
TRIANGULATED CATEGORIES, SUMMER SEMESTER 2012

P. SOSNA

Contents

1. Triangulated categories and functors 2

2. A first example: The homotopy category 8

3. Localization and the derived category 12

4. Derived functors 26

5. t-structures 31

6. Bondal’s theorem 38

7. Some remarks about homological mirror symmetry 43

7.1. Some notions from algebraic geometry 43

7.2. Symplectic geometry and homological mirror symmetry 44

8. Fourier–Mukai functors 45

8.1. Direct image 45

8.2. Inverse image 46

8.3. Tensor product 46

8.4. Derived dual 47

8.5. The construction and Orlov’s result 47

9. Spherical twists 49

Appendix: Stability conditions 55

References 57

Triangulated categories are a class of categories which appear in many areas of mathematics.

The following graphical representation is based on [1].
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(1) Algebraic geometry Here we could take Db(X) if X is a smooth and projective

variety or the category of perfect complexes or...

(2) Stable homotopy theory The stable homotopy category of topological spectra is a

triangulated category. The tensor product is the smash product.
1
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(3) (Modular) representation theory Derived category of modules over an algebra. Or

we could consider a finite group G, a field k with char(k) > 0 and take the stable

module category of finitely generated kG-modules. Objects are k-representations of G

and morphisms are kG-linear map modulo those factoring through a projective.

(4) Motivic theory Voevodsky’s derived category of geometric motives.

(5) Noncommutative topology G reasonable topological group; can consider the G-

equivariant Kasparov category of separable G-C∗-algebras.

The goal of the lecture is to give a gentle introduction to some basic notions in the theory

of triangulated categories. In particular, we will consider the examples of the homotopy and

derived category of an abelian category, derived functors and t-structures.

We will need the following notions from category theory. Recall that, roughly speaking, an

additive category is a category such that the Hom-spaces have the structure of abelian groups

and the compositions are bilinear, there exists a 0-object and finite direct sums exist as well.

An additive functor is supposed to be compatible with these additional structures. Given a

field k, we can consider k-linear additive categories, meaning that we require the Hom-spaces

to be k-vector spaces and all compositions to be k-bilinear. Similarly, one defines the notion of

a k-linear functor.

1. Triangulated categories and functors

Definition. Let D be an additive category. The structure of a triangulated category on D
is given by an additive autoequivalence T = [1] : D //D, the shift functor, and a class of

distinguished triangles

A // B // C // T (A) = A[1]

satisfying the following axioms.

TR1 (i) Any triangle of the form

A
id // A // 0 // A[1]

is distinguished.

(ii) Any triangle isomorphic to a distinguished triangle is itself distinguished (a mor-

phism of triangles is a collection of vertical maps such that everything commutes).

(iii) Any morphism f : A //B can be completed to a distinguished triangle

A
f // B // C // A[1].

TR2 The triangle

A
f // B

g // C
h // A[1]

is distinguished if and only if

B
g // C

h // A[1]
−f [1]

// B[1].
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TR3 Suppose there exists a commutative diagram of distinguished triangles with vertical

arrows α and β

A //

α

��

B //

β
��

C //

γ

��

A[1]

α[1]
��

A′ // B′ // C ′ // A′[1],

then there exists a γ making this diagram a morphism of triangles.

TR4 For each pair of morphisms A
f // B

g // C there is a commutative diagram

A

=

��

f // B
h //

g

��

C ′

��

// A[1]

=

��
A

g◦f // C //

��

B′ //

��

A[1]

f [1]

��
A′

= //

��

A′

��

// B[1]

B[1]
h[1]
// C ′[1]

where the first two rows and the two central columns are distinguished triangles.

Remark 1.1. A category satisfying TR1-TR3 is called pre-triangulated. The last axiom TR4 is

usually called the octahedral axiom since it can be represented in the form of an octahedron. It

is relatively rarely used. There are no easy examples of pre-triangulated categories which are

not triangulated.

Remark 1.2. Consider two composable maps f, g as in TR4 and denote the object C from TR1

(iii) by C(f). If one thinks of distinguished triangles as a generalization of short exact sequences,

then we get C(f) = B/A, C(g) = C/B and C(g ◦f) = C/A. Then TR4 says that C/A
/
B/A '

C/B, since it asserts the existence of a triangle C(f) // C(g ◦ f) // C(g) // C(f)[1] .

In the following we will derive some easy consequences of the definition.

Proposition 1.3. Let

A
f // B

g // C
h // A[1]

be a distinguished triangle. Then g ◦ f = 0.

Proof. Consider the commutative diagram

A
id //

id
��

A //

f

��

0 // A[1]

=

��
A

f // B
g // C // A[1],
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where the first row is a triangle by TR1 (i). We are then done by TR3. �

Proposition 1.4. Let A
f // B

g // C // A[1] be a distinguished triangle in D. Then,

for any object A0, the sequences

Hom(A0, A) //Hom(A0, B) //Hom(A0, C)

and

Hom(C,A0) //Hom(B,A0) //Hom(A,A0)

are exact.

Proof. Let h : A0
//B be a morphism such that g ◦ h = 0. Apply TR1 and TR3 to

A0
id // A0

h
��

// 0 // A0[1]

A
f // B

g // C // A[1]

in order to get a morphism m : A0
//A with f ◦m = h. This proves the exactness of the first

sequence (im ⊂ ker follows from the previous proposition) and the second is similar. �

Remark 1.5. We can use TR2 to apply the proposition to the rotated triangles and hence we

get long exact sequences.

Proposition 1.6. Let

A //

α

��

B //

β
��

C //

γ

��

A[1]

α[1]
��

A′ // B′ // C ′ // A′[1]

be a morphism of triangles. If two out of the three vertical arrows are isomorphisms, then so

is the third.

Proof. Without loss of generality assume that α and β are isomorphisms. Apply Hom(C ′,−)

to both triangles to get

Hom(C ′, A) //

α∗
��

Hom(C ′, B) //

β∗
��

Hom(C ′, C) //

γ∗
��

Hom(C ′, A[1]) //

α[1]∗
��

Hom(C ′, B[1])

β[1]∗
��

Hom(C ′, A′) // Hom(C ′, B′) // Hom(C ′, C ′) // Hom(C ′, A′[1]) // Hom(C ′, B′[1]),

a commutative diagram with exact rows. By assumption, α∗, β∗, α[1]∗ and β[1]∗ are isomor-

phisms, so γ∗ is also one by the 5-lemma. Thus, there exists a map δ : C ′ //C such that

γ ◦ δ = idC′ . Similarly one can use Hom(C,−) to conclude that there is also a left inverse.

Then they have to be equal and γ is an isomorphism as claimed. �

Corollary 1.7. The distinguished triangle in TR1 (iii) is unique up to isomorphism. �
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Remark 1.8. For a given map f : A //B one usually calls C in TR1 (iii) a cone of f . We

have just seen that a cone is unique up to isomorphism. But this isomorphism is not unique,

because of the non-uniqueness of the map in TR3. This seems like a minor issue but has in fact

as a consequence that certain natural constructions do not work in the context of triangulated

categories.

Proposition 1.9. Let A
f // B

g // C
h // A[1] be a distinguished triangle. Then f is

an isomorphism if and only if C ' 0.

Proof. Assume f is an isomorphism and let f−1 be the inverse. Then we have the diagram

B
id //

f−1

��

B //

id
��

0 // B[1]

A
f // B // C // A[1].

By TR3 and Proposition 1.6 C ' 0.

If C ' 0, use the two rows in the above triangle to get f−1. �

Lemma 1.10. Let A
f // B

g // C
h // A[1] and A′

f ′ // B′
g′ // C ′

h′ // A′[1] be dis-

tinguished triangles. Then their direct sum is also a triangle.

Proof. Consider the map f⊕f ′ : A⊕A′ //B⊕B′. By TR1 this can be completed to a triangle

∆ := A⊕A′ //B⊕B′ //P . Projecting to the factors we get two morphisms of triangles from ∆

to the given ones, so, in particular, we get maps P //C and P //C ′. Thus we get a map from

∆ to the direct sum of the given triangles and Proposition 1.6 gives that the two triangles are

isomorphic (to be more precise, we have to use that Hom(C⊕C ′,−) ' Hom(C,−)⊕Hom(C ′,−),

that direct sums of exact sequences is exact; we then get Hom(C ⊕C ′,−) ' Hom(P,−), hence

P ' C ⊕ C ′ by Yoneda; we only need that Hom(A0,−) resp. Hom(−, A0) gives short exact

sequences). �

Proposition 1.11. Let A
f // B

g // C
h // A[1] be a distinguished triangle and assume

that h = 0. Then B ' A⊕ C.

Proof. We know that 0 // C
id // C // 0 is a triangle by TR1 (i) and TR2. There is

also A
id // A // 0 // A[1] . Taking their direct sum gives a triangle by the lemma.

Now complete the diagram

A //

id
��

A⊕ C // C

id
��

0 // A[1]

id
��

A // B // C
0 // A[1]

to a morphism of triangles, which have to be isomorphic. �
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Proposition 1.12. Consider the following diagram

A
f // B

g //

β
��

C
h // A[1]

A′
f ′ // B′

g′ // C ′
h′ // A′[1].

If g′ ◦ β ◦ f = 0, then there are maps α : A //A′ and β : C //C ′ completing the diagram to a

morphism of triangles.

Proof. Apply Hom(A,−) to the lower triangle to get

. . . // Hom(A,A′) // Hom(A,B′) // Hom(A,C ′) // . . .

By assumption, the morphism βf ∈ Hom(A,B′) goes to zero in Hom(A,C ′), hence we get a

morphism α ∈ Hom(A,A′) such that f ′α = βf . Then we can use TR3 to get γ. �

Remark 1.13. Note that if Hom(A,C ′[−1]) = 0, then α and γ are unique. The first statement

being obvious, we prove the second. To do this, apply Hom(−, C ′) to the upper triangle to get

. . . // Hom(A[1], C ′) // Hom(C,C ′) // Hom(B,C ′) // . . .

Then g′ ◦ β ∈ Hom(B,C ′) goes to g′ ◦ β ◦ f = 0 ∈ Hom(A,C ′), hence we get γ, which has to be

unique by assumption.

Definition. Let F : D //D′ be an additive functor. Then F is called exact if

(1) There exists an isomorphism of functors F ◦ TD ' TD′ ◦ F .

(2) Any distinguished triangle A // B // C // A[1] in D is mapped to a distin-

guished triangle F (A) // F (B) // F (C) // F (A)[1] in D′, where we identify

F (A′[1]) with F (A′)[1] via the functor isomorphism from (i).

Definition. A triangulated subcategory D′ of D is a full additive subcategory admitting the

structure of a triangulated category such that the inclusion functor D′ ⊂ D is exact and every

object isomorphic to an object of D′ is in D′.

Remark 1.14. The above definition is equivalent to the following one. The category D′ is

invariant under shift and if in a triangle two out of three objects are in D′, then so is the third.

Also note that we could equally well define a triangulated subcategory without the assump-

tion that it is closed under isomorphisms.

Example 1.15. Let F : D //D′ be an exact functor. Then ker(F ) := {A ∈ D | F (A) ' 0} is

a triangulated subcategory of D. Furthermore, if A⊕B ∈ ker(F ), then A and B are in ker(F ).

The second assertion being trivial, we prove the first one. Clearly, ker(F ) is invariant under

shift. If we take a triangle in D and two of the three objects have the property that their image

is isomorphic to 0, the same holds for the third.
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Definition. Let F : A //B be a functor between arbitrary categories. We say that a functor

H : B //A is right adjoint to F if there exist functorial isomorphisms

HomB(F (A), B) ' HomA(A,H(B))

for all A ∈ A and B ∈ B. A functor G : B //A is left adjoint to F if there exist functorial

isomorphisms

HomB(B,F (A)) ' HomA(G(B), A)

for all A ∈ A and B ∈ B.

Note that given an A ∈ A, we can put B = F (A) and then the first equation gives

HomB(F (A), F (A)) ' HomA(A,HF (A)),

so we get a natural transformation idA //HF . Similarly, we also get a natural transformation

FH // idB.

