Prof. Dr. J. Struckmeier

Tutorial on "Advanced Fluid Dynamics"

Deadline: 3rd December 2009

Exercise 8 The Stokes equations given by

$$\begin{array}{rcl} -\Delta u + \nabla p &=& f \\ & {\rm div}\, u &=& 0 \end{array}$$

may be *regularized* using a penalty term to get

$$\begin{aligned} -\Delta u^{\varepsilon} + \nabla p^{\varepsilon} &= f \\ \varepsilon p^{\varepsilon} + \operatorname{div} u^{\varepsilon} &= 0 \end{aligned}$$

where $\varepsilon > 0$.

Formulate the weak form of the regularized Stokes equations with homogeneous Dirichlet data and try to find an estimate for the error $||u - u^{\varepsilon}||_{V} + ||p - p^{\varepsilon}||_{W}$.

Exercise 9 Consider the example from the lecture, namely the one-dimensional Helmholtz equation on [0, 1] given by

$$-u'' + \omega^2 u = f, \quad u(0) = u(1) = 0$$

Compute the stiffness matrix A using the piecewise linear C^0 -elements from the lecture. Build up an FE-method using the function $f(x) = \sin \pi x$ and compare your approximation with the exact solution.