . A boundary parametriza-
tion is a choice of representatives U ′, V ′ of germs of U and V and injective
smooth maps fin : U ′

in → M , fout : V ′
out → M , which preserve orientation

and boundary and the images of the circles in U ′ and V ′ are disjoint and cover
∂M . We will refer to U and V for a bordism M : U → V as the ingoing and
outgoing boundary of M . We say that two bordisms are equivalent, if the 2-
manifolds are diffeomorphic, such that the diffeomorphism is compatible with
the boundary parametrization.

We can compose bordisms (◦): Just glue two bordisms together along their
boundary parametrizations, i.e. the outgoing boundary of the first bordism to
the ingoing boundary of the second bordism. We can permute the circles with
collars and compose a permutation with a bordism, the result will be a bordism
with permuted boundaries.

Definition 28. Let Cob2 denote the category of 2-dimensional cobordisms,
which has

• Objects: Disjoint union of a finite number of unit circles S1 in C, each
of them equipped with a germ of collars.
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• Morphisms: disjoint unions of equivalence classes of bordisms and per-
mutations, which permute circles.

By the latter we mean the following. A morphism X : U → V consists of

• a disjoint decomposition U = B ⊔ P and V = B′ ⊔ P ′, such that P and
P ′ have the same number of circles,

• a bordism Σ : B → B′ and

• a bijection ρ : π0(P ) → π0(P
′).

This becomes a monoidal category with the disjoint union (⊔) as the tensor
product and the permutations endow this category with a symmetric structure.
This is the definition used in [9] section 2.3 without defect conditions and metric
on the surfaces. Note that the cylinders are not the identity morphisms, but
are idempotents.

By abuse of notation we write S⊔n
1 for an object in Cob2, which has n

circles and let Sn,m denote the bordism in Cob2, which consists of an n +m
holed sphere (S2) with m ingoing and n outgoing boundaries. We will use this
notation to obtain another description of Cob2. For the details see [2] section
1.4.7

Proposition 29. The bordisms S0,1, S1,0, S2,1, S1,2 and S1,1 generate Cob2 as
a symmetric monoidal category. These generators obey the following relations:

• S1,1 ◦ S1,1 = S1,1,

• S1,2 ◦ (S1,1 ⊔ S1,0) = S1,2 ◦ (S1,0 ⊔ S1,1) = S1,1,

• (S1,1 ⊔ S0,1) ◦ S2,1 = (S0,1 ⊔ S1,1) ◦ S2,1 = S1,1,

• S2,1 ◦ S1,2 = (S1,1 ⊔ S1,2) ◦ (S2,1 ⊔ S1,1) = (S1,2 ⊔ S1,1) ◦ (S1,1 ⊔ S2,1),

and we also have that S1,2 ◦ τ = S1,2 for τ the transposition of two circles.

Let Z denote a symmetric monoidal functor Cob2 → Vectk. By propo-
sition 29 the cylinders are not necessarily identities, but are idempotents,
therefore their image under Z will be idempotents, but not necessarily iden-
tities. So we have P 2 = P with P = Z(S1,1). We can write any bordism
M : S⊔m

1 → S⊔n
1 as M = S⊔m

1,1 ◦M ◦ S⊔n
1,1 , hence Z(M) will land in the m-

th tensor product of ImP = Z(S1)/KerP . Therefore we can define another
symmetric monoidal functor Z ′ by setting Z ′(S1) := ImP = Z(S1)/KerP and
Z ′(M) := Z(M) ↾ImZ(S1,1)⊗m . Z ′(M) lands in Z(S1)⊗n, because Z(M) sends
any element in Z(S1)⊗m to zero, which has a factor in KerP . This new functor
sends cylinders to identities.

Definition 30. A 2-dimensional topological field theory (TFT in short) over
k is a symmetric monoidal functor

Z : Cob2 → Vectk,

for which Z(S1,1) = idZ(S1).

7Note that [2] uses a different definition of Cob2, but it treats cylinders as real generators
and also gives the relations involving cylinders.
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By proposition 29 it is enough to define a TFT on the generators of Cob2,
and check that the corresponding relations are satisfied. We will refer to the
values of the TFT on the generators as the generators of the TFT and call Z(S1)
the state-space of the TFT. Denote the category of TFTs over k with TFTk.
It has objects TFTs over k and morphisms monoidal natural transformations.
Note that a natural transformation θ : Z → Z ′ being monoidal means that
θn := θZ(S1)⊗n = θ⊗n

1 for every n ≥ 1. We are ready to state the main theorem
of this section, which shows in particular that the state space of a TFT is finite
dimensional.8

Theorem 31. There is an equivalence of categories TFTk

∼−→ cFrobk.

Proof (sketch). Let Z be a TFT and assign

Z(S1) 7→ F, Z(τ) = τF,F ,

Z(S1,2) 7→ µF , Z(S1,0) 7→ ηF ,

Z(S2,1) 7→ ∆F , Z(S0,1) 7→ εF ,

where by abuse of notation τ denotes the transposition of two circles in Cob2

and τF,F denotes the symmetric braiding on F ⊗ F in Vectk. Then by the
relations in proposition 29 F is a commutative Frobenius algebra. A monoidal
natural transformation θ : Z → Z ′ gets mapped to θZ(S1) and naturality implies
that this is a morphism of Frobenius algebras. For the rest of the details see
[2] theorem 3.3.2.

A ∗-structure on Cob2 is given as follows. Let us use the previous notation
for a morphism X : U → V in Cob2. Then X∗ : V → U is the morphism,
which consists of

• the same disjoint decomposition of objects as X,

• the bordism Σ∗ : B′ → B, which is obtained by changing the orientation
of Σ and exchanging the roles of the in- and outgoing boundaries,

• the bijection ρ−1 : π0(P
′) → π0(P ).

Let us keep this ∗-structure on Cob2 fixed from now on. We have in particular
S∗
m,n = Sn,m. We can consider TFTs Cob2 → Hilb, which are additionally

∗-functors. Such TFTs correspond to ∗-Frobenius algebras and vice versa.
Instead of giving details, let us turn to the main subject of the thesis. In
section 2.4 we will see this statement as a special case of theorem 36.

2.2 Area-Dependent Quantum Field Theories

We introduce the notion of the area of a bordism, which we think of as positive
numbers assigned to connected components of a bordism. A bordism with area
is a bordism M : U → V in Cob2 together with a map AM : π0(M) → R+,
which assigns to each connected component ofM a positive real number. AM is
called the area map of M and the number it assigns to a connected component
of M is the area of that connected component. Two bordisms with area are
equivalent, if the bordisms are equivalent and the area maps are the same.

8See page 13.
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We can compose bordisms with areas just as in Cob2, with the area map
of the composition given as follows. It assigns to each of the connected compo-
nents of the composition the sum of the numbers, which were assigned to the
factors of the components previously. An example is given in figure 2.1. The
areas assigned to connected components are written on them and the in- and
outgoing boundaries are marked. We define the composition of a permutation
and a bordism with area to have the same area map as before.

Figure 2.1: Example for composition in Cobarea
2

Definition 32. Let Cobarea
2 denote the category of 2-dimensional bordisms

with area, whose

• objects are the same as the objects of Cob2,

• morphisms are disjoint union of permutations as in Cob2 or equivalence
classes of bordisms with areas.

This category becomes a symmetric monoidal category with the disjoint
union as tensor product on objects and for morphisms as follows. For bordisms
with areas take the disjoint union on bordisms and let the area map of this
bordism assign the same numbers to each connected component, which they
were assigned before. Again, by a slight abuse of notation, let (Sn,m, a) denote
the bordism with area in Cobarea

2 , which is the n + m holed sphere with m
ingoing and n outgoing boundaries and has area a = ASn,m(Sn,m).

Proposition 33. The bordisms with area (S0,1, a), (S1,0, a), (S2,1, a), (S1,2, a)
and (S1,1, a) generate Cobarea

2 as a symmetric monoidal category. These gen-
erators obey the following relations:

(S1,1, a1) ◦ (S1,1, a2) = (S1,1, a1 + a2), (2.1)

(S1,2, a1) ◦ ((S1,1, a2) ⊔ (S1,0, a3))

=(S1,2, b2) ◦ ((S1,0, b2) ⊔ (S1,1, b3)) = (S1,1, a), (2.2)

((S1,1, a1) ⊔ (S0,1, a2)) ◦ (S2,1, a3)

=((S0,1, b1) ⊔ (S1,1, b2)) ◦ (S2,1, b3) = (S1,1, a), (2.3)

((S1,1, c1) ⊔ (S1,2, c2)) ◦ ((S2,1, c3) ⊔ (S1,1, c4))

=((S1,2, d1) ⊔ (S1,1, d2)) ◦ ((S1,1, d3) ⊔ (S2,1, d4)) = (S2,1, e1) ◦ (S1,2, e2),
(2.4)

where
∑3

i=1 ai =
∑3

i=1 bi = a and
∑4

i=1 ci =
∑4

i=1 di = e1 + e2 and (S1,2, a) ◦
τ = (S1,2, a), where τ denotes the transposition of two circles in Cobarea

2 .
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Some of these relations are shown on figure 2.2. The proof is essentially the
same as of proposition 29, observe how the addition of areas required by the
composition in Cobarea

2 is respected.

Figure 2.2: Some relations in Cobarea
2

To define a ∗-structure on Cobarea
2 , first note that π0(M) = π0(M

∗), forM
a bordism in Cob2 and where M∗ is given by the previously fixed ∗-structure
on Cob2. Let (M,AM ) be a bordism with area, then we set (M,AM )∗ :=
(M∗,AM ). For a permutation P we set P ∗ = P−1 as we did in Cob2. Let us
keep this ∗-structure on Cobarea

2 fixed from now on.

Definition 34. An area-dependent quantum field theory or AQFT in short is
a symmetric monoidal ∗-functor Z : Cobarea

2 → Hilb such that Z(S1,1, a) is
injective for every a.

The condition that Z(S1,1, a) is injective seems to be a restrictive condi-
tion on Z at this point, however in the following we show that it can always
be achieved using the ∗-property of the functor. So let Z now denote a sym-
metric monoidal ∗-functor Cobarea

2 → Hilb and let us introduce the following
notation:

H = Z(S1), Pa = Z(S1,1, a),

βa = Z(S2,0, a) ∈ B(H⊗̂2,C), γa = Z(S0,2, a) ∈ B(C,H⊗̂2),

and call H the state space of Z. The following lemma gives us the core of our
analysis.

Lemma 35. The operators Pa are of trace class and hence compact.

Proof. Let (ϕi)i∈I be a complete orthonormal set of H. We need to show that
the sum

TrPa =
∑
i∈I

⟨ϕi, Paϕi⟩

converges absolutely. Write Paϕi =
∑

j∈I P
ji
a ϕj , γa(1) =

∑
i,j∈I γ

ij
a ϕi⊗̂ϕj and

βij
a = βa(ϕi⊗̂ϕj). Let us cut a cylinder as on figure 2.3. From functoriality we

have

(Pa′′
5
⊗̂βa2)(Pa′

5
⊗̂Pa3⊗̂Pa′

1
)(γa4(1)⊗̂Pa′′

1
) = Pa
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with ã1 = a′1 + a′′1 , a5 = a′5 + a′′5 , a1 = ã1 + a5 and
∑4

i=1 ai = a. Use this to
calculate

TrPa =
∑

i,k,l∈I

⟨ϕi, (Pa′′
5
⊗̂βa2)(Pa′

5
⊗̂Pa3⊗̂Pa′′

1
)(γk,la4

ϕk⊗̂ϕl⊗̂(Pa′
1
ϕi)⟩

=
∑

i,k,l∈I

⟨ϕi, (Pa′′
5
⊗̂βa2)(γ

k,l
a4

(Pa′
5
ϕk)⊗̂(Pa3ϕl)⊗̂(Pa′′

1
Pa′

1
ϕi)⟩

=
∑

i,k,l∈I

⟨ϕi, (idH⊗̂βa2)(γ
k,l
a4

(Pa5ϕk)⊗̂(Pa3ϕl)⊗̂(Pã1ϕi)⟩

=
∑

i,k,l,m,n,p∈I

⟨ϕi, P pk
a5
γkla4

Pml
a3
βmn
a2

Pni
ã1
ϕp⟩

=
∑

i,k,l,m,n,p∈I

P pk
a5
γkla4

Pml
a3
βmn
a2

Pni
ã1
δip

=
∑

k,l,m,n∈I

γkla4
Pml
a3
βmn
a2

Pnk
a1
,

in the last step we used that P is a semigroup homomorphism (Pã1 ◦Pa5 = Pa1).
Now calculate

βa′ ◦ τH,H ◦ γa−a′(1) = βa2 ◦ τH,H ◦ (Pa1⊗̂Pa3) ◦ γa4(1)

=βa2 ◦ τH,H ◦ (Pa1⊗̂Pa3)

∑
k,l∈I

γkla4
ϕk⊗̂ϕl


=βa2 ◦ τH,H

 ∑
k,l,m,n∈I

γkla4
Pnk
a1
ϕn⊗̂Pml

a3
ϕm


=

∑
k,l,m,n∈I

γkla4
Pml
a3
βmn
a2

Pnk
a1
,

which is a convergent sum since it is a composition of bounded maps and it
is equal to TrPa by the former calculation. To see that trace class implies
compact look at problem 5.66 c) and d) in [17].