Proposition 1.16. Let F : D //D′ be an exact functor between triangulated categories. If a

left (or right) adjoint functor exists, then it is exact.

Proof. We will only consider the case of a right adjoint functor H. Let us first check that

it commutes with the respective shifts. Since F is exact, we have a functorial isomorphism

F ◦ TD ' T ′ ◦ F and similarly for the inverse of the shift. This yields the following functorial

isomorphisms

Hom(A,H(T ′(B))) = Hom(F (A), T ′(B)) ' Hom(T ′−1F (A), B)

= Hom(FT−1(A), B) ' Hom(T−1(A), H(B))

= Hom(A, TH(B)).

By the Yoneda lemma we get an isomorphism HT ′ ' TH.

Now we have to show that H maps an exact triangle in D′ to an exact triangle in D.

Let A′ // B′ // C ′ // A′[1] be a triangle in D′ and complete the induced morphism

H(A′) //H(B′) to a triangle in D:

H(A′) // H(B′) // C0
// H(A′)[1],

where we tacitly use the isomorphism HT ′ ' TH. Using the the assumption that F is exact

and the adjunction morphisms FH(A′) //A′ and FH(B′) //B′, one obtains a morphism of

distinguished triangles

FH(A′) //

��

FH(B′) //

��

F (C0) //

ξ
��

FH(A′)[1]

��
A′ // B′ // C ′ // A′[1],

where the dotted line exists by TR3.
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Applying H to the diagram and using the adjunction h : id //H ◦ F , yields

H(A′) //

##

��

H(B′)

##

//

��

C0
//

hC0

��

H(A′)[1]

��
HFH(A′) //

��

HFH(B′) //

��

HF (C0) //

H(ξ)
��

HFH(A′)[1]

��
H(A′) // H(B′) // H(C ′) // H(A′)[1].

It is a fact from category theory that the curved arrows are identity morphisms. Now, for any

A0 we consider the sequence

Hom(A0, H(B′)) // Hom(A0, H(C ′)) // Hom(A0, H(A′)[1])

and note that it is exact due to adjunction and the exactness of F (this sequence is iso-

morphic to the one we get if we apply Hom(F (A0),−) to our original exact triangle). Then

Hom(A0, C0) ' Hom(A0, H(C ′)) for all A0 and hence H(ξ) ◦ hC0 : C0
//H(C ′) is an iso-

morphism. Thus, H(A′) // H(B′) // H(C ′) // H(A′)[1] is isomorphic to the distin-

guished triangle H(A′) // H(B′) // C0
// H(A′)[1] and hence is distinguished. �

Remark 1.17. We will see later (Remark 3.24) that a similar statement does not hold in the

abelian setting. Roughly, one uses that the tensor product functor is adjoint to the Hom-functor

(on the category of abelian groups, say) and the former can be exact while the latter is only

half-exact.

2. A first example: The homotopy category

Definition. Let A be an additive category. A complex in A is a diagram of objects and

morphisms in A

. . . // Ai−1 di−1
// Ai

di //// Ai+1 di+1
// . . .

such that dk+1 ◦ dk = 0 for all k ∈ Z. One often writes a complex as A•.

A complex is bounded if Ak = 0 for |k| � 0. It is bounded below if Ak = 0 for k � 0 and it

is bounded above if Ak = 0 for k � 0.

A morphism between two complexes A• and B• consists of a collection of maps f i : Ak //Bk

for all k ∈ Z such that dkB•f
k = fk+1dkA• for all k ∈ Z. The category of all complexes in A will

be denoted by Kom(A), its full subcategory of bounded complexes by Komb(A), the category

of bounded below complexes by Kom+(A) and the category of bounded above complexes by

Kom−(A).

Remark 2.1. It is straightforward to check that Kom(A) is an additive category.

Remark 2.2. Note that complexes naturally arise in, for example, topology. If X is a CW-

complex, we can consider singular chains. If X is a differentiable manifold, one can consider

the de Rham complex.
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Definition. Let A• be a complex and let n be an integer. We define the complex A•[n] by

setting A•[n]k = Ak+n and dkA•[n] = (−1)ndk+n
A• . For a morphism f : A• //B• one defines

f [n] : A•[n] //B•[n] by setting f [n]k = fn+k.

Remark 2.3. One checks easily that [n], the n-th shift functor, defines an autoequivalence of

Kom(A) with inverse [−n].

Definition. A morphism f : A• //B• is called homotopic to zero if, for all k ∈ Z, there exist

maps sk : Ak //Bk−1 such that for any k we have fk = dk−1
B• ◦ sk + sk+1 ◦ dkA• . Two maps f

and g are homotopic if f − g is homotopic to zero.

Proposition 2.4. Being homotopic is an equivalence relation. The elements homotopic to zero

form an “ideal”.

Proof. The first statement is trivial. As for the second: Take, for example, a morphism

f : A• //B• and a morphism g : B• //C• which is homotopic to zero. We have to check

that g ◦ f is homotopic to zero. By definition, gk = dk−1
C• ◦ sk + sk+1 ◦ dkB• for all k. But then

gk ◦ fk = dk−1
C• ◦ s

k ◦ fk + sk+1 ◦ dkB• ◦ fk = dk−1
C• ◦ s

k ◦ fk + sk+1fk+1dkC• .

Setting (s′)k = sk ◦ fk for all k ∈ Z shows that g ◦ f is homotopic to zero. The proof that g ◦ f
is homotopic to zero if f is such is completely analogous and left to the reader. �

This result allows us to define a new category as follows.

Definition. Let A be an additive category and Kom(A) the category of complexes over A.

The homotopy category K(A) has the same objects as Kom(A) and for any two objects A•

and B• the space of morphisms is HomK(A)(A
•, B•) := HomKom(A)(A

•, B•)/ ∼, where ∼ is the

equivalence relation of being homotopic. We denote the appropriate bounded subcategories by

K∗(A), where ∗ ∈ {−,+, b}.

Remark 2.5. The shift functor clearly gives an autoequivalence of K(A).

Definition. Let f : A• //B• be a morphism in Kom(A). The mapping cone of f , denoted by

C(f), is the following object of Kom(A):

C(f)k = Ak+1 ⊕Bk

dkC(f) =

(
−dk+1

A• 0

fk+1 dkB•

)
One can easily check that this is well-defined, that is, C(f) is really a complex.

We have morphisms α(f) : B• //C(f) and β(f) : C(f) //A•[1], where α(f) is the natural

injection and β(f) is the natural projection. It is again easily checked that these are morphisms

of complexes.

Lemma 2.6. For any f : A• //B• in Kom(A) there exists a φ : A•[1] //C(α(f)) such that

(1) φ is an isomorphism in K(A).
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(2) The following diagram commutes in K(A):

B•
α(f)
//

id
��

C(f)
β(f)

//

id
��

A•[1]
−f [1]

//

φ

��

B•[1]

id
��

B•
α(f)
// C(f)

α(α(f))
// C(α(f))

β(α(f))
// B•[1]

Proof. First note that

C(α(f))k = Bk+1 ⊕ C(f)k = Bk+1 ⊕Ak+1 ⊕Bk.

Define φk : A[1]k //C(α(f))k and ψk : C(α(f))k //A[1]k by

φk =

−fk+1

idAk+1

0


and

ψk = (0, idAk+1 , 0).

Then we have the following

(1) φ and ψ are morphisms of complexes.

(2) ψ ◦ φ = idA•[1].

(3) φ ◦ ψ is homotopic to idC(α(f)).

(4) ψ ◦ α(α(f)) = β(f).

(5) β(α(f)) ◦ φ = −f [1].

For (1) note that the differential of C(α(f)) can be written as

dkC(α(f)) =

−dk+1
B• 0 0

0 −dk+1
A• 0

idk+1
B• fk+1 dkB•


Items (2), (4) and (5) are trivial. To get (3) one defines sk : C(α(f))k //C(α(f))k−1 by

sk =

0 0 idBk

0 0 0

0 0 0


and checks

idC(α(f))k − φk ◦ ψk(bk+1, ak+1, bk) = (bk+1, ak+1, bk)− (−fk+1(ak+1), ak+1, 0)

which is equal to

sk+1 ◦ dkC(α(f))(b
k+1, ak+1, bk) + dk−1

C(α(f)) ◦ s
k(bk+1, ak+1, bk),

since the first term is (bk+1 + fk+1(ak+1) + dk(bk), 0, 0) and the second is (−dkbk, 0, bk). �
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Definition. A sequence A• // B• // C• // A•[1] in K(A) is a distinguished triangle

if it is isomorphic to a sequence of the form A′•
f // B′•

α(f)
// C(f)

β(f)
// A′•[1] for some

f ∈ Kom(A).

Theorem 2.7. The category K(A) with the shift functor [1] and distinguished triangles as in

the previous definition is a triangulated category.

Proof. TR1 (ii) and (iii) are obvious and TR2 follows from Lemma 2.6. Since the cone of

0 //X is X, we can apply TR2 to get TR1 (i).

Let us prove TR3. We can assume that we are in the following situation

A•
f //

φ
��

B•
α(f)
//

ψ
��

C(f)
β(f)

// A•[1]

φ[1]
��

A′•
f ′ // B′•

α(f ′)
// C(f ′)

β(f ′)
// A′•[1].

We have to construct a map ω : C(f) //C(f ′) such that

(2.1) ω ◦ α(f) = α(f ′) ◦ ψ and φ[1] ◦ β(f) = β(f ′) ◦ γ.

We know that ψ◦f is homotopic to f ′◦φ, thus, by definition, there exist maps sk : Ak //B′k−1

such that ψk ◦fk−f ′k ◦φk = sk+1◦dkA•+dk−1
B′• ◦s

k. Define ωk : C(f)k = Ak+1⊕Bk //C(f ′)k =

A′k+1 ⊕B′k by

ωk =

(
φk+1 0

sk+1 ψk

)
.

It is straightforward to check that this is a morphism of complexes and that it satisfies Equation

2.1.

Let us now prove TR4. Recall that we are given maps f : A //B and g : B //C. We

may assume that C ′ = C(f), B′ = C(g ◦ f) and A′ = C(g). We, in particular, have to

construct a distinguished triangle C(f) //C(g ◦ f) //C(g). We define u : C(f) //C(g ◦ f)

and v : C(g ◦ f) //C(g) by

uk : Ak+1 ⊕Bk //Ak+1 ⊕ Ck, uk =

(
idAk+1 0

0 gk

)
,

vk : Ak+1 ⊕ Ck //Bk+1 ⊕ Ck, vk =

(
fk+1 0

0 idCk

)
.

The map w : A′ //C ′[1] is defined as the composition A′ //B[1] //C ′[1], thus it corresponds

to the matrix

(
0 0

id 0

)
. It is then straightforward that the diagram commutes (tedious but

doable exercise!) and we are left with checking that C(f)
u // C(g ◦ f)

v // C(g)
w // C(f)[1]

is a distinguished triangle. We will construct an isomorphism φ : C(u) //C(g) and its inverse

ψ : C(g) //C(u) such that φ ◦ α(u) = v and β(u) ◦ ψ = w. Note that

C(u)k = C(f)k+1 ⊕ C(g ◦ f)k = Ak+2 ⊕Bk+1 ⊕Ak+1 ⊕ Ck
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and

C(g)k = Bk+1 ⊕ Ck.

We define φ and ψ by

φk =

(
0 idBk+1 fk+1 0

0 0 0 idCk

)
and

ψk =


0 0

idBk+1 0

0 0

0 idCk

 .

It is straightforward to check that φ and ψ are morphisms of complexes using that

dkC(u) =


dk+2
A• 0 0 0

−fk+2 −dk+1
B• 0 0

idAk+2 0 −dk+1
A• 0

0 gk+1 gk+1 ◦ fk+1 dkC•

 .

