Konstantinos Stavropoulos

Bereich DM

Übungsblatt 9

Abgabetermin: 16.06.2017

Aufgabe 1 (2+2)

Wir nennen ein system \mathcal{N} von Teilmengen von X ein Semi-Unabhängigkeitssystem, wenn es keine drei Mengen <math>A, B, C mit $A \subset B \subset C$ enthält.

- (a) Zeigen Sie mit einer ähnlichen Methode wie im ersten Beweis des Satzes von Sperner, dass $|\mathcal{N}| \leq 2\binom{n}{\lfloor n/2 \rfloor}$, wobei n = |X|.
- (b) Zeigen Sie, dass die Abschätzung aus (a) für ungerades n nicht verbessert werden kann.

Aufgabe 2 (4 Punkte)

Zeigen Sie durch eine Abwandlung des zweiten Beweises der Vorlesung vom Satz von Sperner, dass es für jedes endliche Poset (P, \leq) eine Antikette maximal möglicher Grösse gibt, die von allen Automorphismen auf (P, \leq) auf sich selbst abgebildet wird (d.h. sie ist ein "Fixpunkt" von allen Automorphismen).

Aufgabe 3 (4 Punkte)

Sei G ein bipartiter Graph, in dem die Eckenklassen die Grössen n und m haben. Angenommen, G ist $K_{2,2}$ -frei. Beweisen Sie, dass G höchstens $O(m\sqrt{n}+n)$ Kanten hat. (Wenn n ausreichend viel grösser ist als m, dann ist dies eine bessere Abschätzung als die Ungleichung aus dem Satz der Vorlesung.)

Aufgabe 4 (4 Punkte)

Setze $T_n = T(K_n)$. Beweisen Sie die Rekursion

$$(n-1)T_n = \sum_{k=1}^{n-1} k(n-k) \binom{n-1}{k-1} T_k T_{n-k}.$$

(Hinweis: Versuchen Sie darüber nachzudenken, wie man aus einem aufsp. Baum von K_n zwei aufsp. Wurzelbäume für induzierte Teilgraphen mit k und n-k Ecken kriegen kann und umgekehrt. Zählen Sie das auf zwei Arten ab. (eine für jede Richtung))

Aufgabe 5 (2+1+1)

(Noch ein Beweis der Cayley Formel!) Wir bezeichen die Anzahl der aufsp. Bäume des K_n , in denen die Ecke n den Grad k hat, mit N_k $(k=1,2,\ldots,n-1)$.

- (a) $_+$ Zeigen Sie, dass $(n-1-k)N_k=k(n-1)N_{k+1}$ gilt, (Hinweis: Denken Sie darüber nach, wie man aus einem aufsp. Baum T mit $\deg_T(n)=k$ einen aufsp. Baum T' mit $\deg_{T'}(n)=k+1$ bekommen kann.)
- (b) leiten Sie daraus $N_k = \binom{n-2}{k-1}(n-1)^{n-1-k}$ ab,
- (c) und beweisen Sie so schliesslich die Cayley-Formel.