Figure 2.3: Decomposition of a cylinder

The operators Pa are self-adjoint:

P ∗
a = Z(S1,1, a)

∗ = Z(S∗
1,1, a) = Z(S1,1, a) = Pa.

They also form a semi-group (Pa ◦Pb = Pa+b), so by proposition 15 the kernels
of the operators Pa coincide. This is the main motivation for including the ∗-
property in the definition of AQFTs. Thus by the same argumentation that we
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used to arrive at definition 30 we can always build a new symmetric monoidal
∗-functor Z ′ from Z without losing anything in the following way:

• Set Z ′(S1) := Z(S1)/KerPa = ImPa and

• Z ′(M) := Z(M) ↾Z′(S1)⊗̂n

for any morphism S⊗̂n
1

M−→ S⊗̂m
1 in Cobarea

2 . As before, Z ′(M) lands in

Z ′(S1)⊗̂m and Z ′(S1,1, a) is injective on Z ′(S1), hence Z ′ is an AQFT. It is
also worth noting that the state space of any AQFT is a separable Hilbert
space.9

We would like to have a characterization of AQFTs similar to what is given
in theorem 31 for TFTs. Therefore let us first introduce the category of AQFTs,
denoted AQFT. It has objects AQFTs and morphisms monoidal natural trans-
formations.

Theorem 36. There is an equivalence of categories AQFT → cRFrob.

Proof (sketch). Observe that we are in a very similar situation as at theorem
31. The generators of an AQFT Z together with the relations in proposition
33 define the morphisms for an RFA F and give the relations in equations 1.17,
1.18 and 1.19, via the following assignments.

Z(S1,1, a) 7→ Pa, Z(τ) 7→ τF,F

Z(S1,2, a) 7→ µa, Z(S1,0, a) 7→ ηa,

Z(S2,1, a) 7→ ∆a, Z(S0,1, a) 7→ εa,

where τ denotes the transposition of two circles in Cobarea
2 and τF,F denotes

the symmetric braiding on F⊗F in Hilb. The equations in (1.20) are satisfied
because Z is a ∗-functor.

A morphism Φ : Z → Z ′ in AQFT is a monoidal natural transformation,
and it is determined by ΦZ(S1), this is assigned to a morphism ϕ : F → F ′ in
cRFrob. Naturality implies the relations in equations 1.27 and 1.28, i.e. it is
a morphism of RFAs.

It is clear that this gives an equivalence the same way as in the case of
theorem 31.

2.3 Strong Continuity

Theorem 36 tells us that if we want to classify AQFTs, then it is enough to
classify RFAs. In order to be able to use the classification result in theorem 27,
we need to specify the AQFTs we are dealing with. Let K,K′ ∈ Hilb and N be
a positive integer. Then a map QN : (R+)

N → B(K,K′) is strongly continuous,

if for every (r1, . . . , rN ) ∈ (R+)
N

and every 1 ≤ i ≤ N the map

x 7→ QN (r1, . . . , ri−1, x, ri+1, . . . , rN )

is strongly continuous.
Let now (M,AM ) denote a bordism with area with n circles on the ingoing

and m circles on the outgoing boundary. Recall that π0(M) is the set of
connected components of M and that AM is a map π0(M) → R+.

9See the comment after lemma 13 on page 18.
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Definition 37. We call a functor Z : Cobarea
2 → Hilb strongly continuous,

if the map

(R+)
×|π0(M)| → B(H⊗̂n,H⊗̂m)

(AM (c))c∈π0(M) 7→ Z(M,AM ) (2.5)

is strongly continuous for all M .

Lemma 38. A monoidal functor Z : Cobarea
2 → Hilb is strongly continuous,

if and only if the map a 7→ Pa = Z(S1,1, a) is strongly continuous.

Proof. The direction (⇒) is of course clear. To show the other direction, first
note that the strong continuity of the map in equation 2.5 for all bordism with
area is equivalent to requiring it for all bordisms with area with one connected
component only. This is clear after establishing the following claim.

Claim: Let A : R+ → B(H,H′), B : R+ → B(K,K′). Then the following
are equivalent:

1. A and B are strongly continuous maps,

2. the map (a, b) 7→ A(a)⊗̂B(b) ∈ B(H⊗̂K,H′⊗̂K′) is strongly continuous.

So let us fix b0 ∈ R+. We need to check that for any T ∈ H⊗̂K∥∥A(a)⊗̂B(b0)T −A(a0)⊗̂B(b0)T
∥∥ a→a0−−−−→ 0.

Choose a sequence Tn
n→∞−−−−→ T such that for every n Tn is in the algebraic

tensor product H ⊗ K. We know that if x → x0 in H and y → y0 in K then
x⊗̂y → x0⊗̂y0 in H⊗̂K. Therefore for every n∥∥A(a)⊗̂B(b0)Tn −A(a0)⊗̂B(b0)Tn

∥∥ a→a0−−−−→ 0.

Let us write A(a0) = A0 and B(b0) = B0, then∥∥A(a)⊗̂B0T −A0⊗̂B0T
∥∥ =

∥∥(A(a)−A0)⊗̂B0Tn + (A(a)−A0)⊗̂B0(T − Tn)
∥∥

≤
∥∥(A(a)−A0)⊗̂B0Tn

∥∥+ ∥∥A0⊗̂B0(T − Tn)
∥∥

+
∥∥A(a)⊗̂B0(T − Tn)

∥∥ . (2.6)

Now for every ε > 0 we can choose Nε such that for every n > Nε

∥T − Tn∥ <
ε

4
∥∥A0⊗̂B0

∥∥ .
For such an n the first term in (2.6) can be made smaller than ε/4 for |a− a0|
sufficiently small. Note that

∥∥A(a)⊗̂B0

∥∥ = ∥A(a)∥ ∥B0∥. By strong continuity
of A, ∥A(a)∥ can be made smaller than 2 ∥A0∥ for |a− a0| sufficiently small10,
so altogether∥∥A(a)⊗̂B0T −A0⊗̂B0T

∥∥ ≤
∥∥(A(a)−A0)⊗̂B0Tn

∥∥+ ∥∥A0⊗̂B0

∥∥ · ∥(T − Tn)∥
+
∥∥A(a)⊗̂B0

∥∥ · ∥(T − Tn)∥

<
ε

4

(
1 + 1 +

∥∥(A(a)⊗̂B0

∥∥∥∥A0⊗̂B0

∥∥
)
< ε,

10 We have ∥A(a)f∥ ≤ ∥(A(a)−A0)f∥ + ∥A0f∥ and the second term on the right hand
side can be made arbitrarily small for any f ∈ H.
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so we just proved our claim.
Let us consider now connected bordisms. We will consider three cases: when

the bordism with area has one ingoing boundary component, when it has one
outgoing boundary component, and when it has no in or outgoing boundary.
When one has more than one in- and outgoing boundaries the argumentation
is analogous. So fix 0 < ε < a0 and 0 < x0 such that ε+ x0 < a0.

Let (Mn,1, a) denote a bordism with area a and 1 in- and n outgoing bound-
ary. We can write Z(Mn,1, a) = Z(Mn,1, a− x) ◦ Px for x > 0 by functoriality.
So calculate for f ∈ H

∥(Z(Mn,1, a)− Z(Mn,1, a0)) f∥ = ∥Z(Mn,1, a0 − ε) (Pa−a0+ε − Pε) f∥

≤∥Z(Mn,1, a0 − ε)∥ ∥(Pa−a0+ε − Pε) f∥
a→a0−−−−→ 0,

because P is strongly continuous.
Now let (M1,m, a) denote a bordism with area a and m in- and 1 outgoing

boundary. We can write Z(M1,m, a) = Px ◦ Z(M1,m, a − x) for x > 0 by

functoriality. So calculate for g ∈ H⊗̂m

∥(Z(M1,m, a)− Z(M1,m, a0)) g∥ = ∥(Pa−a0+ε − Pε)Z(M1,m, a0 − ε)g∥ a→a0−−−−→ 0,

because P is strongly continuous.
Now let (N, a) be a bordism with area a and no boundary. We can cut

off a disk, so we have Z(N, a) = Z(S0,1, x0) ◦ Z(N̂ , a − x0). From the Riesz
representation theorem (see [17] theorem 5.62) we have a unique vector ex0

∈ H,
such that Z(S0,1, x0)(f) = ⟨ex0 , h⟩ for all h ∈ H. So calculate

∥Z(N, a)− Z(N, a0)∥ =
∣∣∣⟨ex0 ,

(
Z(N̂ , a)(1)− Z(N̂ , a0)(1)

)⟩∣∣∣
≤∥ex0∥

∥∥∥Z(N̂ , a)(1)− Z(N̂ , a0)(1))
∥∥∥ a→a0−−−−→ 0,

by Cauchy–Schwarz and the previous argument.

Definition 39. A strongly continuous AQFT is an AQFT, which is a strongly
continuous functor as well.

Let AQFTsc denote the category of strongly continuous AQFTs, which is
a full subcategory of AQFT.

Theorem 40. There is an equivalence of categories AQFTsc
∼−→ cRFrobsc.

Proof. The proof is essentially the same as the proof of theorem 36, we need to
check that a strongly continuous AQFT is sent to a strongly continuous RFA.
But this is clear, because Z(S1,1, a) for Z an AQFT is sent to Pa of the RFA
Z(S1), conversely use lemma 38.

2.4 Zero Area Limits

We can alternatively allow bordisms to have zero areas. That is, we can define
a category Cobarea,0

2 , which is given by the same definition as Cobarea
2 , except

that we allow the area maps AM (M a bordism) to take values in R≥0. Note

that Cobarea
2 ⊊ Cobarea,0

2 . We can consider symmetric monoidal ∗-functors
Cobarea,0

2 → Hilb, which send the cylinders (S1,1, a), for a ≥ 0 to injective
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maps. One can then ask the question: When does an AQFT extend to such
a functor? By this we mean the following: Let Z : Cobarea

2 → Hilb be an
AQFT. Is there a symmetric monoidal ∗-functor Z̃ : Cobarea,0

2 → Hilb, with
Z̃(S1,1, a) injective, such that

Z̃ ↾Cobarea
2

= Z? (2.7)

If this is the case, we say that Z has a zero area limit. Observe that restricting Z̃

to the subcategory ofCobarea,0
2 , where all bordisms have zero area gives a TFT,

which is a ∗-functor as well, hence Z̃(S1) is a commutative ∗-Frobenius algebra
and in particular it is finite dimensional. Hence restricting Z̃ to Cobarea

2 gives
an AQFT with finite dimensional state space.

Proposition 41. A AQFT has a zero area limit, if and only if its state space
is finite dimensional.

Proof. Let Z denote an AQFT. The “only if“ direction is clear from the pre-
vious argumentation. For the other direction first use theorem 36 to describe
the AQFT Z as an RFA F , then decompose F into the eigenspaces of Pa as in
proposition 22. Now note that we have a finite number of distinct nonzero eigen-
values and corresponding eigenspaces of Pa, because of finite dimensionality,
say {En}Nn=1, which are ∗-Frobenius algebras with maps µn, ηn, ∆n, εn. Note
that we only know that the eigenvalues cn(a) of Pa obey cn(a)cn(b) = cn(a+b),
n = 1, . . . , N . Now the maps

µ0 :=
∑N

n=1 µn, η0 :=
∑N

n=1 ηn,

∆0 :=
∑N

n=1 ∆n, ε0 :=
∑N

n=1 εn

are automatically bounded. Observe that F , together with the maps µa, ηa,
∆a, εa, for a now non-negative give the generators of the desired functor Z̃.

Corollary 42 (to corollary 21). Let Z be a strongly continuous AQFT. Then

lim
a→0

Z(S1,1, a) = idZ(S1) (2.8)

in the strong operator topology.

Proof. Theorem 40 defines a strongly continuous RFA structure on Z(S1) with
Pa = Z(S1,1, a). Then one can apply corollary 21.
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Chapter 3

Lattice Construction

Theorem 27 provides all possible examples of AQFTs. Another way of ob-
taining examples of AQFTs is through the lattice construction familiar from
TFTs.

3.1 Bordisms with Cell Decompositions

We will follow [19] and [9] in order to define a cell decomposition of compact
1- and 2-manifolds into k-cells (k = 0, 1, 2) called PLCW decomposition. A
k-cell is the homeomorphic image of the interior of the unit ball Bk in Rk. A
cell decomposition of a compact n-manifold M is the disjoint union of k-cells
(k = 0, . . . , n), such that their union isM and they have the following property.
For any k-cell C there is a homeomorphism ϕ : Bk →M such that

• C is the homeomorphic image if the interior of Bk,

• Sk, the boundary of Bk, decomposes in a way that this decomposition is
mapped by ϕ to the decomposition of M ,

• ϕ restricted to each cell in the above decomposition of Sk is a homeomor-
phism.