It is also immediate that the wanted commutativity holds. Furthermore, φ◦ψ = idC(g). Lastly,

if one defines

sk : C(u)k //C(u)k−1 , sk =


0 0 idAk+1 0

0 0 0 0

0 0 0 0

0 0 0 0


one computes

(idC(u) − ψ ◦ φ)k = sk+1 ◦ dkC(u) + dk−1
C(u) ◦ s

k.

Hence, ψ ◦ φ = idC(u) in K(A). �

3. Localization and the derived category

In this section we will assume that the category A is abelian. Recall that an additive category

is abelian if kernels and cokernels exist and the cokernel of a kernel is isomorphic to the kernel

of the cokernel. Recall that the kernel of a map f : A //B in a category is defined to be a pair

(K, k) where K is an object and k : K //A is a map with f ◦ k = 0 and with the following

property: Whenever there exists a map h : C //A such that f ◦ h = 0, then there exists a

unique map l : C //K such that k ◦ l = h. Note that this immediately implies that the kernel

is unique up to a unique isomorphism. The cokernel is defined by reverting all arrows.

As an example one can consider the category of abelian groups, where the kernel and cokernel

are defined in the usual fashion and the last condition can be reformulated as follows. Given

f : A //B, we have A/ ker(f) ' im(f). An example of a category which is additive but not

abelian is the category of free abelian groups of finite rank.
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Remark 3.1. Most notions one uses in abelian categories, such as kernels or cokernels, are

defined via diagrams and universal properties and properties of these constructions can be

verified in this abstract fashion. However, after a certain point the verifications in this fashion

become fairly cumbersome. Therefore, one usually uses the Freyd–Mitchell embedding theorem

which roughly states that any abelian category can be embedded into the abelian category of

modules over some ring. Hence we are allowed to use elements and will do so in the following.

Note that Kom(A) is an abelian category if A is one.

Definition. Let A• be a complex in Kom(A). The k-th cohomology of A• is defined to be

Hk(A•) = ker(dk)/ im(dk−1). A complex is acyclic if Hk(A•) = 0 for all k ∈ Z. Noting that

any morphism of complexes f : A• //B• defines a map Hk(f) : Hk(A•) //Hk(B•) (exercise!),

we call f a quasi-isomorphism (short: qis) if Hk(f) is an isomorphism for all k ∈ Z.

Proposition 3.2. Let f : A• //B• be a morphism of complexes which is homotopic to zero.

Then Hk(f) = 0 for all k ∈ Z. In particular, if f and g are homotopic, then Hk(f) = Hk(g)

for all k ∈ Z.

Proof. By assumption, f = ds + sd. Take a representative of an element x ∈ Hk(A•), then

d(x) = 0, hence f(x) = ds(x) which is zero in Hk(B•). �

Lemma 3.3. Let A be an abelian category and assume that there is the following commutative

diagram with exact rows

A
f //

α
��

B
g //

β
��

C //

γ
��

0

0 // A′
f ′ // B′

g′ // C ′.

Then there exists a natural exact sequence

ker(α) // ker(β) // ker(γ)
φ // // coker(α) // coker(β) // coker(γ)

so that the following diagram commutes

B
g // C

B

β
��

ker(γ ◦ g)oo g //

β
��

OO

ker(γ)

φ

��

OO

B′ A′ //f ′oo coker(α).

Proof. The existence of the exact sequence is proved by diagram chasing. For example, the first

two maps are just induced by f resp. g and the exactness is clear. We haveA′ //B′ //B′/ im(β)

and it is straightforward to check that im(α) ⊂ A′ is in the kernel of this map. This argument

shows the existence of the last two maps. For the existence of φ one starts as follows. Take
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c ∈ C with γ(c) = 0 and an element b ∈ B such that g(b) = c. Then g′β(b) = 0, hence

β(b) ∈ ker(g′) = im(f ′), thus β(b) = f ′(a′) for some a′ ∈ A′. So we send c to a′. It remains to

check that this procedure is well-defined and this is left to the reader. The commutativity of

the diagram is straightforward. �

Proposition 3.4. Let 0 // A• // B• // C• // 0 be an exact sequence in Kom(A).

Then there exists a canonical long exact sequence in A:

. . . // Hk(A•) // Hk(B•) // Hk(C•) // Hk+1(A•) // . . .

Proof. There are exact sequences

Ak−1 dk−1
// ker(dkA•)

// Hk(A•) // 0 ,

0 // Hk(A•) // coker(dk−1
A• ) = Ak/ im(dk−1) // Ak+1 ,

0 // ker(dk−1
A• ) // Ak−1 // im(dk−1) ,

(3.1) 0 // Hk(A•) // coker(dk−1
A• )

dk
A• // ker(dk+1

A• ) // Hk+1(A•) // 0 .

Now consider the following commutative diagram with exact rows

coker(dk−1
A• ) //

dk
A•
��

coker(dk−1
B• ) //

dk
B•
��

coker(dk−1
C• ) //

dk
C•
��

0

0 // ker(dk+1
A• ) // ker(dk+1

B• ) // ker(dk+1
C• )

Applying Lemma 3.3 to the diagram we get a short exact sequence for the Hk and applying

(3.1) we get the connection homomorphism. �

Definition. Let D be a triangulated and A be an abelian category. An additive functor

F : D //A is called cohomological if for any distinguished triangle A // B // C // A[1]

the sequence F (A) // F (B) // F (C) is exact.

Writing F k for F ◦ T k we obtain a long exact sequence.

Example 3.5. By Proposition 1.4 the functors Hom(A0,−) and Hom(−, A0) are cohomological

for any object A0 ∈ D.

Lemma 3.6. Let A be an abelian category. Then H0 : K(A) //A is a cohomological functor.

Proof. It suffices to show that if f : A• //B• is a morphism in Kom(A), then the sequence

H0(B•) // H0(C(f)) // H0(A•[1])

is exact. Since the sequence 0 // B• // C(f) // A•[1] // 0 is exact in Kom(A)

the result follows from Proposition 3.4. �
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Proposition 3.7. A morphism f : A• //B• is a quasi-isomorphism if and only if C(f) is an

acyclic complex.

Proof. Follows from the exact sequence associated to the cohomological functor H0 and the

fact that H0(A•[k]) = Hk(A•). �

We now want to have a category where all the quasi-isomorphisms become invertible. This

is achieved by a process called localization.

Let C be a category and let S be a family of morphisms in C.

Definition. The family S is a multiplicative system if it satisfies the following conditions.

(S1) For any X ∈ C, idX is in S.

(S2) If f and g are in S and g ◦ f exists, then also g ◦ f in S.

(S3) Any diagram

Z

g

��
X

f // Y

with g ∈ S can be completed to a commutative diagram

W

h
��

// Z

g

��
X

f // Y

with h ∈ S. Similarly, with all arrows reversed.

(S4) If f, g ∈ HomC(X,Y ) then the following conditions are equivalent

(a) There exists t : Y // Y ′, t ∈ S, such that t ◦ f = t ◦ g.

(b) There exists s : X ′ //X, s ∈ S, such that g ◦ s = f ◦ s.

Definition. Let C be a category and S a multiplicative system. We define the localization of

C, denoted by CS , as the category having the same objects and where the morphisms are given

as follows. Let X,Y be objects of C, then

HomCS (X,Y ) =
{

(X ′, s, f) | X ′ ∈ C, s : X ′ //X, f : X ′ // Y, s ∈ S
}
/ ∼,

where ∼ is the following equivalence relation

(X ′, s, f) ∼ (X ′′, t, g)

if and only if there exists a commutative diagram

X

X ′

s
==

f !!

X ′′′oo //

u

OO

X ′′

t
bb

g
||

Y
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with u ∈ S.

The composition of (X ′, s, f) ∈ HomCS (X,Y ) and (Y ′, t, g) ∈ HomCS (Y, Z) is defined as

follows. We use (S3) to find a commutative diagram

X ′′

h

!!

t′

}}
X ′

s

~~

f

!!

Y ′

t

}}

g

  
X Y Z

and set (Y ′, t, g) ◦ (X ′, s, f) = (X ′′, s ◦ t′, g ◦ h).

Remark 3.8. It is sometimes convenient to work with the equivalent definition where one re-

verses all the arrows. Since in the definition of a multiplicative system both directions were

required, all proofs done below in one case also work in the other case.

It is easy but tedious to check that CS is indeed a category. We define a functor Q : C // CS
to be the identity on objects and to send a morphism f : X // Y to (X, idX , f). If C is an

additive category, then so is CS . Indeed, the zero object is Q(0), the product of two objects X

and Y is Q(X ⊕ Y ) (exercise!). Morphisms are added as follows. Let (X ′, s, f) and (X ′′, s′, f ′)

be two maps from X to Y in CS . Considering the diagram

X ′′

s′

��
X ′

s // X,

one finds an object U and maps r : U //X ′ and r′ : U //X ′′ completing it to a commutative

diagram. Note that both r, r′ are in S. One then readily checks that (X ′, s, f) is equivalent to

(U, s ◦ r, f ◦ r) and that (X ′′, s′, f ′) is equivalent to (U, s′ ◦ r′, f ′ ◦ r′). Noting that s ◦ r = s′ ◦ r′,
one defines the addition of the maps as the roof (U, s ◦ r, f ◦ r + f ′ ◦ r′). We leave it to the

reader to check that this is well-defined.

Proposition 3.9. For any s ∈ S, Q(s) is an isomorphism in CS. If C′ is a category and

F : C // C′ is a functor such that F (s) is an isomorphism for any s ∈ S, then F factors

through CS.

Proof. By definition, Q(s) is (X, idX , s). The inverse is the diagram

X
s

~~

id

  
Y X.

To see the second assertion, we first show that if a functor G : CS // C′ with G ◦ Q = F

exists, then it must be unique. Indeed, the objects of C and CS are identical, so on objects
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it has to be equal to F . Furthermore, let (Z, s, f) be a map in CS . It is immediate that

(Z, s, f) ◦Q(s) = Q(f). Applying G to this we get G(Z, s, f) ◦ F (s) = F (f) and, since F (s) is

invertible in C′, we have G(Z, s, f) = F (f) ◦ (F (s))−1. We can define G by these properties. It

is straightforward to check that this is well-defined. �

Proposition 3.10. Let C be a category, C′ a full subcategory, S be a multiplicative system and

S′ the family of morphisms of C′ which belong to S. Assume that S′ is a multiplicative system

in C′ and that, moreover, one of the following conditions holds:

(1) Whenever s : X // Y is a morphism in S with Y ∈ C′, there exists a g : W //X with

W ∈ C′ and s ◦ g ∈ S,

(2) The same as in (i) but with arrows reversed.

Then C′S′ is a full subcategory of CS.

Proof. Let us show that the inclusion functor is full. Let (X ′, s, f) be a map in CS from X

to Y with X,Y ∈ C′. By (1), there exists g : W //X ′ such that s ◦ g is in S′. Consider the

morphism (W, s ◦ g, f ◦ g) from X to Y . Note that since C′ ⊂ C is full, the map f ◦ g is a map

in C′. But these morphisms are equivalent in CS because of the following diagram

X

X ′

s
==

f !!

W
goo id //

s◦g

OO

W

s◦g
``

f◦g~~
Y

The faithfulness of the inclusion functor is similarly straightforward. �

Definition. Let D be a triangulated category and let N be a family of objects in D. Then N
is called a null system if it satisfies the following conditions

(N1) 0 ∈ N .

(N2) A ∈ N if and only if A[1] ∈ N .

(N3) If A // B // C // A[1] is a distinguished triangle and A,B ∈ N , then also

C ∈ N .

Note that (N3) combined with (N2) (and rotation of triangles) says that if two out of three

objects in a triangle are in N then so is the third.

We now set

S(N ) = {f : A //B | C(f) ∈ N}

Proposition 3.11. If N is a null system, then S(N ) is a multiplicative system.

Proof. (S1) is clear, since the cone of the identity map of an element is the zero object and

hence in N . (S2) follows immediately from the octahedral axiom and (N3). Let us prove (S3).
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Let

C

g

��
A

f // B

be a diagram with g ∈ S(N ), thus we have a triangle

C // B // C(g) // C[1].