Let M now denote a compact 2-manifold. We write C(M) for the cell decom-
position of M , C2(M) for the set of 2-cells of M and call the 0-, 1- and 2-cells
vertices, edges and faces respectively.

Let Cobcw
2 denote the category of bordisms with cell decomposition, which

is Cob2 with the following extra structure on objects and morphisms. Each
circle of an objects in Cob2 is endowed with a decomposition into a single
0- and 1-cell; the bordisms are endowed with a decomposition into 0-, 1- and
2-cells, such that the each circle of the boundary of a bordism is decomposed
into a single 0- and 1-cell.11 Composition of bordisms with cell decomposition
M , N is performed by gluing along the boundary parametrization, which needs
to respect the cell decomposition of the boundaries. The cell decomposition
of the composition C(M ◦ N) is the disjoint union of the cell decompositions
C(M) and C(N), with the one of the two identical 0- and 1 cells for each glued
boundary component removed. Let F : Cobcw

2 → Cob2 denote the forgetful

11Note that this is not the most general cell decomposition (one could allow more cells on
objects), nonetheless we will use it because of its simplicity.
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functor that forgets the cell decomposition. It is surjective and full. Note that
Cobcw

2 is a ∗-category the same way as Cob2 is and F is a ∗-functor.

Figure 3.1: Splitting a face by inserting a new edge

Figure 3.2: Splitting an edge by inserting a new vertex

Let M be a bordism with cell decomposition C(M). Then we can refine
the cell decomposition by

• splitting an internal edge by adding a new vertex on it,

• splitting a face by adding a new edge between two of its vertices,

illustrated on figure 3.1 and 3.2. The refinement C ′(M) of a cell decomposition
is again a cell decomposition of M . We have the following result, which is
explained in detail in [19].

Proposition 43. Let C and D denote two cell decompositions of M . There
exists a cell decomposition E of M which is the refinement of both C and D.

Now we would like to extend this notation to include areas, so letCobarea,cw
2

denote the category of bordisms with area and cell decomposition, which has
objects same as Cobcw

2 , and the morphisms are generated from permutations
and bordisms with area and cell decomposition. The latter are pairs (M,AM )
where M is a bordism with cell decomposition and AM : C2(M) → R+ is a
map called the area map and the number it assigns to a face is called the area
of the face. The area map of disjoint union and composition of such bordisms
assigns the same numbers as before. This category comes with a forgetful func-
tor F ′ : Cobarea,cw

2 → Cobarea
2 as well, it forgets the cell decomposition on

objects and bordisms and sends the area map of a bordism with area and cell
decomposition to a map, which assigns to each connected component of the
bordism the sum of the areas of its faces. Similarly, Cobarea,cw

2 is a ∗-category
the same way as Cobarea

2 was and F ′ is a ∗-functor, moreover F ′ is surjective
and full.
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Now we would like to build TFTs the following way. We build a symmetric
monoidal functor Zcw : Cobcw

2 → Vectk, and the show that it is independent
of the details of the cell decomposition i.e. there is a symmetric monoidal
functor Z : Cob2 → Vectk, such that Zcw = Z ◦ F . Since F is surjective
and full, Z is unique. This will be referred to as the lattice construction of Z.
Then we would like to adjust this construction to build a symmetric monoidal
∗-functor Cobarea,cw

2 → Hilb and show that it factorizes through F ′.

3.2 Data for the Lattice Construction of TFTs

The data needed for the lattice construction is

• a finite dimensional vector space V ∈ Vectk,

• a linear map β : V ⊗ V → k, called the pairing,

• a family of linear maps W (n) : k→ V ⊗n for n ≥ 1, called the weights.

This set of data needs to satisfy the following conditions

1. β = β ◦ τV,V (β is symmetric),

2. πn ◦W (n) = W (n) for any n ≥ 1, where πn(v1 ⊗ · · · ⊗ vn) = vn ⊗ v1 ⊗
· · · ⊗ vn−1 (W (n) is cyclic invariant),

3. (idV ⊗(n−1) ⊗ β ⊗ idV ⊗(m−1)) ◦
(
W (n) ⊗W (m)

)
=W (n+m−2) (gluing prop-

erty),

4. (idV ⊗ β) ◦
(
W (2) ⊗ idV

)
= idV (unitality requirement),

5. (β ⊗ idV ⊗(n−2)) ◦W (n) =W (n−2) for n ≥ 3 (self gluing property).

We refer to a set of data satisfying this set of conditions as the data for the
lattice construction. A similar set of data has been given in [20, 9]. We will
see in the following how this data can be encoded in Frobenius algebras. We
introduce a graphical notation for the above maps on figure 3.3 and the show
the conditions 1-5 on figure 3.4. Note that

Figure 3.3: Graphical notation of the pairing and the weights

• β determines W (2) via (4) uniquely,

• β and W (3) determine W (1) via (5),

• β and W (3) determine W (n) for n ≥ 3 via (3).

So the independent data is β and W (3), but we still keep this formulation as it
provides a better picture. Using the self gluing property (5) and cyclicity (2)
we also have (idV ⊗k ⊗ β ⊗ idV ⊗(n−k−2))◦W (n) =W (n−2) for any 0 ≤ k ≤ n−2.
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Figure 3.4: Graphical notation of the conditions 1-5

Proposition 44. The data for the lattice construction determines a ∆-separable
symmetric Frobenius algebra by setting

• η :=W (1),

• ε := β ◦
(
idV ⊗W (1)

)
,

• µ := (idV ⊗ β) ◦ (idV ⊗2 ⊗ β ⊗ idV ) ◦
(
W (3) ⊗ idV ⊗2

)
,

• ∆ := (idV ⊗2 ⊗ β) ◦
(
W (3) ⊗ idV

)
.

Proof. We show that the tuple (V, η, µ, ε,∆) is a Frobenius algebra. Calculate:

µ ◦ (idV ⊗ η) = (idV ⊗ β) ◦ (idV ⊗2 ⊗ β ⊗ idV ) ◦
(
W (3) ⊗W (1) ⊗ idV

)
= (idV ⊗ β) ◦

(
W (2) ⊗ idV

)
= idV ,

by conditions 3 and 4; to show that µ ◦ (idV ⊗ η) = idV , condition 2 needs to
be used. So η is the unit of µ. For the counit calculate

(ε⊗ idV ) ◦∆ = (β ⊗ idV ⊗ β) ◦
(
W (1) ⊗W (3) ⊗ idV

)
= (idV ⊗ β) ◦

(
W (2) ⊗ idV

)
= idV ,

by conditions 3 and 4; to show that (idV ⊗ ε) ◦∆ = idV , condition 2 needs to
be used. So ε is the counit of ∆. Now we need to check the Frobenius relation
∆ ◦ µ = (µ⊗ idV ) ◦ (idV ⊗∆). The lhs is

lhs = (idV ⊗2 ⊗ β ⊗ β) ◦ (idV ⊗5 ⊗ β ⊗ idV ) ◦
(
W (3) ⊗W (3) ⊗ idV ⊗2

)
= (idV ⊗2 ⊗ β) ◦ (idV ⊗3 ⊗ β ⊗ idV ) ◦

(
W (4) ⊗ idV ⊗2

)
,

by using condition 3. The rhs is

rhs = (idV ⊗ β ⊗ idV ⊗ β) ◦ (idV ⊗2 ⊗ β ⊗ idV ⊗4) ◦
(
W (3) ⊗ idV ⊗W (3) ⊗ idV

)
= (idV ⊗ β ⊗ idV ⊗ β) ◦ (idV ⊗2 ⊗ β ⊗ idV ⊗4) ◦

(
π−1
3 ⊗ idV ⊗4

)
◦
(
W (3) ⊗ idV ⊗W (3) ⊗ idV

)
= (idV ⊗2 ⊗ β) ◦ (idV ⊗ τV,V ⊗ idV ⊗ β) ◦ (τV,V ⊗ β ⊗ idV ⊗ τV,V ⊗ idV )

◦
(
W (3) ⊗W (3) ⊗ idV ⊗2

)
= (idV ⊗2 ⊗ β) ◦ (idV ⊗3 ⊗ β ⊗ idV ) ◦ (π4 ⊗ idV ⊗2)

◦
(
W (4) ⊗ idV ⊗2

)
= lhs
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by using conditions 2, 3 and the naturality of the braiding. This calculation is
also shown on figure 3.5. One similarly shows ∆ ◦ µ = (idV ⊗ µ) ◦ (∆⊗ idV ).

Figure 3.5: Calculation showing that the Frobenius relation holds

To show that V is a symmetric Frobenius algebra calculate

ε ◦ µ = (β ⊗ β) ◦ (idV ⊗3 ⊗ β ⊗ idV ) ◦
(
W (1) ⊗W (3) ⊗ idV ⊗2

)
= β ◦ (idV ⊗ β ⊗ idV ) ◦

(
W (2) ⊗ idV ⊗2

)
= β ◦ (idV ⊗ β ⊗ idV ) ◦ (τV,V ⊗ idV ) ◦

(
W (2) ⊗ idV ⊗2

)
= β ◦ (idV ⊗ β ⊗ idV ) ◦

(
W (2) ⊗ τV,V

)
= ε ◦ µ ◦ τV,V ,

by conditions 3, 2 and the naturality of the braiding.
To show that V is ∆-separable calculate

µ ◦∆ = (idV ⊗ β ⊗ β) ◦ (idV ⊗2 ⊗ β ⊗ idV ⊗3) ◦
(
W (3) ⊗W (3) ⊗ idV

)
= (idV ⊗ β ⊗ β) ◦

(
W (4) ⊗ idV

)
= (idV ⊗ β) ◦

(
W (2) ⊗ idV

)
= idV ,

by using conditions 3, 5 and 4.

Let now ∆(n) := (∆⊗ idF⊗(n−2)) with ∆(1) = idF and ∆(2) = ∆ denote the
n-fold coproduct on a Frobenius algebra F .

Proposition 45. A ∆-separable symmetric Frobenius algebra F determines
the data for the lattice construction by setting

• the vector space to be F ,

• β := ε ◦ µ,

• W (n) := ∆(n) ◦ η.

Proof. We need to check if the above defined set of data satisfies the conditions
1-5.
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• Condition 1 follows from F being symmetric.

• To show condition 2, first note that the cyclic invariance of W (2) = ∆ ◦ η
also follows from F being symmetric. We can use this calculate

W (n) = ∆(n) ◦ η =
(
∆(n−1) ⊗ idF

)
◦∆ ◦ η

=
(
∆(n−1) ⊗ idF

)
◦ τF,F ◦∆ ◦ η = π−1

n ◦W (n),

by coassociativity and again by the naturality of the braiding.

• To show the gluing property (3) calculate using the Frobenius relation,
unitality and counitality that

(idV ⊗(n−1) ⊗ β ⊗ idV ⊗(m−1)) ◦
(
W (n) ⊗W (m)

)
=
(
∆(n−1) ⊗ ε⊗∆(m−1)

)
◦ (idF ⊗ µ⊗ idF ) ◦ (∆⊗∆) ◦ (η ⊗ η)

=
(
∆(n−1) ⊗∆(m−1)

)
◦ (µ⊗ ε⊗ idV ) ◦ (η ⊗∆⊗ idF ) ◦∆ ◦ η

=
(
∆(n−1) ⊗∆(m−1)

)
◦∆ ◦ η =W (n+m−2).

• To show that the unitality requirement (4) is satisfied use the Frobenius
relation, unitality and counitality:

(idF ⊗ β) ◦
(
W (2) ⊗ idF

)
=(idF ⊗ ε) ◦ (idF ⊗ µ) ◦ (∆⊗ idF ) ◦ (η ⊗ idF )

= (idF ⊗ ε) ◦∆ ◦ µ ◦ (η ⊗ idF ) = idF .

• For the last condition (5) calculate for k ≥ 1 that

(β ⊗ idF⊗k) ◦W (k+2) =
(
ε⊗∆(k)

)
◦ ((µ ◦∆)⊗ idF ) ◦∆ ◦ η

=
(
ε⊗∆(k)

)
◦∆ ◦ η = ∆(k) ◦ η =W (k),

where we used ∆-separability and counitality of F .

Let us fix a finite dimensional vector space V and denote the sets

• L := {data for lattice construction on V },

• F := {∆-separable symmetric Frobenius algebra structures on V }.

Proposition 44 and 45 define maps of sets α and ω respectively:

L
α−−⇀↽−−
ω

F. (3.1)

Theorem 46. The maps in (3.1) are inverse to each other.

Proof. First show that ω ◦ α = idL, note that it is enough to show that W (1),
W (3) and β get mapped to themselves. Let L ∈ L, i.e. it is a tuple L =(
V, β,W (n)

)
, then α(L) = (V, η, µ, ε,∆) is an FA.
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• It is clear that W (1) gets mapped to itself.

• W (3) gets mapped to (∆⊗ idV ) ◦∆ ◦ η, this equals

(idV ⊗2 ⊗ β ⊗ idV ⊗ β) ◦
(
W (3) ⊗W (3) ⊗W (1)

)
=(idV ⊗2 ⊗ β ⊗ idV ) ◦

(
W (3) ⊗W (2)

)
=W (3),

by the gluing property.

• β gets mapped to ε ◦ µ, which equals

(β ⊗ β) ◦ (idV ⊗3 ⊗ β ⊗ idV ) ◦
(
W (1) ⊗W (3) ⊗ idV ⊗2

)
=β ◦ (idV ⊗ β ⊗ idV ) ◦

(
⊗W (2) ⊗ idV ⊗2

)
= β,

by the gluing property and the unitality requirement.

An analogous result can be found in [9].
Now show that α ◦ ω = idF. Let F ∈ F, i.e. F = (V, η, µ, ε,∆) and

ω(F ) =
(
V, β,W (n)

)
.

• It is clear that η is mapped to itself.

• µ is mapped to (idV ⊗ β) ◦ (idV ⊗2 ⊗ β ⊗ idV ) ◦
(
W (3) ⊗ idV ⊗2

)
, which

equals

(idV ⊗ (ε ◦ µ)) ◦ (∆⊗ (ε ◦ µ)⊗ idV ) ◦ ((∆ ◦ η)⊗ idV ⊗2)

= (idV ⊗ (ε ◦ µ)) ◦ (∆⊗ ε⊗ idV ) ◦ ((∆ ◦ µ)⊗ idV ) ◦ (η ⊗ idV ⊗2)

= (idV ⊗ (ε ◦ µ)) ◦ (∆⊗ idV ) = (idV ⊗ ε) ◦∆ ◦ µ = µ,

by using the Frobenius relation, unitality and counitality.

• ε is mapped to β ◦
(
idV ⊗W (1)

)
, which equals ε ◦ µ ◦ (idV ⊗ η) = ε by

unitality.

• ∆ is sent to (idV ⊗2 ⊗ β) ◦
(
W (3) ⊗ idV

)
, which equals

(∆⊗ (ε ◦ µ)) ◦ ((∆ ◦ η)⊗ idV ) = (∆⊗ ε) ◦∆ ◦ µ ◦ (η ⊗ idV ) = ∆,

by the Frobenius relation, unitality and counitality.

Note that there is a similar statement in [21] section 4.3, but there trian-
gulations are used instead of an arbitrary cell decomposition.

3.3 Lattice Construction of TFTs

Using the data for the lattice construction we are ready to define a functor
Zcw : Cobcw

2 → Vectk. Similar constructions has been given in [20, 9], the
main difference here is that the we first assign elements to faces and then
contract along edges. Consider now a bordism with a cell decomposition M
that has Ni in- and No outgoing boundaries, Nc internal edges, Nf faces, let
Nb := Ni +No and follow the next steps.
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1. Take the tensor product of W (np) for each face p with np edges

W :=

Nf⊗
p=1

W (np) : k→
Nf⊗
p=1

V ⊗np (3.2)

and note that for each internal edge we have two factors of V in the above
tensor product.

2. Consider the permutation that brings

• each pair of V assigned to an internal edge next to each other and
to the left side of the tensor product,

• each copy of V assigned to outgoing boundaries right of the previous
bunch,

• each copy of V assigned to ingoing boundaries to the right side of
the tensor product:

ρ :

Nf⊗
p=1

V ⊗np →
Nc⊗
c=1

V ⊗2 ⊗
No⊗

bo=1

V ⊗
Ni⊗

bi=1

V, (3.3)

where bi and bo run over in- and outgoing boundary edges respectively
and c runs over internal edges.

3. Apply β’s on internal edges

C := β⊗Nc ⊗ idV ⊗Nb : V ⊗2Nc ⊗ V ⊗No ⊗ V ⊗Ni → V ⊗No ⊗ V ⊗Ni (3.4)

4. LetBk := idV ⊗(Ni−k)⊗β⊗idV ⊗(Ni−k) and B̃Ni := BNi◦BNi−1◦· · ·◦B2◦B1.
The corresponding graphical notation is shown on figure 3.6.

Figure 3.6: Graphical notation of B̃3

5. Take the composition of the maps 3.2, 3.3, 3.4 and form the following(
idV ⊗No ⊗ B̃Ni

)
◦ ((C ◦ ρ ◦W )⊗ idV ⊗Ni ) : V

⊗Ni → V ⊗No , (3.5)

which we denote Y (M) : V ⊗Ni → V ⊗No .

These steps will be referred to as the lattice construction. Observe that as a
consequence of our implementation of gluing via β we have

Y (M ◦M ′) = Y (M) ◦ Y (M ′), (3.6)

for M ′ another bordism with cell decomposition, i.e. this assignment respects
composition. We now show that Y (M) is independent of the cell decomposition
of M .

46



Proposition 47. Y (M) does not change if we refine the cell decomposition of
M .

Proof. The key idea is to use the gluing property and the self-gluing property.
Take a face f in the cell decomposition and split it into the faces f1 and f2

as seen on figure 3.1. According to the defining steps of Y (M) we will assign
Wnf1 ⊗Wnf2 to these faces and then apply β:(

id
V

nf1
−1 ⊗ β ⊗ id

V
nf2

−1

)
◦ (Wnf1 ⊗Wnf2 ) ,

which equals Wnf by the gluing property. This is was originally assigned to
the face f , so Y (M) has not changed.

Instead of showing that Y (M) is not changed by splitting an internal edge,
we show that Y (M) is not changed if we add an edge and a vertex as shown on
figure 3.7. On figure 3.8 it is shown how adding a vertex and an edge together
with the freedom of adding and removing edges can be used to split an edge
by adding a vertex. Conversely we can first add an edge and then split it, so
these two pair of moves are equivalent. For details refer to [9] section 3.6.

Figure 3.7: Adding an edge and a vertex

Figure 3.8: Another way of adding a vertex

W (2) is assigned to the left hand side of figure 3.7, on the right hand side
we follow the defining steps of Y (M): The assigned morphism is

(idV ⊗ β ⊗ idV ) ◦ (τV,V ⊗ β ⊗ τV,V ) ◦
(
W (3) ⊗W (3)

)
=(idV ⊗ β ⊗ idV ) ◦ (τV,V ⊗ τV,V ) ◦W (4)

=(idV ⊗ β ⊗ idV ) ◦ (τV,V ⊗ τV,V ) ◦ π−1
4 ◦W (4)

=(β ◦ τV,V ⊗ idV ⊗2) ◦W (4) = (β ⊗ idV ⊗2) ◦W (4) =W (2),

by the gluing property, cyclic invariance and the self-gluing property of the
weights and the symmetry of the pairing.

Before completing the definition of Zcw, we need a few more considerations.
We use the result of theorem 46 and write everything in terms of the Frobenius
algebra V . Let us calculate what is assigned to the cylinder S1 → S1. Consider
the cylinder decomposed into a single face, one vertex on each boundary and
one edge connecting these vertices as on figure 3.9. The map P assigned to this
cylinder is shown on figure 3.10, which can also be written as on figure 3.11,
the calculation is shown on figure 3.12.
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Figure 3.9: Decomposition of
a cylinder into a single 2-cell

Figure 3.10: The map assigned to a cylinder

Figure 3.11 Figure 3.12: Calculation of the alternative form of P

Lemma 48. We have P 2 = P and P projects onto the center of V .

Proof. On one hand, since Y respects composition we have P 2 = P , see figure
3.13. On the other hand we would like to illustrate this with a direct calculation,

Figure 3.13

see figure 3.14.
To see that P indeed projects onto the center of V we will show that

• the center of V is contained in the image of P , more precisely we show
that z = P (z) for all z in the center, see figure 3.15 for the calculation,

• the image of P is contained in the center of V , i.e. P (x)y = yP (x) for all
x, y ∈ V , see figure 3.16 for this calculation.

Now since Y (M) is independent of the cell decomposition of M , let us
consider another cell decomposition of M , which is obtained by the old cell
decomposition glued together with cylinders on all boundaries. Since Y respects
composition we have Y (M) = P⊗No ◦ Y (M) ◦ P⊗Ni , hence there is no harm
done if we restrict Y (M) to the appropriate tensor power of the image of P
and Y (M) lands in the appropriate tensor power of the image of P .

We define Zcw to send an object with n circles to the n-th tensor power of
the image of P , bordisms to Y (M) restricted to the appropriate tensor power
of the image of P and permutations to permutations. It is clear from the lattice
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Figure 3.14

Figure 3.15: Calculation of z = P (z) for z in the center

construction that we obtain a symmetric monoidal functor and that it factorizes
through F , i.e. it is independent of the cell decomposition of bordisms. We
have just shown the following theorem, also to be found in [9].

Theorem 49. The lattice construction using V defines a TFT, whose state
space is the center of V .

3.4 Data for the Lattice Construction of AQFTs

In order to generalize the above construction to build an AQFT, we need a
slightly different set of data as a starting point. We fix the following set of
data:

• a Hilbert space L ∈ Hilb and

• the pairing βa ∈ B(L⊗̂2,C),

• the weights W
(n)
a ∈ B(C,L⊗̂n) for every n ≥ 1 integer,
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Figure 3.16: Calculation of P (x)y = yP (x)

which are two families of maps, where the parameter a takes positive real
values. This data has to satisfy the following adjusted conditions:

1. βa = βa ◦ τL,L,

2. πn ◦W (n)
a =W

(n)
a , where πn is defined as in condition 2 in the TFT case,

3.
(
idL⊗̂(n−1)⊗̂βa0⊗̂idL⊗̂(m−1)

) (
W

(n)
a1 ⊗̂W (m)

a2

)
=W

(n+m−2)
a0+a1+a2

,

4.
(
βa1

⊗̂idL
)
◦
(
idL⊗̂W (2)

a2

)
=: Pa1+a2

is injective,

5.
(
βa1⊗̂idL⊗̂n

)
◦W (n+2)

a2 =W
(n)
a1+a2

,

for any a, a0, a1, a2 positive and n,m ≥ 1. Note again that βa, W
(1)
a and W

(3)
a

determine all W
(n)
a for n ≥ 1. Furthermore Pa is a semigroup: Pa1 ◦ Pa2 =

Pa1+a2 ;

Pa =
(
idL⊗̂βa1

)
◦
(
W (2)

a2
⊗̂idL

)
, (3.7)(

Pa1⊗̂idL⊗̂n−1

)
◦W (n)

a2
=W

(n)
a1+a2

. (3.8)

Therefore it is natural to require that

6. βa1 ◦
(
Pa2⊗̂idL

)
= βa1+a2 .

These last two equations show that we can freely distribute the parameter
among the pairing and the weights, whenever they are contracted. So far
these are straightforward generalizations of the data and the conditions for
the lattice construction of TFTs. Let us introduce the following notation:
Bk

a :=
(
idL⊗̂(k−1)⊗̂βa⊗̂idL⊗̂(k−1)

)
, B̃n

a := B1
a/n ◦ B2

a/n ◦ · · · ◦ Bn
a/n. In order to

later fit the definition of an AQFT we need to require additionally that

7.
(
W

(1)
a

)∗
= βa1 ◦

(
W

(1)
a2 ⊗̂idL

)
,
(
W

(3)
a

)∗
= B̃3

a1
◦
(
W

(3)
a2 ⊗̂idL⊗̂3

)
and

β∗
a =W

(2)
a .
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A straightforward consequence of the last condition and equation 3.7 is that
Pa is self-adjoint. If we want to build an AQFT, which is strongly continuous
we need to additionally require that

8. the assignments a 7→ βa and a 7→W
(n)
a are strongly continuous.

Proposition 50. The data for the lattice construction of AQFTs on L subject
to conditions 1-7 determines a ∆-separable symmetric regularized ∗-Frobenius
algebra by setting

• ηa :=W
(1)
a ,

• µa :=
(
idL⊗̂B̃2

a1

)
◦
(
W

(3)
a2 ⊗̂idL⊗̂2

)
, with a1 + a2 = a,

• εa := βb1 ◦
(
W

(1)
b2

⊗̂idL
)
, with b1 + b2 = a,

• ∆a :=
(
idL⊗̂2⊗̂βc1

)
◦
(
W

(3)
c2 ⊗̂idL

)
, with c1 + c2 = a.

If we also require condition 8 then this RFA is strongly continuous.

Proof. Then the proof is essentially the same as of proposition 44, we just
need to keep in mind that the parameters need to add up on each side of the
equations.

We need to check the injectivity of P̃a := µa1 ◦
(
ηa2⊗̂idL

)
, so calculate

P̃a = µa1 ◦
(
ηa2⊗̂idL

)
=
(
idL⊗̂B̃k

b1

)
◦
(
W

(3)
b2

⊗̂W (1)
b3

⊗̂idL
)

=
(
idL⊗̂βc1

)
◦
(
W (2)

c2 ⊗̂idL
)
= Pa,

by using the gluing property (a = a1 + a2 = b1 + b2 + b3 = c1 + c2), so P̃a

is clearly injective. This also shows that a 7→ P̃a is strongly continuous, if
condition 8 holds.