Consider the map α(g) ◦ f : A //C(g) and take its cone. We have a diagram

D // A
π◦f //

f

��

C(g)

id
��

// D[1]

C
g // B

π // C(g) // C[1].

By (TR3), this diagram can be completed to a morphism of triangles and the left square gives

us (S3). The same proof works when one reverses all the arrows.

Finally, let us consider (S4). Assume that f : A //B is a morphism such that there exists

t : B //B′ with t ◦ f = 0 and t ∈ S. We have to show that there exists a s : A′ //A with

f ◦ s = 0. Let

C
g // B

t // B′ // C[1],

with C ∈ N . Then consider

A
id // A //

f

��

0

��

// A[1]

C
g // B

t // B′ // C[1],

complete it to a morphism of triangles, so, in particular, we get a map h : A //C such that

f = g ◦ h. Then look at the distinguished triangle

A′
s // A

h // C // A′[1].

We have f ◦ s = g ◦ h ◦ s = 0. The other direction is proved similarly. �

Given a null system N , we will write C/N for the localization of C in S(N ).

Proposition 3.12. Let D be a triangulated category, N a null system in D, D′ a full triangu-

lated subcategory of D. Let N ′ = N ∩D′. Then

(1) N ′ is a null system in D′.
(2) Assume moreover that any morphism B //C in D with B ∈ D′, C ∈ N factors through

an object of N ′. Then D′/N ′ is a full subcategory of D/N .
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Proof. Item (i) being clear, we only consider (ii). We will verify condition (1) of Proposition

3.10. So, let s : A //B be a morphism such that B ∈ D′ and s ∈ S(N ). We need to find

t : D //A such that s◦ t is in S(N ). By definition, we have a triangle A //B //C(s) //A[1]

with C(s) ∈ N . The map f : B //C(s) factors through an object C ′ of N ′, so f = β ◦α. Then

we use TR4 to get a triangle C(α) //A[1] //C(β). Rotate this triangle and set D = C(α)[−1].

Then C(s ◦ t) fits into a triangle with C(s) and C(t) ' C(β)[−1] and is hence in N because

the latter two are. Condition (2) is similar. �

We can apply the localization procedure to produce the derived category of an abelian

category A.

Consider the null system

N =
{
A• ∈ K(A) | Hk(A•) = 0 ∀ k ∈ Z

}
.

By definition, this is the triangulated subcategory of acyclic complexes. Clearly, this is a null

system: (N1) and (N2) are obvious and (N3) follows from Lemma 3.6. By Proposition 3.7

S(N ) are the quasi-isomorphisms.

Definition. Let A be an abelian category and K(A) its homotopy category. The derived

category D(A) is defined to be K(A)/N .

In other words, the derived category of A is obtained by inverting all quasi-isomorphisms.

If we start with K∗(A), where ∗ ∈ {+,−, b}, we get the corresponding categories D∗(A).

The cohomology functor Hk : K∗(A) //A factors through the derived category for any k ∈ Z
because it takes quasi-isomorphisms to isomorphisms. Hence, we get cohomology functors

Hk : D∗(A) //A.

Remark 3.13. Let D is a triangulated category. Note that the notion of a null system is

compatible with the triangulated structure. We can define the structure of a triangulated

category on DS(N ) for a null system N by defining the shift functor in the natural way and

by taking for distinguished triangles those isomorphic to the image of a distinguished triangle

in D. It can then be checked that the localization functor Q : D //DS(N ) becomes exact. In

particular, this reasoning applies to the derived category, which is therefore triangulated.

Proposition 3.14. The category D∗(A), ∗ = b,+,−, is equivalent to the full subcategory of

D(A) consisting of objects A• such that Hk(A•) = 0 for |k| � 0 resp. k � 0 resp. k � 0.

The category A is equivalent to the full subcategory of D(A) consisting of objects A• such that

Hk(A•) = 0 for k 6= 0.

Proof. Let A• be a complex and define the truncated complex τ≤k(A•) resp. τ≥k(A•) by

τ≤k(A•) = [ . . . // Ak−2 // Ak−1 // ker(dk) // 0 // . . . ],

τ≥k(A•) = [ . . . // 0 // coker(dk−1) // Ak+1 // Ak+2 // . . . ].

It is straightforward to check that for an object A• with Hj(A•) = 0 for j < k resp. Hj(A•) = 0

for j > k the maps A• // τ≥k(A•) resp. τ≤k(A•) //A• are quasi-isomorphisms. The result

follows from this and Proposition 3.12. �
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Remark 3.15. A complex A• becomes isomorphic to 0 in D(A) if and only if it is acyclic. By

definition, a morphism of complexes f : A• //B• is 0 in D(A) if any only if there exists a quasi-

isomorphism s : C• //A• such that f ◦ s is homotopic to zero. It then follows immediately

that f = 0 ∈ D(A) =⇒ Hk(f) = 0 ∀ k ∈ Z.

Remark 3.16. Any null-homotopic morphism f has the property that there exists a qis s such

that f ◦ s is homotopic to zero. The converse is false. To see this, consider the complex A• =

Z //Z //Z/2Z, where the first map is multipication by 2 and the second is the projection.

Take f to be the identity and s : 0 //A•. It is easily seen that id is not homotopic to zero.

Remark 3.17. A map can induce the zero map in cohomology but not be 0 in D(A). For

example, we can consider f

A• = 0 // Z 2 //

id
��

Z //

2
��

0

B• = 0 // Z π // Z/3Z // 0.

The cohomology of the upper complex is 0 in degree zero and Z/2Z in degree 1, while that

of the lower complex is Z in degree 0 and 0 in degree 1. One can show that there does not

exist a qis s : C• //A• such that f ◦ s ∼ 0 as follows. One takes a cycle in C• such that its

image generates the cohomology of A•. If k is the homotopy of fs, then 2k(x) = 1, which is

impossible.

Example 3.18. Let us now consider the derived category in a very special case. Recall that

an abelian category A is semisimple if any exact sequence in A splits. An example of such a

category is the category of vector spaces over a field. The category of abelian groups on the

other hand is not semisimple.

We say that a complex in Kom(A) is cyclic if all its differentials are zero. The structure

of the category of cyclic complexes, denoted by Kom0(A), is clear: It is isomorphic to the

category
∏∞
i=−∞A[i]. We have the inclusion functor Kom0(A) // Kom(A). In the other

direction, we consider the cohomology functor Kom(A) // Kom0(A) which sends a complex

to the (cyclic) complex of its cohomologies. Since this functor transforms quasi-isomorphisms

to isomorphisms, we get an induced functor

κ : D(A) // Kom0(A)

and we will check that κ is an equivalence if A is semisimple. To see this, let A• be an arbitrary

complex. Let Bk = im(dk−1), Zk = ker(dk) and Hk = Hk(A•). We have the following two

exact sequences in A:

0 // Zk // Ak // Bk+1 // 0,

0 // Bk // Zk // Hk // 0.

Since A is semisimple, we have Ak = Bk ⊕Hk ⊕Bk+1 and the map

dk : Bk ⊕Hk ⊕Bk+1 //Bk+1 ⊕Hk+1 ⊕Bk+1
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is given by

dk(bk, hk, bk+1) = (bk+1, 0, 0).

We now define

fA : A• // ⊕i H i(A•)

fkA : (bk, hk, bk+1) � // hk

and

gA : ⊕i H i(A•) //A•

gkA : hk � // (0, hk, 0).

Define l : Kom0(A) //D(A) as the composition of the embedding Kom0(A) // Kom(A) with

the localization functor. We will now check that κ and l are inverse to each other. Clearly, κ◦ l
is isomorphic to the identity functor in Kom0(A). On the other hand, l ◦ κ maps a complex

A• in D(A) to the complex ⊕iH i(A•). The above morphisms fA and gA provide isomorphisms

between l ◦ κ(A•) and A• in D(A) proving the claim.

Of course, the derived category is usually more complicated than in the above case. Let us

continue with the investigation of some of its properties.

Proposition 3.19. Let A be an abelian category and let 0 // A•
f // B•

g // C• // 0

be an exact sequence in Kom(A). Let C(f) be the mapping cone of f and let φk : C(f)k =

Ak+1 ⊕Bk //Ck be the morphism (0, gk). Then φ =
{
φk
}
k∈Z : C(f) //C• is a morphism of

complexes, φ ◦ α(f) = g and φ is a quasi-isomorphism.

Proof. It is straightforward to check that φ is indeed a morphism of complexes. Now consider

the objects C(idA•) and C(f). There is a map γ : C(idA•) //C(f), sending (xk+1, xk) to

(xk+1, fk(xk)) (an easy check confirms that this is compatible with the differentials). It is clear

that we have the following exact sequence of complexes

0 // C(idA•)
γ // C(f)

φ // C• // 0.

To see that φ : C(f) //C• is a quasi-isomorphism it suffices to check that Hk(C(idA•)) = 0

for all k ∈ Z, see Proposition 3.4. But since C(idA•) is zero in K(A), this is obvious. �

Corollary 3.20. Given an exact sequence 0 // A•
f // B•

g // C• // 0 in Kom(A),

there exists a distinguished triangle A• // B• // C• // A[1] in D(A), where the map

h : C• //A[1] is β(f) ◦ φ−1 with notation from the previous proposition. �

Remark 3.21. The above distinguished triangle gives rise to a long exact cohomology sequence

with connection homomorphisms being, up to sign, the connection homomorphisms from Propo-

sition 3.4. Also note that if A•, B• and C• are concentrated in degree zero, then h is zero in

D(A) if and only if the exact sequence splits (see Proposition 1.11).
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Remark 3.22. Recall the filtrations τ≥k and τ≤k. They transform a morphism homotopic to

zero into a morphism homotopic to zero and a quasi-isomorphism into a quasi-isomorphism.

Hence, we get functors τ≥k : D(A) //D+(A) and τ≤k : D(A) //D−(A). Using Proposition

3.19 we get distinguished triangles in D(A):

τ≤k(A•) // A• // τ≥k+1(A•) // τ≤k(A•)[1]

τ≤k−1(A•) // τ≤k(A•) // Hk(A•)[−k] // τ≤k−1(A•)[1]

Hk(A•)[−k] // τ≥k(A•) // τ≥k+1(A•) // Hk(A•)[−k + 1].

Note that A•/τ≤k(A•) is the complex Ak/ ker dk // Ak+1 // . . . , which is clearly quasi-

isomorphic to τ≥k+1(A•), the latter being 0 // cokerdk // Ak+2 // . . . Since we have

the short exact sequence

0 // τ≤k(A•) // A• // A•/τ≤k(A•) // 0,

the existence of the first sequence follows from the previous corollary. The other two sequences

are also clear.

Our next goal will be to give an equivalence of D(A) with a certain homotopy category. In

order to do this we need to recall some notions. Let A be an abelian category and let A ∈ A
be an object. It is a standard fact that the functors Hom(−, A) and Hom(A,−) are left-exact.

Definition. Let A be an abelian category. An object A ∈ A is called projective if Hom(A,−)

is an exact functor and A is injective if the functor Hom(−, A) is exact. Given an arbitrary

object A ∈ A, a projective resolution is an exact sequence

. . . // P 2 // P 1 // A // 0

with P i projective for all i. Dually, an injective resolution is an exact sequence

0 // A // I1 // I2 // . . .

with Ii injective for all i.

Since the functors in question are in any case left-exact, the conditions boil down to the

following. An object P is projective if, given a diagram

P

��
X // Y // 0,

there exists a map P //X making it commutative. An object I is injective if, given a diagram

I

0 // X //

OO

Y,
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there exists a map Y // I making the diagram commutative.

Example 3.23. Any free module over a commutative ring (with identity) R is projective in

the category of R-modules. More generally, a module is projective iff it is a direct summand

of a free module. To see this, set F (A) to be the free module on the set of an R-module A.

Clearly, there is a surjection π : F (A) //A. If A is projective, then we get a map i : A //F (A)

such that π ◦ i = idA, proving the claim.