Additionally we need to check if η∗a = εa and µ∗
a = ∆a. The first equation is

automatically satisfied by the definition of εa and condition 7. For the second
equation calculate using condition 7 and 4 that

µ∗
a =

(
B̃3

a1
⊗̂idL⊗̂2

)
◦
(
W (3)

a2
⊗̂idL⊗̂5

)
◦
(
idL⊗̂2⊗̂W (2)

a3
⊗̂idL

)
◦
(
idL⊗̂W (2)

a4

)
=
(
idL⊗̂2⊗̂βb1

)
◦
(
W

(3)
b2

⊗̂idL
)
= ∆a,

so L is a regularized ∗-Frobenius algebra.

Proposition 51. A ∆-separable symmetric regularized ∗-Frobenius algebra F
determines the data for the lattice construction of AQFTs by setting

• the Hilbert space to be F ,

• βa := εa1 ◦ µa2 ,

• W
(n)
a := ∆

(n)
a1 ◦ ηa2 ,

with a1 + a2 = a. If F is furthermore strongly continuous, then condition 8
holds.
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Proof. Proving conditions 1-5 can be done as in the proof of proposition 45,
one just has to keep in mind that the parameters should add up on each side
of the equations.

To show condition 6 calculate

βa1 ◦
(
Pa2⊗̂idL

)
= εa′

1
◦ µa′′

1

(
Pa2⊗̂idL

)
= εa′

1
◦ µa′′

1 +a2
= βa1+a2 .

To show that condition 7 is satisfied calculate

β∗
a = (ηa1 ◦ µa2)

∗
= ∆a2 ◦ εa1 =W (2)

a ,(
W (3)

a

)∗
=
(
(∆a1⊗̂idL) ◦∆a2 ◦ ηa3

)∗
= εa3 ◦ µa2 ◦ (µa1⊗̂idL)

= εa3 ◦ µa2 ◦ (µa′
1
⊗̂εa′′

1
⊗̂idL) ◦ (idL⊗̂∆a′′′

1
⊗̂idL)

= εa3
◦ µa2

◦ (idL⊗̂εa′′
1
◦ µa′

1
⊗̂idL) ◦ (∆a′′′

1
⊗̂idL⊗̂2)

= εa3 ◦ µa2 ◦ (idL⊗̂εa′′
1
◦ µa′

1
⊗̂idL)

◦ (∆b1⊗̂εb2 ◦ µb3⊗̂idL) ◦ (∆b4 ◦ ηb5⊗̂idL⊗̂3)

= B̃3
c1 ◦

(
W (3)

c3 ⊗̂idL⊗̂3

)
.

To show strong continuity first calculate

P̃a =
(
idL⊗̂βa1

)
◦
(
W (2)

a2
⊗̂idL

)
=
(
idL⊗̂εb1 ◦ µb2

)
◦
(
∆b3 ◦ ηb4⊗̂idL

)
= Pa,

with a = a1 + a2 = b1 + b2 + b3 + b4. Then fix ϵ > 0 such that a− ϵ = a′ > 0
and b− ϵ = b′ > 0 and calculate:

|(βa − βb) (f)| =
∣∣βϵ ◦ ((Pa′ − Pb′)⊗̂idL

)
(f)
∣∣

≤ ∥βϵ∥
∥∥((Pa′ − Pb′)⊗̂idL

)
(f)
∥∥ a→b−−−→ 0,

as a− b = a′ − b′ and a 7→ Pa is strongly continuous. Furthermore∥∥∥W (n)
a −W

(n)
b

∥∥∥ =
∥∥∥((Pa′ − Pb′)⊗̂idL⊗̂n−1

) (
W (n)

ϵ

)∥∥∥ a→b−−−→ 0.

Let us fix a Hilbert space L and denote the sets

• L̂ := {data for lattice construction for AQFTs on L satisfying conditions
1-7},

• F̂ := {∆-separable symmetric regularized ∗-Frobenius algebra structures
on L}.

Proposition 50 and 51 define maps of sets A and Ω respectively:

L̂
A−−⇀↽−−
Ω

F̂. (3.9)

Theorem 52. The maps in (3.9) are inverse to each other.

Note that the proof is essentially the same as in the TFT case, the pa-
rameters need to add up on each side of the equations. We see from the
previous arguments that condition 8 being satisfied is equivalent to the RFA
being strongly continuous. Equipped with this data we show how to adjust the
lattice construction of TFTs to produce AQFTs.
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3.5 Lattice Construction of AQFTs

Consider a bordism with area and cell decomposition M with the notation of
section 3.3. Let np denote the number of edges of a face p, of which ncp are

internal12 and nip sit on ingoing boundaries and ap the area assigned to it. Fix

a small13 a > 0, let ãp := ap − (ncp/2 + nip)a and follow the next steps.

1. Take the tensor product of W
(np)
ãp

for each face p:

W =
⊗̂Nf

p=1
W

(np)
ãp

: C →
⊗̂Nf

p=1
L⊗̂np . (3.10)

2. Consider the permutation of step 2 of the lattice construction of TFTs,
which now permutes tensor products of L.

ρ :

Nf⊗
p=1

L⊗np →
Nc⊗
c=1

L⊗2 ⊗
No⊗

bo=1

L ⊗
Ni⊗

bi=1

L, (3.11)

3. Apply βa’s on internal edges

C = β⊗̂Nc
a ⊗̂idL⊗̂Nb

: L⊗̂2Nc⊗̂L⊗̂Nb → L⊗̂Nb . (3.12)

4. Take the composition of the maps 3.10, 3.11, 3.12 and form the following

Y (M) :=
(
idL⊗̂(No)⊗̂B̃Ni

a

)
◦
(
(C ◦ ρ ◦W ) ⊗̂idL⊗̂Ni

)
: L⊗̂Ni → L⊗̂No

(3.13)

It is not hard to see that Y (M) is independent of the choice of a and the
details of the cell decomposition of M , including the distribution of the total
area among faces. To see how this works, let us denote Qa := Y (S1,1, a). We
can calculate this with the cell decomposition on figure 3.9, with a assigned

to the single face. Let now Ŝ
[a1,a2]
1,1 be a cylinder decomposed into two faces,

with assigned areas a1 and a2, as shown on figure 3.17. We can calculate

Y (Ŝ
[a1,a2]
1,1 ) as shown of figure 3.18, and see that we can freely distribute the

area by condition 6 and equation 3.8. To show that Y (Ŝ
[a1,a2]
1,1 ) = Qa1+a2 , write

everything in terms of the RFA L and calculate similarly as on figure 3.14. It
is also clear from the construction that Y is functorial in the sense that

• Y ((M,AM ) ◦ (M ′,AM ′)) = Y (M,AM ) ◦ Y (M ′,AM ′),

• Y ((M,AM ) ⊔ (M ′,AM ′)) = Y (M,AM )⊗̂Y (M ′,AM ′).

Similarly to the TFT case we can write

Qa := Y (S1,1, a) = µa1 ◦ τL,L ◦∆a2 , (3.14)

for a1+a2 = a, which shows that Qa is self-adjoint.14 Functoriality of Y shows
that we have a semigroup: Qa ◦ Qb = Qa+b. Proposition 10 shows that Qa

12If an edge belongs to only this one face then we count it twice.
13It should be sufficiently small for ãp to remain positive for each face p.
14Recall that τ∗L,L = τ−1

L,L = τL,L from the definition of a braided monoidal ∗-category on

page 14 and because the braiding is symmetric.
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Figure 3.17: Decomposition of a cylinder into two faces

Figure 3.18: An example calculation, which shows independence of dell decom-
position and area distribution. After the second equation we write everything
in terms of the RFA L. We omit the parameters, since this map only depends
on the sum a1 + a2.

is compact: We have Pa1 ◦ Qa2 = Qa and Pa1 is compact by proposition 17.
This last equation also shows that a 7→ Qa is strongly continuous, if a 7→ Pa is
strongly continuous.

We just showed that we can apply proposition 15 on the operators Qa, thus
they have the same kernel K for any a. By the same argument as in the TFT
case,15 we do not lose anything if we restrict Y (M) to the appropriate tensor

power of H = L/K = ImQa and then Y (M) ↾H⊗̂Ni
will land in H⊗̂No .

Now we are ready to define the functor Zcw : Cobarea,cw
2 → Hilb. It as-

signs the Hilbert space H⊗̂n to an object with n circles, the bounded linear
map Y (M) ↾H⊗̂Ni

to a bordism M with area and cell decomposition and per-
mutations to permutations. We still need to check if we defined a ∗-functor, it
is enough to check this on the generators of Cobarea

2 , which we will do in the
following lemma. Altogether we have shown the following theorem.

Theorem 53. The data for the lattice construction on L satisfying conditions
1-7 defines an AQFT. If furthermore condition 8 is satisfied then we obtain a
strongly continuous AQFT.

Lemma 54. We have Y (S1,0, a)
∗ = Y (S0,1, a) and Y (S1,2, a)

∗ = Y (S2,1, a).

15See page 48.
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Proof. Recall the notation on figure 3.3 and 3.6. We will not mark the param-
eters, but assume that they add up where necessary. Then notice that it is

easy to calculate the adjoint of the weights:
(
W

(n)
a

)∗
= B̃n

a1
◦
(
W

(n)
a2 ⊗̂idL⊗̂n

)
.

The proof is shown on figure 3.19, and we use induction over n ≥ 3. The case
n = 2 is clear by condition 7, the case n = 1 is shown on figure 3.20. This

Figure 3.19: The adjoint of a weight

Figure 3.20: Adjoint of W
(1)
a

immediately shows that

Y (S1,0, a)
∗ =

(
W (1)

a

)∗
= βa1 ◦

(
W (1)

a1
⊗̂idL

)
= Y (S0,1, a).

Then also note that we can “pull the legs” of
(
W

(n)
a

)∗
to the right as illustrated

on figure 3.21. We define Ma := Y (S3,0, a), see figure 3.22. Use this to define

Figure 3.21

µ̃a := Y (S1,2, a) and ∆̃a := Y (S2,1, a) on figure 3.23. Calculate M∗
a = B̃3

a1
◦(

Ma2
⊗̂idL⊗̂3

)
on figure 3.24. Then we have µ̃∗

a = ∆̃a shown on figure 3.25.

Proposition 55. The center of the regularized ∗-Frobenius algebra L is H.

Proof. The argument is essentially the same as the TFT case, one just has to
keep in mind that the parameters of the maps need to add up.

By proposition 22 we have that L =
⊕∞

n=1En and by corollary 24 we have
that the center of L is the completed direct sum of the centers of En.

Theorem 56. The state space of the AQFT defined in theorem 53 using L is
the center of the RFA L.
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Figure 3.22: Definition of Ma

Figure 3.23: Definition of µ̃ and ∆̃

Figure 3.24: The adjoint of M

Figure 3.25: The adjoint of µ̃a
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Chapter 4

2-dimensional Yang–Mills
Theory

It is time to see an actual example of an AQFT familiar from physics, called
the two dimensional Yang–Mills theory, described for example in [8]. However
we will follow a different approach and use the techniques developed in chapter
3. Therefore let us fix a compact semi-simple Lie group G.

4.1 Representation Theory of Compact Lie Groups

In this section we summarize some results from the representation theory of
compact Lie groups, which are needed to define the data for the lattice con-
struction.

A finite dimensional complex vector space V is called a G-module, if the
action

G× V → V

(g, v) 7→ g.v (4.1)

satisfies g.(h.v) = (gh).v, e.v = v for e the unit in G, linear in V and if
it is a smooth map. Alternatively we have a smooth group homomorphism
ρV : G→ Gl(V ) with g.v = ρV (g)(v). We call V simple, if it does not contain
a proper subspace, which is a G-module. Two G-modules are isomorphic, if
there is a vector space isomorphism between them that commutes with the G-
action. Note that being isomorphic is an equivalence relation, so let us denote
the set of equivalence classes of simple G-modules with IG. One could define
infinite dimensional G-modules as well, but we will not as we will not use them
here (as G-modules).

There is a measure on G, called the Haar measure (or the integral), which
assigns to every continuous map f : G → R a real number

∫
G
f(x)dx, such

that the assignment is linear, left- and right-translation invariant,
∫
G
f(x)dx =∫

G
f(x−1)dx16 and

∫
G
1dx = 1. We can therefore define the integral of any

map G → U where U is a finite dimensional real vector space: pick a basis
and integrate the components independently. Linearity guarantees that this

16This is a consequence of the Haar measure being both left and right invariant, see [22]
for more details.
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integral does not depend on the choice of the basis. For details refer to [22]
chapter IV.2. The Haar-measure allows to define a scalar product of continuous
functions f, g : G→ C:

⟨f, g⟩ =
∫
G

f(x)g(x)dx. (4.2)

Proposition 57. On each G-module V we have a G invariant Hermitian form
(−,−), i.e.

(g.v, g.v′) = (v, v′) = (v′, v). (4.3)

For the proof refer to [22] chapter IV. proposition 4.6. From now on always
assume that each G-module is endowed with such a Hermitian form. Let V be
a G-module, u, v ∈ V . We call the functions of the form

G→ C
g 7→ (u, g.v) (4.4)

matrix element functions of the G-module V . Pick an orthonormal basis

{vVi }dV
i=1 of V , where dV = dimV . Denote the particular matrix element func-

tions in this basis with

rVi,j : G→ C
g 7→ (vVi , g.v

V
j ). (4.5)

Definition 58. The character of the G-module V is defined as the function

χV :=

dV∑
i=1

rVi,i = Tr ◦ ρV , (4.6)

where Tr is the trace.

In particular the characters are independent of the basis. They also satisfy
χV (x) = χV (x

−1). For details refer to [22] chapter IV. equation 4.14.

Proposition 59. Let V , V ′ be two simple G-modules, u, v ∈ V , u′, v′ ∈ V ′.
Then we have ∫

G

(u, g.v)(u′, g.v′)dg =
δV,V ′

dV
(u, u′)(v, v′), (4.7)∫

G

χV (g)χV ′(g)dg = δV,V ′ , (4.8)

where δV,V ′ = 1 when V is isomorphic to V ′ and 0 otherwise.

For the proof refer to [22] chapter IV. corollary 4.10 and corollary 4.16.

Lemma 60. Let V be a simple G-module, x, y ∈ G. Then∫
G

χV (xz
−1)χV (zy)dz =

1

dv
χV (xy).
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Proof. Use the invariance of the integral, rewrite the characters in terms of
scalar products and use the translation invariance and the Hermitian property
of the scalar product on V as follows:∫

G

χV (xz
−1)χV (zy)dz =

∫
G

χV (z
−1)χV (zxy)dz

=

∫
G

dimV∑
i=1

(ei, z
−1.ei)

dimV∑
j=1

(ej , zxy.ej) =

dimV∑
i=1

dimV∑
j=1

∫
G

(ei, z.ei)(ej , zxy.ej)

=
dimV∑
i,j=1

1

dimV
(ei, ej)(xy.ej , ei) =

dimV∑
i=1

1

dimV
(xy.ei, ei) =

1

dimV
χV (xy).

by equation 4.7, where {ei} is an orthonormal base of V .

Let L2(G) denote the square integrable functions on G (with respect to
equation 4.2) and Cl2(G) the square integrable class functions, which are the
functions invariant under conjugation (f(gxg−1) = f(x)). Recall the orthogo-
nality relations in equations 4.7 and 4.8.

Theorem 61 (Peter–Weyl).

• The functions eVi,j = d
1/2
V rVi,j form a complete orthonormal set of L2(G),

• the characters χV form a complete orthonormal set of Cl2(G),

where V denotes simple G-modules and i, j = 1, . . . , dV .

For the proof refer to [23] theorem 6.4.1 and proposition 6.5.3. We can
reformulate this theorem in the following way. LetMV denote the vector space
spanned by matrix element functions of the simple G-module V and CχV the
vector space spanned by the character χV . Then by theorem 61 we have

L2(G) =
⊕
V ∈IG

MV , (4.9)

Cl2(G) =
⊕
V ∈IG

CχV . (4.10)

We need one more additional notion before we can give the data for the
lattice construction. Let D : C∞(G) → C∞(G) denote the differential opera-
tor, called the Laplacian on G, where C∞(G) denotes the smooth functions on
G. Instead of giving the definition we look at its crucial property, which is the
only thing we need to use. Recall that MV ⊂ C∞(G). We have for f ∈ MV

that Df = −σV f , where σV is the value of the Casimir element on the simple
G-module V . Note that σV is a non-negative real number. Then we have that

eaDf = e−aσV f. (4.11)

For more details see [23] chapter 8.2, especially proposition 8.2.1. The operator
eaD extends to a bounded linear operator on L2(G) for every a > 0: Let
φ ∈ L2(G) and write φ =

∑
V ∈IG

φV with φV ∈ MV . Since e−2σV ≤ 1, we
have

∥∥eaDφ∥∥2 =

∥∥∥∥∥ ∑
V ∈IG

e−aσV φV

∥∥∥∥∥
2

=
∑
V ∈IG

e−2σV ∥φV ∥2 ≤ ∥φ∥2 . (4.12)
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4.2 The Boltzmann Weights

We set L := L2(G) to be the Hilbert space of the data for the lattice construc-

tion and we identify L⊗̂k ∼= L2(G×n), see equation A.10. The weights need a
little bit preparation. Consider the functions

w(k)
a (x1, . . . , xk) =

∑
V ∈IG

e−aσV dV χV (x1 · · ·xk), (4.13)

for a > 0 and k = 1, 2, . . . . We show that these functions are in L⊗̂k.

Lemma 62. For k a positive integer we have

⟨χV (x1 · · ·xk), χW (x1 · · ·xk)⟩ = δV,W , (4.14)

(4.15)

Proof. Calculate using lemma 60:

⟨χV (x1 · · ·xk), χW (x1 · · ·xk)⟩

=

∫
G

. . .

∫
G

χV (x1 · · ·xk)χW (x1 · · ·xk)dx1 . . . dxk

=

∫
G

. . .

∫
G

χV (x
−1
k · · ·x−1

1 )χW (x1 · · ·xk)dx1 . . . dxk

=δV,W d−1
V

∫
G

. . .

∫
G

χV (x
−1
k · · ·x−1

2 x2 · · ·xk)dx2 . . . dxk

=δV,W d−1
V

∫
G

. . .

∫
G

χV (e)dx2 . . . dxk = δV,W d−1
V χV (e) = δV,W

We can use lemma 62 to calculate the norm of w
(k)
a :∥∥∥w(k)

a

∥∥∥2 =

⟨∑
V ∈IG

e−aσV dV χV (x1 · · ·xk),
∑

W∈IG

e−aσW dWχW (x1 · · ·xk)

⟩
=
∑
V ∈IG

e−aσV dV
∑

W∈IG

e−aσW dW ⟨χV (x1 · · ·xk), χW (x1 · · ·xk)⟩

=
∑
V ∈IG

e−2aσV d2V , (4.16)

so we need to show that this sum is convergent.

Proposition 63. Using the above notation we have∑
V ∈IG

d2V e
−2aσV <∞. (4.17)

Proof. The idea behind the proof of (4.17) is to give some estimates of the
quantities in the summand so that at the end we arrive at a familiar convergent
sum. We will follow the calculation in [10], which uses some results from [24].

• First label the simple modules with dominant weights: V ∈ IG ↔ λ ∈
Π+.
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• From [10] equation 3.2 we have that

dλ ≤ N |λ|m, (4.18)

where N is a constant independent of λ, 2m = dimG − rankG and | · |
is the norm on the weight space, which is a crude estimate of the Weyl
dimension formula [25] corollary 24.3.

• From [10] equation 3.5 we have that

σλ ≥ |λ|2 ⇒ e−2aσλ ≤ e−2a|λ|2 , (4.19)

which comes from calculating the value of the Casimir element explicitly.

• There is an r-tuple n ∈ Zr for each λ ∈ Π+ and constants k1, k2 inde-
pendent of n and λ such that

k1∥n∥ ≤ |λ| ≤ k2∥n∥ (4.20)

with ∥n∥2 =
∑r

i=1 n
2
i , which is implicit in the proof of lemma 1.3 in [24].

• Finally let b(j) be the number of n ∈ Zr such that ∥n∥2 = j. This can
be approximated with the volume of the r-dimensional cube with edge
length 2

√
j + 1, i.e.

b(j) ≤ (2
√
j + 1)r (4.21)

Then approximate the sum 4.17 according to the above steps:∑
V ∈IG

d2αe
−2aσα =

∑
λ∈Π+

d2λe
−2aσλ ≤ N2

∑
λ∈Π+

|λ|2me−2a|λ|2

≤ N ′
∑
n∈Zr

∥n∥2me−A∥n∥2

= N ′
∞∑
j=0

b(j)jme−Aj

≤ N ′
∞∑
j=0

jm(2
√
j + 1)re−Aj , (4.22)

with A,N ′ > 0 constants, which is finite by e.g. the integral test.

The weights for the lattice construction are given by

W (k)
a : C → L⊗̂k

1 7→ w(k)
a . (4.23)

The functions w
(k)
a are called Boltzmann weights in the literature [8] and w

(1)
a

is also the so-called heat kernel of the Lie group G, see e.g. [23] section 12.6,
for the case G = U(n) the unitary group.

4.3 The Pairing

We define the pairing βa : L⊗̂2 → C on the dense subspace L⊗2 of L⊗̂2 as
follows. Let f, g ∈ L and

βa(f⊗̂g) :=
∫
G

f(x−1)(eaDg)(x)dx. (4.24)
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We can write f =
∑

V ∈IG
fV and g =

∑
W∈IG

gW , with fV , gV ∈ MV . Then
we can write by the linearity of the integral that

βa(f⊗̂g) =
∑

V,W∈IG

∫
G

fV (x
−1)(eaDgW )(x)dx

=
∑

V,W∈IG

∫
G

fV (x
−1)e−aσW gW (x)dx

=
∑
V ∈IG

e−aσV

∫
G

fV (x
−1)gV (x)dx, (4.25)

so by writing βV (f⊗̂g) :=
∫
G
fV (x

−1)gV (x)dx we have

βa =
∑
V ∈IG

e−aσV βV . (4.26)

To check that this defines a bounded operator we will show that

∥βa∥ ≤
∑
V ∈IG

e−aσV ∥βV ∥ ≤ ∞. (4.27)

Lemma 64. The dual of βV is dV χV (xy) and ∥βV ∥ = dV .

Proof. From equation 4.7 we have

βV (e
V
i,j⊗̂eVk,l) = δj,kδi,l. (4.28)

Let us denote β∗
V = γV and write γV (1) =

∑dV

i,j,k,l=1 γ
ijkl
V ei,jV ⊗̂ek,lV . Then

calculate

δj,kδi,l = ⟨1, βV (ei
′,j′

V ⊗̂ek
′,l′

V )⟩ = ⟨γV (1), ei
′,j′

V ⊗̂ek
′,l′

V ⟩

= ⟨
dV∑

i,j,k,l=1

γijklV ei,jV ⊗̂ek,lV , ei
′,j′

V ⊗̂ek
′,l′

V ⟩ =
(
γijklV

)∗
,

so γV (1)(x, y) =
∑dV

i,j=1 e
i,j
V (x)⊗̂ej,iV (y) = dV χV (xy).

By the Riesz representation theorem (see [17] theorem 5.62) ∥βV ∥ = ∥γV (1)∥.
Using on the other hand by lemma 62 we have ∥γV (1)∥2 = d2V ∥χV (xy)∥ = d2V .

Proposition 65. The pairing βa is bounded for every a > 0.

Proof. We can approximate the norm of βa in equation 4.27:

∥βa∥ ≤
∑
V ∈IG

e−aσV dV ≤
∑
V ∈IG

e−2(a/2)σV d2V ≤ ∞, (4.29)

by using lemma 64, proposition 63 and that dV ≥ 1.

Remark 66. The limit lima→0 βa does not define a bounded functional.

Proof. Using the notations of lemma 64 we have ∥γV (1)∥ = dV . By equation
4.26 we have

βa(γV (1)/dV ) = e−aσV dV

∫
G

χV (x
−1x)dx = dV e

−aσV .

Assuming that lima→0 βa = β0 exists, i.e. it is a bounded linear functional, we
must have β0(γV (1)/dV ) = dV , which immediately shows that β0 is unbounded,
as the set {dV | V ∈ IG} is not bounded.
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4.4 Conditions on the Pairing and the Weights

Now that we have defined the set of data for the lattice construction, we need
to check that the conditions on this set of data are satisfied.

1. To show that the pairing βa is symmetric, it is enough to show that

βa(e
V
i,j⊗̂eWk,l) = βa(e

W
k,l⊗̂eVi,j).

By equation 4.28, both sides are equal e−aσV δV,W δilδjk.

2. The Boltzmann weights are cyclic invariant, by the property of the trace.

3. To see the gluing property use lemma 60:(
idL⊗̂(n−1)⊗̂βa0⊗̂idL⊗̂(m−1)

) (
W (n)

a1
⊗̂W (m)

a2

)
=

∫
G

∑
V,W∈IG

e−a1σV e−a2σW dV dWχV (x1 · · ·xn−1z
−1)ea0DχW (zy2 · · · ym)dz

=
∑

V,W∈IG

∫
G

e−a1σV e−a2σW dV dWχV (x1 · · ·xn−1z
−1)e−a0σWχW (zy2 · · · ym)dz

=
∑

V,W∈IG

e−(a0+a1+a2)σV dV χV (x1 · · ·xn−1y2 · · · ym)

=W
(n+m−2)
a0+a1+a2

(x1 · · ·xn−1y2 · · · ym).