In fact, over some rings (Z, fields,...), the projectives are precisely the free modules. But

this is not always the case. As an example take R = R1 × R2 for two rings Ri. Then R1 × 0

and 0×R2 are projective modules because their sum is R. But they are not free, because, for

example, (0, 1)(R1 × 0) = 0.

The category of finite abelian groups is a category having no projective modules (for exam-

ple, let us check that Z/2Z is not projective. Namely, consider the surjection Z/8Z //Z/4Z
mapping 1 to 3. Then the map Z/2Z //Z/4Z which maps 1 to 2 (the only choice), cannot be

lifted).

Remark 3.24. The Z-module Q has the property that the functor Q ⊗ − is exact. In other

words, Q is flat. On the other hand, Q is not a projective module, because it then would have

to be a direct summand of a free module, but any two elements in Q are linearly dependent

over Z. It can be checked that the functors Q ⊗ − and Hom(Q,−) are adjoint to each other.

Therefore, the adjoint of an exact functor need not be exact (only half-exact).

Example 3.25. It can be proved that a module A over a principal ideal domain R is injective

iff it is divisible, that is, for every r 6= 0 in R and for every a ∈ A we have a = br for some

b ∈ A. In other words, the multiplication map A
·r // A is surjective.

Definition. Let A be an abelian category. One says that A has enough injectives if for any

A ∈ A there exists an exact sequence 0 //A // I with I injective. Similarly, A is said to

have enough projectives if for any A there exists a projective P and a short exact sequence

P //A // 0. The full subcategory of all injective objects in A will be denoted by I and the

subcategory of projective objects by P.

Remark 3.26. If A has enough injectives, then any object A has an injective resolution. Indeed,

pick an embedding 0 // A
f // I1 into an injective and consider coker(f). Then consider

an embedding 0 // coker(f)
g // I2 and define d1 : I1 // I2 as the composition. Clearly,

the kernel of d1 is isomorphic to A and hence the sequence

0 // A
f // I1 d1 // I2

is exact. We then proceed inductively.

The same argument shows that if A has enough projectives, then any object has a projective

resolution.

Having recalled the necessary notions we proceed to the next larger result. We will need the

following.
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Lemma 3.27. Let s : I• //A• be a quasi-isomorphism with I• ∈ K+(I) and A• ∈ K+(A).

Then there exists a morphism of complexes t : A• // I• such that t ◦ s is homotopic to idI•.

Proof. Consider the triangle

I•
s // A• // C(s)

δ // I•[1].

By Proposition 3.7 the complex C(s) is acyclic. We will now show that any morphism from

an acyclic complex to a left-bounded complex of injectives is homotopic to zero. Wlog we may

assume that we are in the following situation

. . . // 0 // C0 d0 //

δ0
��

C1 d1 //

δ1
��

. . .

. . . // 0 // I0 // I1 // . . .

Since I0 is injective we get a map k0 : C1 // I0 with δ0 = k0 ◦ d0.

Now consider the diagram

C0 d0 // C1 //

δ1−d0
I•k

0

��

d1 // C2

I1

and note that (δ1 − d0
I•k

0) ◦ d0 = 0. Therefore, we can consider the following diagram instead

of the previous one

C1

��

d1

$$
0 // coker(d0)

��

d′ // C2

I1

where the composition C1 // I1 is equal to δ1 − d0
I•k

0. Using the injectivity of I1 we get

k1 : C2 // I1 making the diagram commutative. By induction, we see that δ is homotopic to

zero. By Proposition 1.11 this means that A• ' I•⊕C(s) and we can take t to be the projection

to I•. �

Proposition 3.28. The natural functor K+(I) //D+(A) is fully faithful.

Proof. It follows from the proof of Proposition 3.10 that the localization of K+(I) with respect

to quasi-isomorphisms it a full subcategory of D+(A). By the previous lemma, any quasi-

isomorphism between objects of K+(I) is already invertible in K+(I), hence the result. �

Before we can state the next result, we have to recall an important notion. Given maps

f : Z //X and g : Z // Y , the pushout is the fourth object and the two new maps in the
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following diagram

Z
g //

f
��

Y

a
��

X
b // P.

This has a universal property, namely, given maps h : X //Q and i : Y //Q such that i ◦ g =

h ◦ f , then there exists a unique map u : P //Q making everything commutative.

The above notion makes sense for any category A. If A is abelian, the object P has a simple

description. Namely, the above diagram is a pushout if and only if the following sequence is

exact

(3.2) Z
φ // X ⊕ Y

ψ // P // 0,

where φ = (f, g) and ψ =

(
b

−a

)
. Thus, P is the quotient of X ⊕ Y by elements of the form

(f(z),−g(z)). We will denote the pushout by X ⊕Z Y .

Theorem 3.29. If A has enough injectives, then the embedding K+(I) //D+(A) is an equiv-

alence, thus K+(I) ' D+(A).

Proof. We have to show that for any complex A• ∈ K+(A) there exists a complex I• ∈ K+(I)

with a quasi-isomorphism t : A• // I•. Wlog we can assume that Ak = 0 for k < 0. We will

construct Ik and dkI• and the tk inductively.

To begin, consider the following diagram

0 // A0

t0

��

d0
A• // A1

a
��

0 // I0 b // I0 ⊕C0 C1 c // I1.

Here we first construct an injection t0 : A0 // I0 with I0 ∈ I, which exists because A has

enough injectives, then the pushout and then an injection of the pushout into an injective

object I1. Define d0
I• = c ◦ b and t1 = c ◦ a.

Now assume that we have constructed everything up to the k-th step and consider the

following diagram

Ak

tk

zz

dk
A• //

t̃k
��

Ak+1

a
��

Ik
p // coker(dk−1

I• )
b // coker(dk−1

I• )⊕Ak Ak+1 c // Ik+1.

Define dk+1
I• = c ◦ b ◦p and tk+1 = c ◦a. It is immediate to check that Ik is a complex (basically

we factorize over the coker in every step) and that t is indeed a morphism of complexes.
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Note that H0(A•) = ker(d0
A•). Let x ∈ ker(d0

I•). Since d0 is the composition of the map to

the pushout and an injection, its kernel is the kernel of the map to the pushout, but if x maps

to zero, then it is of the form x = t0(a) = 0 = ±d0
A•(a) and vice versa, so H0(I•) ' H0(A•)

and t0 induces the isomorphism.

We will now check that Hk(t) is an epimorphism and Hk+1(t) is a monomorphism. So, let

x ∈ Hk(I•), thus dkI•(x) = 0. This means that b ◦ p(x) = 0 (since c is mono), thus the map ψ

from Equation 3.2 maps (p(x), 0) to zero, hence (p(x), 0) = φ(x̃) and unravelling the definition

of φ we see that Hk(t) is surjective.

Now let us check thatHk+1(t) is a monomorphism. Let x ∈ Hk+1(A•) such thatHk+1(t)(x) =

0. Since tk+1 = c ◦ a and c is mono, this means that a(x) = 0, so x ∈ im(dkA•), thus it is 0 in

Hk+1(A•) and hence we have proved the claim. �

Remark 3.30. In a similar fashion one proves that the natural functor K−(P) //D−(A) is

fully faithful. It is an equivalence if A has enough projectives.

Now let A be an abelian category and A′ an abelian subcategory. Denote by D+
A′(A) the full

triangulated subcategory of D+(A) consisting of complexes whose cohomology objects belong

to A′. There is a natural functor

δ : D+(A′) //D+
A′(A).

We say that A′ is thick in A if for any exact sequence

B // B′ // C // A // A′

with B,B′, A,A′ ∈ A′ also C ∈ A′.

Proposition 3.31. Let A be an abelian category and A′ a thick full abelian subcategory. As-

sume that for any monomorphism f : A′ //A with A′ ∈ A′ there exists a morphism g : A //B

with B ∈ A′ such that g ◦ f is a monomorphism. Then the functor δ defined above is an

equivalence of categories.

Proof. By Proposition 3.10 we have to check that for any object A• ∈ D+
A′(A) there exists an

object B ∈ D+(A′) and a quasi-isomorphism A ' B. This is done with similar techniques as

in Theorem 3.29. �

4. Derived functors

Let A and A′ be abelian categories and let F : A //A′ be an additive functor. Note that

F induces a functor on the level of chain complexes and also respects homotopies, hence it

induces a functor K(F ) : K(A) //K(A′). We would like to extend this functor to the level

of derived categories. This is sometimes straightforward, for example, we have the following

result.

Proposition 4.1. Let F : A //A′ be an exact functor. Then the functor

K∗(F ) : K∗(A) //K∗(A′)
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transforms quasi-isomorphisms into quasi-isomorphisms (here ∗ = +,−, b). Therefore, it in-

duces a functor

D∗(F ) : D∗(A) //D∗(A′).

Proof. Let A• be an acyclic complex and set Bk = im(dk) = ker(dk+1). The functor F maps

the exact sequence

0 // Bk ek // Ak+1 pk // Bk+1 // 0

to the exact sequence

0 // F (Bk) // F (Ak+1) // F (Bk+1) // 0.

Since dk = ek ◦pk−1 we get F (dk) = F (ek)◦F (pk−1). Moreover, F (ek) is injective and F (pk) is

surjective. Therefore, F (Bk) is isomorphic to the image of F (dk) and F (Bk+1) is isomorphic

to the cokernel of F (dk+1), hence F (A•) is an acyclic complex.

Now if s : A• //B• be a quasi-isomorphism, then its cone is acyclic. Since F (C(s)) '
C(F (s)), the complex C(F (s)) is acyclic by what we just proved and hence F (s) is a quasi-

isomorphism.

Having established this, the functor D(F ) is induced by the universal property of localization.

�

If F is not exact, then it will in general not preserve quasi-isomorphisms and it is not clear

how to extend it to the derived categories. The basic idea of derived functors is that if one wants

to apply F to a complex, then we should apply it to a quasi-isomorphic complex belonging to a

class of complexes adapted to F . One needs half-exactness for this and from now on we assume

that F : A //A′ is a left-exact functor. Assume furthermore that A has enough injectives.

In particular, we have an equivalence T : K+(I) //D+(A), see Theorem 3.29. Denote the

quasi-inverse of this by T−1 and consider the following diagram.

K+(I) //

T ''

K+(A)

QA
��

K(F )
// K+(A′)

QA′
��

D+(A)

T−1gg

D+(A′).

Definition. The right derived functor RF of F is the functor

RF = QA′ ◦K(F ) ◦ T−1.

Theorem 4.2. Under the above assumptions, the following holds.

(1) There exists a natural morphism of functors

QA′ ◦K(F ) //RF ◦QA.

(2) The functor RF : D+(A) //D+(A′) is exact.

(3) Suppose G : D+(A) //D+(A′) is an exact functor. Then any functor morphism QA′ ◦
K(F ) //G ◦QA factorizes through a unique morphism RF //G.
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Proof. Let A• ∈ D+(A) and set I• = T−1(A•). The natural transformation id // T ◦ T−1

yields a functorial morphism A• // I• in D+(A) which is represented by a roof

A• C•
qisoo // I•.

Now recall from the proof of Lemma 3.27 that HomK(A)(C
•, I•) = 0 for any acyclic complex

C•. This implies that if we are given a quasi-isomorphism s : B• // B̃•, the induced map in

K(A)

Hom(B•, I•) //Hom(B̃•, I•)

is bijective (complete the map s to a triangle and apply Hom(−, I•)). Hence, from the above

roof we get a unique map A• // I• in K(A), which is independent of the choice of C•. Com-

bining everything, we get a functorial map K(F )(A•) //K(F )(I•) = RF (I•).

We now need to check that RF as defined above is an exact functor. Clearly, T is an exact

functor, hence also its inverse is exact (see Proposition 1.16). Therefore, RF is the composition

of three exact functors and hence exact. The last property is left to the reader. �

These properties determine the right derived functor RF of a left exact functor F up to

isomorphism.

Definition. Let RF : D+(A) //D+(A′) be the right derived functor of a left exact functor

F : A //A′. Then, for any complex A• ∈ D+(A), one defines

RiF (A•) := H i(RF (A•)).