4. Let a1, a2 > 0 and a1 + a2 = a. Calculate Pa(f) =
(
βa1⊗̂idL

)
◦(

idL⊗̂W (2)
a2

)
(f) for f ∈ L:

Pa(f)(x) =

∫
G

f(y−1)ea1D
∑
V ∈IG

dV e
−a2σV χV (yx)dy

=
∑
V ∈IG

e−(a1+a2)σV dV

∫
G

f(y−1)χV (yx)dy

=
∑

V,W∈IG

e−(a1+a2)σV

dW∑
i,j=1

dV∑
k,l=1

f ijW

∫
G

eijW (y−1)eklV (y)elkV (x)dy

=
∑

V,W∈IG

e−(a1+a2)σV

dW∑
i,j=1

dV∑
k,l=1

f ijW elkV (x)δV,W δjkδil

=
∑
V ∈IG

e−aσV

dV∑
i,j=1

f ijV e
ij
V (x),

where we used f =
∑

W∈IG
fW and fW =

∑dV

i,j=1 f
ij
W eijW , thus

Pa(f) =
∑
V ∈IG

e−aσV fV , (4.30)

hence Pa is injective.
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5. For the self gluing property calculate:(
βa1⊗̂idL⊗̂(n−2)

)
◦W (n)

a2

=

∫
G

∑
V ∈IG

e−a2σV

dV∑
i,j=1

eijV (y
−1)ea1DejiV (yx3 · · ·xn)dy

=

∫
G

∑
V ∈IG

e−(a1+a2)σV

dV∑
i,j=1

eijV (y
−1)ejiV (yx3 · · ·xn)dy

=

∫
G

∑
V ∈IG

e−(a1+a2)σV dV χV (y
−1yx3 · · ·xn)dy

=

∫
G

∑
V ∈IG

e−(a1+a2)σV dV χV (x3 · · ·xn)dy

=
∑
V ∈IG

e−(a1+a2)σV dV χV (x3 · · ·xn) =W
(n−2)
a1+a2

.

6. It is clear that βa1 ◦
(
Pa2⊗̂idL

)
= βa1+a2 , as Pa scales the components

with the right factor, see equation 4.30.

7. To show strong continuity calculate using equation 4.30 and the notation
of part 4 that

∥(Pa − Pb)f∥2 =
∑
V ∈IG

(
e−aσV − e−bσV

)2 ∥fV ∥2 ,
which goes to 0 as a → b, as it is a convergent sum and the coefficients
vanish.

8. The last thing to show is that β∗
a = W

(2)
a , which was done in lemma 64

and that (W
(3)
a )∗ = B̃a1 ◦

(
W

(3)
a2 ⊗̂idL⊗̂3

)
, with a = a1+a2. For the latter

calculate:(
W (3)

a

)∗ (
eijV1

⊗̂eklV2
⊗̂emn

V3

)
=
⟨
eijV1

⊗̂eklV2
⊗̂emn

V3
,W

(3)
a (1)

⟩
=

⟨ ∑
V ∈IG

e−aσV d
−1/2
V

dV∑
i′,j′,k′=1

ei
′j′

V ⊗̂ej
′k′

V ⊗̂ek
′i′

V , eijV1
⊗̂eklV2

⊗̂emn
V3

⟩

=
∑
V ∈IG

e−aσV d
−1/2
V δV,V1δV,V2δV,V3

dV∑
i′,j′,k′=1

δii′δjj′δkj′δlk′δmk′δni′

=e−aσV1d
−1/2
V1

δV1,V2
δV1,V3

δinδjkδlm

using 4.7. On the other hand using βa

(
eijV1

⊗̂eklV2

)
= δV1,V2δilδjk we have

B̃3
a1

◦
(
W (3)

a2
(1)⊗̂eijV1

⊗̂eklV2
⊗̂emn

V3

)
= e−aσV1d

−1/2
V1

δV1,V2δV1,V3δinδjkδlm.

4.5 The State Space

The last thing we need to do is to calculate what is assigned to the cylinder.
Take the usual cell decomposition of a cylinder as on figure 3.9 and calculate
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the assigned map Qa.

Qa(f) =

∫
G

∫
G

∑
V ∈IG

e−aσV dV χV (xy
−1z−1y)f(z)dydz

=
∑
V ∈IG

e−aσV dV χV (x)

∫
G

χV (z)f(z)dz

=
∑
V ∈IG

e−aσV dV χV (x)⟨χV , f⟩. (4.31)

Proposition 67. The state space of the 2d Yang–Mills theory is Cl2(G).

Proof. Equation 4.31 shows that the image of Qa is spanned by characters, so
its closure is Cl2(G) by theorem 61.

We can also calculate what is assigned to (S1,2, a). First calculate Ma

defined in the proof of lemma 54:

Ma(1)(x, y, z) =

∫
G

∫
G

∫
G

∑
V ∈IG

e−aσV dV χV (xu
−1v−1yvw−1zwu)dudvdw

=

∫
G

∫
G

∑
V ∈IG

e−aσV χV (uxu
−1v−1yv)χV (z)dudv

=

∫
G

∑
V ∈IG

e−aσV d−1
V χV (uxu

−1)χV (y)χV (z)du

=
∑
V ∈IG

e−aσV d−1
V χV (x)χV (y)χV (z). (4.32)

From this we immediately have for F ∈ H⊗̂2 that

µ̃a(F )(x) =

∫
G

∫
G

∑
V ∈IG

e−aσV d−1
V χV (x)χV (y

−1)χV (z
−1)F (y, z)dydz

=
∑
V ∈IG

e−aσV d−1
V χV (x)⟨χV ⊗̂χV , F ⟩. (4.33)

4.6 The RFA Structure on L2(G)

In this section we compute the RFA structure on L = L2(G) and then the center
of L in order to illustrate how we can calculate the state space alternatively
as in theorem 56. Let a1, a2 > 0, a = a1 + a2 and f ∈ L with f =

∑
V ∈IG

fV

with fV ∈ MV and fV =
∑dV

i,j=1 f
ij
V e

ij
V , furthermore let F ∈ L⊗̂2 with F =∑

V,W∈IG
FVW , FVW ∈MV ⊗̂MW .

Lemma 68. Using the above notation we have

dV

∫
G

χV (xy
−1)fW (y)dy = δV,W fV (x). (4.34)
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Proof. Calculate using equation 4.7:

dV

∫
G

χV (xy
−1)fW (y)dy =

∫
G

dV∑
i,j=1

dW∑
k,l=1

eijV (x)e
ji
V (y

−1)fklW eklW (y)dy

=

dV∑
i,j,k,l=1

eijV (x)δV,W fklV δikδjl = δV,W

dV∑
i,j=1

eijV (x)f
ij
V = δV,W fV (x).

We need to follow proposition 50 in order to calculate the families of mor-
phisms of the RFA L:

• First set ηa(1) = w
(1)
a .

• Calculate εa:

εa(f) =

∫
G

∑
V ∈IG

e−a1σV dV χV (x
−1)

(
ea2Df

)
(x)dx

=

∫
G

∑
V,W∈IG

e−a1σV dV χV (x)e
−a2σW fW (x)dx

=

∫
G

∑
V ∈IG

e−aσV dV ⟨χV , fV ⟩ = ⟨w(1)
a , f⟩.

This also shows that εa = η∗a. Furthermore by lemma 68 we have εa(f) =∑
V ∈IG

e−aσV fV (e).

• Calculate ∆a:

∆a(f)(x) =

∫
G

W (3)
a1

(x, y, z−1)
(
ea2Df

)
dx

=

∫
G

∑
V,W∈IG

e−a1σV dV χV (xyz
−1)e−a2σW fW (x)dx

=
∑
V ∈IG

e−aσV fV (xy),

where we used lemma 68.

• We use this to calculate µa:

µa(F )(x) =
(
idL⊗̂βa1

)
◦
(
∆a2⊗̂idL

)
(F )(x)

=
(
idL⊗̂βa1

) ∑
V,W∈IG

e−a2σV FVW (xy, z)


=

∑
V,W∈IG

e−a2σV e−a1σW

∫
G

FVW (xz−1, z)dz

=
∑
V ∈IG

e−aσV

∫
G

FV V (xz
−1, z)dz,

where we used that βa(fV ⊗̂fW ) = δVWβa(fV ⊗̂fV ) (coming from equa-
tion 4.7). We could also show that ∆∗

a = µa, but we will not do it now.

66



• Finally let us calculate Pa:

Pa(f)(x) =µa1

(
ηa2(1)⊗̂f

)
(x) =

∑
V ∈IG

e−aσV dV

∫
G

χV (xz
−1)fV (z)dz

=
∑
V ∈IG

e−aσV fV (x),

by lemma 68, which is what we expected from equation 4.30.

Proposition 69. The RFA structure on L is given by the following families
of maps.

• ηa(1) = w
(1)
a =

∑
V ∈IG

e−aσV dV χV ,

• εa(f) = ⟨w(1)
a , f⟩ =

∑
V ∈IG

e−aσV fV (e),

• ∆a(f)(x, y) =
∑

V ∈IG
e−aσV fV (xy),

• µa(F )(x) =
∑

V ∈IG
e−aσV

∫
G
FV V (xz

−1, z)dz,

• Pa(f) =
∑

V ∈IG
e−aσV fV .

Now we are ready to calculate the center of L. Let f in the center of L, i.e.
µa(f⊗̂g) = µa(g⊗̂f) for every g ∈ L. We can write this equation as∑

V ∈IG

e−aσV

∫
G

fV (xz
−1)gV (z)dz =

∑
V ∈IG

e−aσV

∫
G

gV (zy
−1)fV (y)dy

=
∑
V ∈IG

e−aσV

∫
G

fV (z
−1x)gV (z)dz,

by using the invariance of the integral (substituting z = xy−1 at the second
equation). So we have for every V ∈ IG that∫

G

(
fV (xz

−1)− fV (z
−1x)

)
gV (z)dz = 0,

which implies by equation 4.7 that

fV (xz
−1) = fV (z

−1x)

for almost all x, z ∈ G. Since fV is continuous this means that this holds for
all x, z ∈ G, hence fV is a class function and hence f is a class function. We
have just shown that the center is contained in Cl2(G). The converse inclusion
can be easily calculated: Let f ∈ Cl2(G) and g ∈ L, then

µa(f⊗̂g) =
∑
V ∈IG

e−aσV

∫
G

fV (xz
−1)gV (z)dz =

∑
V ∈IG

e−aσV

∫
G

fV (z
−1x)gV (z)dz

=
∑
V ∈IG

e−aσV

∫
G

gV (zy
−1)fV (y)dy = µa(g⊗̂f),

again by an appropriate substitution of integration variables.

Proposition 70. The center of the RFA L given in proposition 69 is Cl2(G).
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Remark 71. Let H := Cl2(G) as before. Then µa ↾H⊗̂2= µ̃a from equation
4.33.

Proof. Let H ∈ H⊗̂2 and write H =
∑

V,W∈IG
HVW dV χV ⊗̂χW . Calculate

using lemma 68 that

µa(H) =
∑

V,W∈IG

HVW dV µa(χV ⊗̂χW ) =
∑
V ∈IG

HV V e
−aσV χV = µ̃a(H).

4.7 Zero Area Limits

We are investigating, if in some cases the a → 0 limit gives bounded maps.
Note that

• lima→0 Pa = idL by corollary 21,

• proposition 63 shows that lima→0W
(n)
a do not exist for any n ≥ 1 and

• remark 66 shows that lima→0 βa does not give a bounded functional.

Proposition 72. The limits lima→0 µa and lima→0 ∆a are bounded operators.

Proof. Assume that the second limit gives a bounded operator ∆0. Then
∆0(f)(x, y) = f(xy). Let us calculate its norm:

∥f(xy)∥2 =

∫
G

f(xy)f(xy)dxdy =

∫
G

f(z)f(z)dzdy = ∥f(x)∥2 ,

by changing variables z = xy, so ∥∆0∥ = 1.
Now calculate the adjoint of ∆0 and observe that it coincides with µ0, hence

µ0 is bounded as well.
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Appendix A

Hilb as a Symmetric
Monoidal Category

The tensor product of Hilbert spaces is well known and usually in the literature
a simple construction is given (see e.g. [16] section II.4), which is defined as the
completion of the algebraic tensor product. This is not the most elegant way
of giving the definition and it also does not provide a straightforward method
for showing functoriality. However it is possible to define the tensor product of
Hilbert spaces (⊗̂) with a universal property - similarly to the algebraic tensor
product - with just one additional property. Using this universal property
one can give the category of Hilbert spaces equipped with this tensor product
(Hilb,⊗̂) a symmetric monoidal structure analogously to the category of vector
spaces. One can also show that the simple construction fits into this definition.
We follow [26] chapter 2.6, for proofs not present here the reader can refer to
this book.