The induced additive functors RiF : A //A′ are the higher derived functors of F . Note that

RiF (A) = 0 for i < 0 and R0F (A) = F (A) for any A ∈ A. Indeed, if

A // I0 // I1 // I2 // . . .

is an injective resolution, then RiF (A) = H i(. . . //F (I0) //F (I1) // . . .) and, in particular,

R0F (A) = ker(F (I0) //F (I1)) = F (A),

since F is left-exact.

An object A ∈ A is called F -acyclic if RiF (A) ' 0 for i 6= 0.

Corollary 4.3. Under the above assumptions any short exact sequence

0 // A // B // C // 0

in A gives rise to a long exact sequence

0 // F (A) // F (B) // F (C) // R1F (A) // . . .

Proof. The short exact sequence gives a triangle in D+(A) (Corollary 3.20) and applying RF

to it we get a triangle in D+(B). Lemma 3.6 then gives the result. �
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Remark 4.4. The hypothesis can be weakened and this is important in some applications.

Firstly, there is the following general approach. Let F : K+(A) //K+(A′) be an exact

functor. Then the right derived functor RF : D+(A) //D+(A′) satisfying conditions (1)-(3)

of Theorem 4.2 exists whenever there exists a triangulated subcategory KF ⊂ K+(A) adapted

to F , meaning that it satisfies the following conditions.

(i) If A• ∈ KF is acyclic, then F (A•) is also acyclic.

(ii) Any A• ∈ K+(A) is quasi-isomorphic to a complex in KF .

A slightly less general approach is the following. Let F : A //A′ be a left-exact functor. In

this situation one defines ‘adapted’ on the level of abelian categories. Namely, a class of objects

IF ⊂ A is adapted to F if the following conditions hold.

(i) If A• ∈ K+(A) is acyclic with Ak ∈ IF for all k, then F (A•) is acyclic.

(ii) Any object A ∈ A can be embedded into an object of IF .

Under these conditions, the localization of K+(IF ) by quasi-isomorphisms is equivalent to

D+(A), compare the proof of Theorem 3.29 (we did not use the injectivity of objects). Condi-

tion (i) ensures that F transforms quasi-isomorphism to quasi-isomorphisms. One then defines

RF as before. The procedure in the more general case above is similar.

Note that if A has enough injectives, then the class of injective objects is adapted to any

left-exact functor F . Indeed, condition (ii) is clearly satisfied. Next, let I• be a bounded below

acyclic complex of injectives. Then 0: I• // I• is a quasi-isomorphism. On the other hand, it

is homotopic to idI• by Lemma 3.27. Therefore, the zero morphism of F (I•) is homotopic to

the identity morphism so that F (I•) is indeed acyclic.

Remark 4.5. If one starts with a right-exact functor F : A //A′, then one constructs the left

derived functor LF . This case works, for example, under the assumption that A has enough

projectives, so any object is a quotient of a projective, and the functor we get will be defined

on D−(−).

Example 4.6. Let A be an abelian category with sufficiently many injective objects and let

A,B be objects in A. Then there exist natural isomorphisms of functors

Exti(A,B) = H iRHom(A,B) ' HomD(A)(A,B[i]).

Indeed, to compute RHom(A,B) one replaces B by its injective resolution B // I• so that

Exti(A,B) is the i-th cohomology of the complex Hom(A, Ii). Now we use the following general

construction. Given two complexes A• and B• in Kom(A), we define the “inner Hom”-complex

Hom•(A•, B•) with objects

Homn(A•, B•) =
∏
i∈Z

Hom(Ai, Bi+1)

and differential given by

df = dB ◦ f − (−1)nf ◦ dA, f ∈ Homn(A•, B•).

Then, clearly,

ker(diHom•) = HomKom(A)(A
•, B•[i]),



30 P. SOSNA

and the morphisms in the image are those homotopic to the zero morphism. Hence,

H iHom•(A•, B•) = HomK(A)(A
•, B•[i]).

Hence, Exti(A,B) ' HomK(A)(A, I
•[i]). Since I• is a complex of injectives, we have

HomD(A)(A, I
•[i]) ' HomK(A)(A, I

•[i]),

and B ' I• in D(A), proving the assertion.

Definition. Let A be an abelian category. We say that A is of finite homological dimension l

if HomD(A)(A,B[i]) = 0 for all i > l.

If A has enough injectives, then the above definition is equivalent, by the previous example,

to requiring that Exti(A,B) = 0 for all i > l. An abelian category is semisimple if and only if

its homological dimension is zero.

Proposition 4.7. Let A be an abelian category of homological dimension ≤ 1. Then any object

A• in Db(A) is isomorphic to the direct sum ⊕iH i(A•)[i].

Proof. We use induction on the length of the complex A•. Suppose A• is a complex of length

k with H i(A•) = 0 for i < i0. By Remark 3.22 there exists a triangle

H i0(A•)[−i0] // τ≥i0(A•) ' A• // τ≥i0+1(A•) // H i0(A•)[−i0 + 1].

Here, τ≥i0+1(A•) = A′• is a complex of length k − 1. By the induction hypothesis, we have

A′• ' ⊕i>i0H i(A•)[i]. Now we compute

Hom(A′•, H i0(A•)[−i0 + 1]) ' ⊕i>i0Ext1+i−i0(H i(A′•), H i0(A•)) ' 0.

Hence, the last map is zero and the triangle splits by Proposition 1.11. �

Example 4.8. Let R be a commutative ring with identity. For any R-module M the functor

T (−) = M ⊗R − is a right exact functor from R −Mod, the category of R-modules, to the

category of abelian groups. Since R−Mod has enough projectives, the left derived functor LT

exists. To be more precise, given an R-module N , take a projective resolution of it and apply

T to it. The cohomology objects of the resulting complex are the usual Tor-functors.

Example 4.9. LetR be as in the previous example. The functors Hom(−,M) resp. Hom(M,−)

are left-exact for any R-module M . For the latter covariant functor one uses injective resolu-

tions and for the contravariant one, one uses projective resolutions. The cohomology objects

of the resulting complex are then the usual Ext-functors. In fact, it can be checked that the

two constructions yield isomorphic results.

Example 4.10. Let X be a topological space. A presheaf F of abelian groups on X con-

sists of the following data. For any open subset U ⊂ X, an abelian group F(U), called

sections of F over U , and for every inclusion V ⊂ U of open subsets a group homomorphism

ρUV : F(U) //F(V ), the restriction morphism. This data has to satisfy the following condi-

tions: (0) F(∅) = 0, (1) ρUU = idF(U) and (2) if W ⊂ V ⊂ U , then ρUW = ρVW ◦ ρUV . A

presheaf is a sheaf if, given an open covering Vi of any open subset U and sections si ∈ F(Vi)
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such that si = sj on all intersections Vi∩Vj , there exists a unique element s ∈ F(U) restricting

to the si.

As an example one can consider the sheaf of continuous functions on a topological space or

the sheaf of holomorphic functions on a complex manifold.

Now, the global sections functor Γ from sheaves of abelian groups on X to abelian groups

can be checked to be left-exact. Note that if one has a continuous map f : X // Y , one can

define the pushforward f∗(F) of a sheaf F on X to be the sheaf on Y (check this!) defined

by f∗(F) = F(f−1(U)) for any open subset U ⊂ Y , and the global section functor of a sheaf

can be seen as f∗(F) for f : X // {point}. Furthermore, the category of sheaves has enough

injectives and, therefore, its right derived functor RΓ exists. The higher derived functors are

denoted by H i(X,F) and are the usual sheaf cohomology functors. The usual cohomology

groups like H i(X,Z) for, say, a smooth manifold X, can be considered in this context.

Proposition 4.11. Let F1 : A //A′ and F2 : A′ //A′′ be two left exact functors of abelian

categories. Assume that there exist adapted classes IF1 ⊂ A and IF2 ⊂ A′ for F1, respectively

F2, such that F1(IF1) ⊂ IF2.

Then the derived functors RF1 : D+ (A) //D+(A′), RF2 : D+ (A′) //D+(A′′) and R(F2 ◦
F1) : D+(A) //D+(A′′) exist and there is a natural isomorphism R(F2 ◦ F1) ' RF2 ◦RF1.

Proof. The existence of RF1 and RF2 follows from the assumptions. Moreover, since F1(IF1) ⊂
IF2 , the class IF1 is also adapted to the composition F2 ◦ F1 and, therefore, R(F2 ◦ F1) exists

as well.

A natural morphism R(F2 ◦F1) //RF2 ◦RF1 exists by the universal property of the derived

functor R(F2 ◦ F1).

If A• ∈ D+(A) is isomorphic to a complex I• ∈ K+(IF1), then the morphism

R(F2 ◦ F1)(A•) //R(F2)(R(F1)(A•)),

is an isomorphism, because the left hand side is isomorphic to (K(F2) ◦K(F1))(I•), but so is

the right hand side

R(F2)(R(F1)(A•)) ' RF2(K(F1)(I•)) ' K(F2)K(F1)(I•).

�

5. t-structures

There are many examples of abelian categories A and B whose derived categories are equiv-

alent, but the abelian categories themselves are not. The concept of a t-structure gives an

abstract way of finding abelian categories in a given triangulated category D.

Definition. Let D be a triangulated category. Two full subcategories D≤0 and D≥0 of D are

called a t-structure on D if the following conditions are satisfied. We will use the notation

D≤n = D≤0[−n] and D≥n = D≥0[−n].

(1) D≤−1 ⊂ D≤0 (for complexes: closed under shifts to the left) and D≥1 ⊂ D≥0 (for

complexes: closed under shifts to the right).
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(2) HomD(X,Y ) = 0 for X ∈ D≤0 and Y ∈ D≥1.

(3) For any object X in D there exists a distinguished triangle

X0
// X // X1

// X0[1],

with X0 ∈ D≤0 and X1 ∈ D≥1.

The full subcategory A := D≤0 ∩ D≥0 is called the heart of the t-structure.

Remark 5.1. An equivalent way of defining a t-structure is the following. A t-structure on a

triangulated category D is a full subcategory F ⊂ D, such that F [1] ⊂ F and with the property

that if one defines

F⊥ = {E ∈ D | HomD(F,E) = 0 for all F ∈ F} ,
then for every object X ∈ D there exists a triangle F //X //E with F ∈ F and E ∈ F⊥.

The connection with the definition is given by the identification D≤0 = F and D≥1 = F⊥.

Example 5.2. Let D = D(A) for an abelian category A. Denote by D≤0(A) resp. by D≥0(A)

the full subcategory of complexes A• satisfying Hk(A•) = 0 for k > 0 resp. k < 0. Clearly,

condition (1) is satisfied. Furthermore, (3) is fulfilled by Remark 3.22. To check (2), consider a

morphism φ : A• //B• with A• ∈ D≤0(A) and B• ∈ D≥1(A). By the latter condition, we can

assume that Bk = 0 for k < 0 and that d0
B• : B0 //B1 is injective. Represent φ by a roof of

the form A• C•
soo f // B• with s a quasi-isomorphism. Since A• ∈ D≤0, also C• ∈ D≤0

and, therefore, the map r : τ≤0(C•) //C• is a quasi-isomorphism. It is then readily checked

that the roof A• τ≤0(C•)
sroo fr // B• also represents φ. But fr = 0, since for i 6= 0 either

Bi = 0 or τ≤0(C•)i = 0 and for i = 0 we have d0
B• ◦ (fr)0 = (fr)1 ◦ d0

τ≤0(C•) = 0 so that

(fr)0 = is zero because d0
B• is a monomorphism. In this example, the heart is equivalent to A

by Proposition 3.14.

Lemma 5.3. Let D be a triangulated category and assume we are given two distinguished

triangles X
f // Y

g // Z
hi // X[1], for i = 1, 2. If HomD(X[1], Z) = 0, then h1 = h2.