Definition 73. Let H ∈ Hilb. Call the set Y = {yi} ⊂ H a Hilbert base of H
if Y is a complete orthonormal set of H.

Definition 74. Let H1, . . . ,Hn ∈ Hilb. We say that the multilinear functional
φ : H1 × · · · × Hn → C is

• bounded, if ∃c > 0 such that

|φ(x1, . . . , xn)| ≤ c · ||x1|| . . . ||xn|| (A.1)

∀xi ∈ Hi and write ||φ|| := inf{such c} for the norm of φ,

• Hilbert-Schmidt, if it is bounded and∑
y1∈Y1

· · ·
∑

yn∈Yn

|φ(y1, . . . , yn)|2 ≤ ∞ (A.2)

for some Yi a Hilbert base of Hi.

Lemma 75. Let K1, . . .Kn,H1, . . . ,Hn ∈ Hilb, Ai ∈ B(Ki,Hi), ψ : H1×· · ·×
Hn → C a bounded multilinear functional and φ = ψ ◦ (A1 × · · · × An). Then
for Zi a Hilbert base of Ki and for Yi a Hilbert base of Hi we have∑
y1∈Y1

· · ·
∑

yn∈Yn

|φ(y1, . . . , yn)|2 ≤ ||A1||2 . . . ||An||2
∑

z1∈Z1

· · ·
∑

zn∈Zn

|ψ(z1, . . . , zn)|2.

(A.3)
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Note that as a special case, this shows that the value of the expression (A.2)
is independent of the choice of the Hilbert bases.

Proposition 76. Let H1, . . . ,Hn ∈ Hilb with Hilbert bases Y1 . . . Yn and con-
sider the set of all Hilbert-Schmidt functionals H1 × · · · ×Hn → C. It becomes
a Hilbert space via

• pointwise addition and multiplication by a complex number,

• inner product given by the formula

< φ,ψ >:=
∑

y1∈Y1

· · ·
∑

yn∈Yn

φ(y1, . . . , yn)ψ(y1, . . . , yn),

• and norm ||φ||2 =< φ,φ >1/2

for φ,ψ Hilbert-Schmidt functionals.

Note that the latter two are independent of choices of Hilbert bases. One
can show that ||φ|| ≤ ||φ||2 for φ a Hilbert-Schmidt functional.

Definition 77. Let H1, . . . ,Hn,H ∈ Hilb. A multilinear map L : H1 ×
. . .Hn → H is called

• bounded, if ∃c > 0 such that

||L(x1, . . . , xn)|| ≤ c · ||x1|| . . . ||xn||

∀xi ∈ Hi and write ||L|| := inf{such c} for the norm of L,

• weak Hilbert-Schmidt, if it is bounded and ∀u ∈ H the multilinear func-
tional Lu : H1 × . . .Hn → C

Lu(x1, . . . , xn) =< u,L(x1, . . . , xn) >

is a Hilbert-Schmidt functional. Denote with ||L||2 := supu∈H{||Lu||/||u||}
the Hilbert-Schmidt norm of L.

One can show that ||L|| ≤ ||L||2 for a weak Hilbert-Schmidt map. Note
that a weak Hilbert-Schmidt map L : H1 × . . .Hn → C is a Hilbert-Schmidt
functional. To familiarize ourselves with this definition let us look at some
examples.

Example 78. There exists a notion of a Hilbert-Schmidt map: we say that
A : H → K is a Hilbert-Schmidt map if

∑
y∈Y ||Ay||2 < ∞ for some Hilbert

base Y ⊂ H. It is a stronger condition than A being a weak Hilbert-Schmidt
map: ∑

y∈Y

| < Ay, u > |2 ≤
∑
y∈Y

||Ay||2||u||2 ≤ ∞

∀u ∈ H, so Hilbert-Schmidt implies weak Hilbert-Schmidt. The converse is
however not true: consider the identity H → H. It is not a Hilbert-Schmidt
map: ∑

y∈Y

||y||2 =
∑
y∈Y

1 = ∞,
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but ∑
y∈Y

| < y, u > |2 = ||u||2 <∞,

so it is weak Hilbert-Schmidt. Now consider the map that sends every element
of Y to the same vector. It is clearly bounded, and clearly not weak Hilbert-
Schmidt.

With this definition we are ready to define the tensor product of Hilbert
spaces.

Theorem 79. Let H1, . . . ,Hn ∈ Hilb. Then

1. there is H ∈ Hilb and a weak Hilbert-Schmidt map p : H1 × . . .Hn → H
such that for every K ∈ Hilb and weak Hilbert-Schmidt map L : H1 ×
. . .Hn → K there is a unique T ∈ B(H,K) such that L = T ◦ p and
||T || = ||L||2,

2. if vm, wm ∈ Hm we have

< p(v1, . . . , vn), p(w1, . . . , wn) >=< v1, w1 > · · · < vn, wn >, (A.4)

if Ym ⊂ Hm is a Hilbert base then the set

{p(y1, . . . , yn)|yi ∈ Yi, i = 1, . . . n} (A.5)

is a Hilbert base of H and ||p||2 = 1,

3. if both (H, p) and (H′, p′) satisfy the conditions set in part 1 then there
is a unique unitary map U : H → H′ such that p′ = U ◦ p.

Definition 80. We call the pair (H, p) defined by the universal property in
theorem 79.1 the tensor product of the Hilbert spaces H1, . . . ,Hn and write
H1⊗̂ . . . ⊗̂Hn = H and v1⊗̂ . . . ⊗̂vn = p(v1, . . . , vn), vi ∈ Hi. We summarize
this in the commutative diagram in figure A.1.

Figure A.1: Universal property of the tensor product

The tensor product constructed in the proof of theorem 79 is the Hilbert
space of conjugate linear Hilbert-Schmidt functionals on H1 × · · · × Hn. The
“elementary tensors” of the form v1⊗̂ . . . ⊗̂vn generate a dense subspace H0 =
p(H1, . . . ,Hn) (the algebraic tensor product) of H and the closure of H0 with
respect to the inner product in (A.4) is H. Note that if one of the tensorands
H1,H2 ∈ Hilb is finite dimensional (consider n = 2 for simplicity) then the
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algebraic tensor product is already closed with respect to (A.4) The universal
property defines the tensor product on objects in Hilb and it would be nice if
we could use it to define the tensor product of morphisms in Hilb. For this we
need to show one additional property of weak Hilbert-Schmidt maps.

Proposition 81. Let Ai ∈ B(Ki,Hi) and L : H1× . . .Hn → H a weak Hilbert-
Schmidt map. Then the map L̃ = L ◦ (A1 × · · · × An) : K1 × · · · × Kn → H is
weak Hilbert-Schmidt as well with ||L̃||2 ≤ ||L||2||A1|| . . . ||An||.

Proof. L being a weak Hilbert-Schmidt map means that ∀u ∈ H the multilinear
functional Lu is a Hilbert-Schmidt functional. But by lemma 75 then Lu ◦
(A1 × · · · × An) is a Hilbert-Schmidt functional with Hilbert-Schmidt norm
||Lu ◦ (A1×· · ·×An)||2 ≤ ||Lu||2||A1|| . . . ||An||. Therefore L̃ is a weak Hilbert-
Schmidt map with norm ||L̃||2 ≤ ||L||2||A1|| . . . ||An||.

Proposition 82. The tensor product is a functor ⊗̂ : Hilb×Hilb → Hilb .

Proof. First one has to define what it does on morphisms. Let (A,B) ∈
B(H1,H2)×B(K1,K2), we have tensor products (H1⊗̂K1, ⊗̂1) and (H2⊗̂K2, ⊗̂2).
Then by proposition 81 the map ⊗̂2 ◦ (A×B) is weak Hilbert-Schmidt, so we
can apply the universal property to the pair (H2⊗̂K2, ⊗̂2 ◦ (A × B)) to get a
unique morphism denoted by A⊗̂B ∈ B(H1⊗̂K1,H2⊗̂K2) such that

⊗̂2 ◦ (A×B) = (A⊗̂B) ◦ ⊗̂1. (A.6)

Note that ||A⊗̂B|| ≤ ||A|| · ||B|| by proposition 81 and one can show that
actually ||A⊗̂B|| = ||A|| · ||B||.

To check that it is compatible with compositions let H1
A1−→ K B1−→ L1

and H2
A2−→ K B2−→ L2 be composable morphisms in Hilb. By the universal

property, the diagram in figure A.2 commutes.

Figure A.2: Compatibility with composition

To show that idH⊗̂idK = idH⊗̂K use the diagram in figure A.3 that com-
mutes by the universal property again.

Now it is time to give Hilb a monoidal structure, therefore we need the
following lemma.

Lemma 83. Let H1, . . . ,Hn+m ∈ Hilb. Then there is a unique invertible
map U : H1⊗̂ . . . ⊗̂Hn+m → (H1⊗̂ . . . ⊗̂Hn)⊗̂(Hn+1⊗̂ . . . ⊗̂Hn+m) such that
U(x1⊗̂ . . . ⊗̂xn+m) = (x1⊗̂ . . . ⊗̂xn)⊗̂(xn+1⊗̂ . . . ⊗̂xnm). Note that this map is
unitary as well.
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Figure A.3: Compatibility with identities

Proposition 84. The category (Hilb, ⊗̂,C) with tensor unit C is a monoidal
category.

Proof. First we need to define the associator (a) and the left and right unit
constraints (l, r).

Let H,K,L ∈ Hilb and define the invertible map aH,K,L : (H⊗̂K)⊗̂L →
H⊗̂(K⊗̂L) as the composition of the two unique maps in figure A.4 given by
lemma 83. Note that this is the unique map that sends the elementary tensors

Figure A.4: Definition of the associator

(h⊗̂k)⊗̂l 7→ h⊗̂(k⊗̂l). Now the pentagon axiom follows from the uniqueness of
the map that sends elementary tensors ((h⊗̂k)⊗̂l)⊗̂i 7→ h⊗̂(k⊗̂(l⊗̂i)), natural-
ity follows from the universal property.

Consider the map C × H → H on the diagram in figure A.5. It is a weak

Figure A.5: Definition of the left unit constraint

Hilbert-Schmidt map because∑
y∈Y

| < 1 · y, u > |2 = ||u||2 ≤ ∞
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∀u ∈ H with Y ⊂ H a Hilbert base, so by the universal property we get the
left unit constraint lH. Its naturality comes from the definition. One defines
the right unit constraint analogously. Then the triangle axiom follows easily
from the definition of the associator and the left and right unit constraint.

As usual, it will be convenient to work with an equivalent strict monoidal
category instead of Hilb, see [13] theorem XI.5.3; We use the same notation
for this strict monoidal category for simplicity.

Proposition 85. (Hilb, ⊗̂,C) is a symmetric monoidal category with braiding

τH,K : H⊗̂K → K⊗̂H (A.7)

h⊗̂k 7→ k⊗̂h

for H,K ∈ Hilb.

Proof. Clear by using the universal property to ⊗̂ composed with the flip map
H×K → K×H.

Note that ||τH,K|| = 1.

Corollary 86. For each H ∈ Hilb and n ≥ 1 integer we have an Sn action
on H⊗̂n permuting the factors.

Finally we give an example that will be used extensively throughout the
following.

Example 87. Let (Ω1, µ1) and (Ω2, µ2) be measure spaces such that L2(Ω1, µ1)
and L2(Ω2, µ2) are separable. Then there is a unique isometry

L2(Ω1, µ1)⊗̂L2(Ω2, µ2) → L2(Ω1 × Ω2, µ1 × µ2), (A.8)

which sends ei⊗fj 7→ eifj, where {ei} and {fj} are complete orthonormal sets
of L2(Ω1, µ1) and L2(Ω2, µ2) respectively and write L2(Ω1, µ1)⊗̂L2(Ω2, µ2) ∼=
L2(Ω1 × Ω2, µ1 × µ2). Note that one could similarly consider more than two
such measure spaces and their tensor product.

Proof. The idea is to show that {eifj} form a complete orthonormal set in
L2(Ω1 × Ω2, µ1 × µ2). For the details of the proof see [16] theorem II.10.

Consider now L2(Ω×n, µ×n). Sn acts on it by permuting the variables i.e.
for σ ∈ Sn and f(x1, . . . , xn) ∈ L2(Ω×n, µ×n)

(σ.f)(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)).

Proposition 88. Let L2(Ω, µ) be separable n ≥ 1. The isometry

ϕ : L2(Ω, µ)⊗̂n → L2(Ω×n, µ×n) (A.9)

coming from example 87 commutes with the Sn action.

Proof. It is clear that it commutes on the dense subspace generated by elemen-
tary tensors so by continuity it commutes on the whole space.
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We can directly apply these results to tensor products of L2(G,µ), where
µ is the Haar measure on G to get

L2(G)⊗̂n ∼= L2(G×n). (A.10)

In most cases it will be convenient to work with L2(G×n) instead of L2(G)⊗̂n

and this isometry allows us to jump back and forth as we wish. Therefore we
will identify L2(G)⊗̂n with L2(G×n) for simplicity.
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