Proof. By (TR3) we have a morphism of triangles

X
f //

id
��

Y
g //

id
��

Z
h1 //

φ

��

X[1]

id
��

X
f // Y

g // Z
h2 // X[1],

thus φ ◦ g = g and h1 = h2 ◦ φ. Now (idZ − φ) ◦ g = 0 and applying Hom(−, Z) to the upper

triangle, we get a map ψ : X[1] //Z such that idZ − φ = ψ ◦ h1. By hypothesis, ψ = 0, hence

φ = idZ and, therefore, h1 = h2. �

Proposition 5.4. (i) The inclusion D≤n //D (resp. D≥n //D) admits a right adjoint

functor τ≤n : D //D≤n (resp. a left adjoint τ≥n : D //D≥n).
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(ii) There exists a unique morphism d : τ≥n+1(X) // τ≤n(X)[1] such that

τ≤n(X) // X // τ≥n+1(X)
d // τ≤n(X)[1]

is a distinguished triangle. Moreover, d is a morphism of functors.

Proof. We may assume n = 0. By definition of a t-structure, there exists a distinguished

triangle

X0
// X // X1

// X0[1],

and we define τ≤0(X) := X0 and τ≥1(X) := X1 on objects. To define it on morphisms, let

f : X // Y be a map in D. Considering the decomposition of Y with respect to the t-structure

and applying Hom(X0,−) to this decomposition, we get a morphism τ≤0(f) : X0
// Y0. Simi-

larly, one establishes that τ≥1 is a functor. Now if A ∈ D≤0, then Hom(A,X) ' Hom(A,X0)

resp. Hom(X,B) ' Hom(X1, B) for B ∈ D≥1. This follows from the long exact sequence

associated to Hom(A,−) resp. Hom(−, B). Thus, we proved (i). The first part of (ii) follows

from the definition and the previous lemma. To prove that d is a natural transformation, let

f : X // Y and consider the associated triangles. By (TR3) we get a morphism between them,

and hence d is a morphism of functors. �

Corollary 5.5. We have X ∈ D≤n if and only if τ≥n+1(X) ' 0, and similarly X ∈ D≥n if

and only if τ≤n−1(X) ' 0.

Proof. Follows immediately from the exact triangle τ≤nX // X // τ≥n+1X
+ // . �

Proposition 5.6. Let X ′ // X // X ′′ // X ′[1] be a distinguished triangle in D. If

X ′ and X ′′ belong to D≥0 resp. D≤0, then so does X.

Proof. We will consider the case D≥0. We have Hom(τ≤−1(X), X ′) = Hom(τ≤−1(X), X ′′) = 0

by definition. Hence, also Hom(τ≤−1(X), X) = 0. Adjunction gives Hom(τ≤−1(X), τ≤−1(X)) =

0, so τ≤−1(X) ' 0. The result now follows from the previous corollary. �

Proposition 5.7. The heart A = D≤0 ∩ D≥0 of a t-structure is an abelian category.

Proof. Firstly, note that if X ′ // X // X ′′ // X[1] is a a distinguished triangle with

X ′ and X ′′ in A, then the same holds for X.

Considering the triangle X // X ⊕ Y // Y // X[1] , we see that A is an additive

category. Now let f : X // Y be a morphism in A and embed it into a distinguished triangle

X
f // Y // Z // X[1] . Rotating the triangle and using Proposition 5.6, we see that

Z ∈ D≤0 ∩ D≥−1. We will prove that

τ≥0(Z) ' coker(f)

and

τ≤0(Z[−1]) ' ker(f).
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To do this, take W ∈ A and consider the long exact sequences

Hom(X[1],W ) // Hom(Z,W ) // Hom(Y,W ) // Hom(X,W )

and

Hom(W,Y [−1]) // Hom(W,Z[−1]) // Hom(W,X) // Hom(W,Y ).

Note that Hom(X[1],W ) ' Hom(W,Y [−1]) ' 0. Furthermore, Hom(Z,W ) ' Hom(τ≥0Z,W )

and Hom(W,Z[−1]) ' Hom(W, τ≤0(Z[−1])). Hence, the claimed equalities hold because the

universal properties of ker and coker are satisfied.

Finally, let is prove that coim(f) ' im(f). Embed Y // τ≥0Z into a distinguished triangle

I // Y // τ≥0Z. By Proposition 5.6, I ∈ D≥0. We will now apply the octahedral axiom to

Y //Z // τ≥0Z. To begin, note that a cone of Y //Z is X[1], a cone of Y // τ≥0Z is I[1]

and a cone of Z // τ≥0Z is τ≤0Z. Hence, we get a triangle

τ≤0(Z[−1]) // X // I // τ≤0Z.

Therefore, I ∈ D≤0, and so I ∈ A. Now, τ≤0(Z[−1]) ' ker(f) and thus I ' im(f). Similarly,

the triangle I // Y // τ≥0Z gives that I ' coim(f). �

Remark 5.8. For m ≤ n there exist natural isomorphisms

τ≤mX // τ≤mτ≤nX

and

τ≥nX // τ≥nτ≥mX.

Indeed, D≤m ⊂ D≤n, hence there exists a canonical morphism of functors that are adjoint

to embeddings of these subcategories, and after one more application of τ≤m this morphism

becomes an isomorphism. The second assertion is proved similarly. It is also true, but more

difficult to check, that there exists a natural isomorphism τ≥mτ≤nX // τ≤nτ≥mX.

Definition. Define a functor H0 : D //A by

H0(X) := τ≤0τ≥0X ' τ≥0τ≤0X.

We also set Hn(X) = H0(X[n]).

Definition. Let D be a triangulated category. The Grothendieck group K(D) is defined to be

the quotient of the free abelian group on the set of isomorphism classes of D (we need D to be

small for this) by the following relations: [B]=[A]+[C] whenever there exists a triangle in D:

A // B // C // A[1].

From the exact triangle A // A⊕B // B // T (A) one gets [A] + [B] = [A ⊕ B]

and from the triangle A // 0 // T (A) // T (A) we have [T (A)] = −[A]. Furthermore

[0] = 0.

It is easily checked that this group has the following universal property. Whenever there is

a function f from the set of isomorphism classes of objects in D to an abelian group G such
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that the Euler relations (the above relations) hold, then f factors through K(D), that is, there

is a unique group homomorphism f so that we have the following commutative diagram:

D
f //

[ ] ""

G

K(D)
f

<<

If F : D //D′ is a triangulated functor, then F induces a group homomorphism between

K(D) and K(D′) by sending [A] to [F (A)].

If we consider a (small) abelian category A, then the Grothendieck group of A it usually

defined to be the free abelian group K(A) generated by all objects where we factor out the

subgroup generated by relations: [F ] = [F ′] + [F ′′], whenever there is an exact sequence

0 // F ′ // F // F ′′ // 0 .

Denote the image of an object F in K(A) by ψ(F ). As in the above case there is a universal

property, namely: Every additive function λ, i.e. λ(F ) = λ(F ′) + λ(F ′′) whenever there is an

exact sequence as above, from A to an abelian group G factors through K(A). Now considering

an object of A as a 0-complex in Db(A) and setting λ = [ ] : A //K(D), we see that λ is

an additive function because of the Euler relations (see Corollary 3.20) and therefore we get a

homomorphism

Φ : K(A) //K(D)

ψ(F ) � // [F ].

Now considering a complex A• ∈ Db(A), we can use the truncation functors to write it as an

alternating sum of its cohomology objects. It is then easily checked that these two constructions

are inverse to each other. Hence K(A) ' K(Db(A)).

This last statement holds more generally for the heart A of a bounded t-structure on a

triangulated category D. Here, a t-structure is called bounded if for each X ∈ D there exist

integers m ≤ n such that X ∈ D≤n ∩ D≥m. This last condition is needed to ensure that the

alternating sum of the cohomology objects of X with respect to the t-structure is finite. We

summarize this discussion in the following.

Proposition 5.9. Let D be a triangulated category and (D≤0,D≥0) be a bounded t-structure

with heart A. Then K(A) ' K(D). �

Our next goal is to produce new t-structures from given ones. This is done via torsion pairs.

Definition. Let A be an abelian category. A torsion pair in A are two full additive subcate-

gories (T ,F) such that for any T ∈ T and F ∈ F we have Hom(T, F ) = 0 and, furthermore,

for any object A ∈ A there exists an exact sequence

0 // T //A //F // 0

with T ∈ T and F ∈ F .
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Example 5.10. Consider A = Ab, the category of abelian groups and take T to be the torsion

groups and F to be the torsion free groups.

Remark 5.11. The exact sequence above is unique up to isomorphism. Indeed, assume there

exists another one with objects T ′ and F ′. Consider the diagram

0 // T
i // A

j //

id
��

F // 0

0 // T ′
k // A

l // F ′ // 0

By definition of torsion pair we have l ◦ i = 0 and since T is the kernel of l, we have a map

φ : T // T ′. Similarly, we get a map ψ : T ′ // T , which by uniqueness has to be an inverse to

φ. Therefore T ' T ′ and similarly F ' F ′.

Lemma 5.12. For a torsion pair (T ,F) we have T ⊥ = F and ⊥F = T .

Proof. First recall that

T ⊥ = {A ∈ A | Hom(T,A) = 0 ∀ T ∈ T }

and
⊥F = {A ∈ A | Hom(A,F ) = 0 ∀ F ∈ F}

Let us prove the first claimed equality, the second is similar. Clearly any F ∈ F is in T ⊥. Now

take a C ∈ T ⊥ and consider its short exact sequence

0 // T //C //F // 0

with T ∈ T and F ∈ F . Since the first map has to be zero, C is isomorphic to F . �

Lemma 5.13. The category F is closed under subobjects and the category T is closed under

quotients.

Proof. Let us prove the first statement: consider a monomorphism C �
� //F ′ with F ′ ∈ F . By

definition of torsion pair there is a sequence

0 // T //C //F // 0

The composition f : T //C //F ′ has to be zero. On the other hand it is a monomorphism

being a composition of monomorphisms. Therefore T = 0 (f ◦ idT = 0, so idT = 0, since f is a

monomorphism) and C ' F ∈ F . The proof of the second statement is analogous. �

Remark 5.14. In general F is not closed under taking quotients and T is not closed under

subobjects.

Now consider an abelian category A, its bounded derived category Db(A) and a torsion pair

(T ,F) in A. Then we have the following result.
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Theorem 5.15. The pair

D≤0 :=
{
A• ∈ Db(A) | H i(A•) = 0 ∀i > 0; H0(A•) ∈ T

}
D≥0 :=

{
A• ∈ Db(A) | H i(A•) = 0 ∀i < −1; H−1(A•) ∈ F

}
is a t-structure on Db(A).

Proof. Property (1) from the definition of a t-structure is clear (just note that 0 ∈ F and

0 ∈ T ). We will now check condition (2). Assume there exists a 0 6= f ∈ HomDb(A)(A
•, B•)

with A• ∈ D≤0 and B• ∈ D≥1. We can represent f as

C•

A•

φ
==

B•,

s

aa

where s is a quasi-isomorphism. Therefore, C• ∈ D≥1 and 0 6= φ ∈ HomKb(A)(A
•, C•). Thus,

φ is a morphism of complexes which is not homotopic to zero.

Using Remark 3.22 and (TR3) we obtain a commutative triangle of distinguished triangles

τ≤0A•
µ //

τ≤0φ
��

A• //

φ

��

τ≥1A•

h
��

// τ≤0A•[1]

��
τ≤0C• // C• // τ≥1C• // τ≤0C•[1]

By assumption, τ≥1A• is acyclic and hence µ is an isomorphism in Db(A). In particular,

τ≤0φ 6= 0 ∈ Kb(A).

Now, consider τ≤0A• and define a subcomplex σ(τ≤0A•) of it as follows, for i < 0 it has the

same objects, the object in degree 0 is im(d−1) and the maps are clear. The quotient complex is

clearly isomorphic to H0(A•). Thus, we obtain the following commutative diagram of triangles

σ(τ≤0A•)
µ //

σ(τ≤0φ)
��

τ≤0A• //

τ≤0φ
��

H0(A•)

h′

��

// σ(τ≤0A•)[1]

��
σ(τ≤0C•) // τ≤0C•

ρ // H0(C•) // σ(τ≤0C•)[1].

Now σ(τ≤0C•) is acyclic, so ρ is an isomorphism in Db(A). Since H0(A•) ∈ T and H0(C•) '
H0(B•) ∈ F , we get h′ = 0. Hence also τ≤0φ = 0, which is a contradiction.

Lastly, we will prove that condition (3) is also satisfied. Let A• be a complex. Since (T ,F) is

a torsion pair in A, we have a short exact sequence 0 // T
µ // H0(A•)

π // F // 0 .

Now consider the following commutative diagram of exact sequences in A obtained by pullback
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along µ from the lower exact sequence.

0

��

0

��
0 // im(d−1)

=

��

µ′′ // E

µ′

��

// T

µ

��

// 0

0 // im(d−1) // ker(d0)

��

// H0(A•)

π

��

// 0

F
= //

��

F

��
0 0

Factor d−1 : A−1 //A0 through im(d−1) and write d−1 = iρ. Let d̃−1 = µ′′ρ : A−1 //E. Define

a subcomplex A′• of A• by A′k = Ak for k ≤ −1, A′0 = E, A′k = 0 for k > 0 and dkA′• = dkA• for

k < −1 and d−1
A′• = d̃−1. By construction, A′• ∈ D≤0, since H0 of this complex is E/ im(d−1).

Let A′′• be the quotient complex. We obtain a triangle A′• // A• // A′′• // A′•[1] .

Clearly, Hk(A′′•) = 0 for k < 0. Now A′′0 = A0/E, A′′1 = A1 and we have a commutative

diagram of exact sequences

0 // E //

��

A0 //

d0

��

A0/E //

d̃0
��

0

0 // 0 // A1 // A1 // 0.

Thus, H0(A′′•) = ker(d̃0) ' ker(d0)/E ' F ∈ F . �

See the appendix for an application of the above to stability conditions.

6. Bondal’s theorem

The goal of this section is to prove the following result due to Bondal.

Theorem 6.1. let X be a smooth projective variety over an algebraically closed field k (if k = C
one can think of a complex manifold). The category of coherent sheaves on X is an abelian

category and we write Db(X) for its bounded derived category. Assume that D = Db(X) admits

a strongly full exceptional sequence. Then there exists an equivalence D ' Db(A−mod) for an

explicitly described k-algebra A.

Remark 6.2. The above statement holds in a more general setting. For instance, D could be the

derived category of an abelian category which has enough injectives or projectives and satisfies

the condition that the vector space ⊕iHomD(A,B[i]) is finite-dimensional for any two objects

A,B ∈ D.
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Of course, at this point even the statement of this result is not entirely clear. So, let us start

with introducing all the necessary notions.

Definition. Let D be a k-linear triangulated category. An object E in D is called exceptional

if HomD(E,E) = k and HomD(E,E[l]) = 0 for l 6= 0. An exceptional sequence is a sequence

E1, . . . , En such that any Ei is an exceptional object and, furthermore, HomD(Ei, Ej [l]) = 0

for i > j and all l. An exceptional sequence is full if the smallest triangulated subcategory

of D containing all the Ei is equivalent to D. Finally, a strongly exceptional sequence is an

exceptional sequence such that HomD(Ei, Ej [l]) = 0 for l 6= 0.

Definition. Let D be a triangulated category and D′ a full triangulated subcategory. The sub-

category D′ is called right admissible if the inclusion functor admits a right adjoint π : D //D′,
that is, we have functorial isomorphisms HomD(A,B) ' HomD′(A, π(B)) for all A ∈ D′ and

all B ∈ D.

Note that the right adjoint is exact by Proposition 1.16.

Proposition 6.3. The following conditions are equivalent.

(i) A full triangulated subcategory D′ ⊂ D is right admissible.

(ii) For any object A ∈ D there exists a distinguished triangle

B // A // C // B[1]

with B ∈ D′ and C ∈ D′⊥, where D′⊥ = {D ∈ D | HomD(D′, D) = 0 ∀D′ ∈ D′}.
(iii) The smallest triangulated subcategory of D containing D′ and D′⊥ is equivalent to D.

Proof. First of all, note that D′⊥ is a triangulated category. Indeed, taking a triangle where

two out of three objects are in D′⊥, one applies Hom(B,−) with B ∈ D′ to see this.

Now, suppose D′ is admissible. Set B := π(A) and use the adjunction property to associate

a map B //A to the identity map of B (HomD′(π(A), π(A)) ' HomD(π(A), A)). Completing

this map to a triangle as in the statement of the proposition one checks that a cone is indeed

in D′⊥ by applying Hom(B′,−) for B′ ∈ D′ to the triangle:

Hom(B′, B) ' Hom(B′, π(A)) ' Hom(B′, A).

Conversely, if such a triangle is given for any A ∈ D, we can define the functor π on objects

by sending A to B. To see that this is well-defined and functorial, consider a second triangle

B′ // A′ // C ′ // B′[1] and a map A′ //A. Applying Hom(B′,−) to the first trian-

gle, we get Hom(B′, B) ' Hom(B′, A) and hence we get a map B′ //B for any f . If A′ = A,

then this map is an isomorphism and this finishes the proof of the equivalence between (i) and

(ii).

It is obvious that (ii) implies (iii). Suppose the converse holds. We have to check that the

category of object fitting into the middle of a diagram as in (ii) is closed under shifts and taking

cones. For shifts this is obvious, since D′ and D′⊥ are triangulated subcategories and so we
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simply can shift the triangle. Let f : A //A′ be a map. We have checked above that we have

a commutative diagram which is unique up to a unique isomorphism

B //

ψ
��

A //

f
��

C //

φ
��

B[1]

��
B′ //

��

A′ //

��

C ′ //

��

B′[1]

��
C(ψ) C(f) C(φ) C(φ)[1].

It is now a cumbersome but doable exercise to check that there exist maps completing the lower

row to a triangle, which is what we wanted. �

Lemma 6.4. Let D be a k-linear triangulated category such that the vector space ⊕iHomD(A,B[i])

is finite-dimensional for any two objects A,B ∈ D. If E ∈ D is exceptional, then the objects

⊕iE[i]⊕i form an admissible subcategory of D.

Proof. The collection of the objects is a triangulated subcategory because it is equivalent to

〈E〉, the smallest triangulated subcategory of D containing E. Indeed, 〈E〉 is built from E by

taking direct sums, shifts and cones of E and has the given explicit description because E is

exceptional. Now, given any object A ∈ D consider the canonical map⊕
HomD(E,A[i])⊗ E[−i] //A

and complete it to a distinguished triangle⊕
HomD(E,A[i])⊗ E[−i] // A // B // (HomD(E,A[i])⊗ E[−i])[1].

Applying Hom(E,−) to the triangle we conclude that Hom(E,B[k]) = 0 for all k. We are now

done by Proposition 6.3. �

Note that for any exceptional object E the category 〈E〉 is equivalent to the bounded derived

category of k-vector spaces by sending E to k (in degree 0).

Definition. A sequence of full admissible triangulated subcategories D1, . . . ,Dn of D is semi-

orthogonal if for all i > j we have Dj ⊂ D⊥i , that is, for objects Di ∈ Di the equality

Hom(Di, Dj) = 0 holds. Such a sequence is full if D is generated by the Di (in the same

sense as for exceptional sequences).

Remark 6.5. An equivalent definition is the following. A semiorthogonal decomposition of a

triangulated category D is a sequence of full triangulated subcategories D1, . . . ,Dn such that

Hom(Di,Dj) = 0 for i > j and for every object D ∈ D there exists a chain of morphisms

0 = Dn
// Dn−1

// · · · // D1
// D0 = D

such that the cone of Dk
//Dk−1 is contained in Dk for each k = 1, . . . , n.
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Note that the condition on the homomorphisms implies that the decompositions are unique

and functorial. This shows that the inclusion functors admit right adjoints and hence this sec-

ond description implies the first (“full” is obvious from the existence of the chain of morphisms).

The converse is obvious.

Example 6.6. Let E1, . . . , En be a full exceptional sequence in D. Then Di := 〈Ei〉 form a

semi-orthogonal decomposition.

We also need some recollections on quivers.

Definition. Let k is an algebraically closed field.

(1) A quiver Q = (Q0, Q1, s, t : Q1
//Q0) is given by a finite set of vertices Q0 and a finite

set of arrows Q1. An arrow starts at s(ρ) and terminates at t(ρ), where ρ ∈ Q1.

(2) A non-trivial path in Q is a sequence ρ1 · · · ρm of arrows satisfying t(ρi+1) = s(ρi) for

all i (thus, in this example the path starts in s(ρm) and terminates at t(ρ1)). For each

element x ∈ Q0 ex is the trivial path starting and ending in x.

(3) The path algebra A = kQ is the k-algebra having the paths in Q as basis and with the

product of two paths being the obvious composition if the paths are composable and 0

otherwise. The multplication is associative.

For example, the path algebra of the quiver with one vertex and one loop is isomorphic to

k[t], with t corresponding to the loop. Another example is the quiver 1
ρ // 2 which is 3-

dimensional as a k-vector space and the multiplication rules are, for example, ρe1 = ρ, ρe2 = 0

etc.

It is a basic fact that the path algebra kQ of a finite quiver without closed loops is hereditary,

that is, the subobject of a projective kQ-module is projective. Thus, for any kQ-modules M,N

Exti(M,N) = 0 whenever i ≥ 2.

A representation of a quiver associates to each vertex i a vector space Vi and to each edge

ρ : i // j a linear map Vi // Vj . It is clear what a map of representations is and it is easily

checked that the category of representations of a quiver is an abelian category. In fact, it is

equivalent to the category of kQ-modules as follows. Given a kQ-module M define the vector

spaces Vi by eiM and the linear maps are given by the action of the corresponding arrows.

Conversely, given a representation we get a module M = ⊕iVi.
Denoting by Aei the space having as base the paths starting at i, we clearly have A = ⊕iAei,

thus the Aei are projective modules, since they are direct summands of the projective A-module

A. In fact, these modules are the unique up to isomorphism indecomposable projective modules.

Clearly, the representation V corresponding to the module Aei is eiAei, so Vj = k for j = i

and 0 else, since eiAei has as base the paths starting and ending in i and we have assumed

that our quiver has no loops.

Lastly, a quiver with relations is the quotient of the path algebra of a quiver by an ideal

generated by paths.

Proof of Theorem 6.1. Let E0, . . . , En be a strongly full exceptional sequence, set E = ⊕iEi
and A = Hom(E,E). Clearly, A is the path algebra of a quiver with relations which has
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n + 1 vertices and for the indecomposable projectives P0, . . . , Pn of A we have isomorphisms

HomD(Ei, Ej) ' HomA(Pi, Pj).

Let A• ∈ Db(X) and define Φ(A•) to be the complex

Hom•(E,A•) = ⊕kHom(E,A•[k])[−k]

with zero differential. The action of A on this complex is obvious.

Clearly, Φ(Ei) is a complex of A-modules which has trivial cohomology for i 6= 0 and

H0(Φ(Ei)) = Pi. Hence, Φ(Ei) ' Pi in the derived category.

We will now check that this functor is fully faithful, that is

(6.1) Hom(X,Y ) ' Hom(Φ(X),Φ(Y )).

First of all, note that the fully faithfulness is clear for objects Ei and Ej by the beginning of

the proof. Since the Ei are a strongly full exceptional sequence, (6.1) also holds for shifts of the

Ei. The set of all these objects has the property that any other object can be reached from it

by taking one cone. So, let us consider triangles A // X // B and C // Y // D

where (6.1) holds for the pairs (A,B), (A,C), (A,D) and (B,D). We get a commutative

diagram

. . . // Hom(A,C) //

OO

Hom(A, Y ) //

OO

Hom(A,D) //

OO

// . . .

. . . // Hom(X,C) //

OO

Hom(X,Y ) //

OO

Hom(X,D) //

OO

// . . .

. . . // Hom(B,C) //

OO

Hom(B, Y ) //

OO

Hom(B,D) //

OO

// . . .
OO OO OO

and applying Φ we get another commutative diagram where Φ provides an isomorphism for all

underlined Hom-spaces. Therefore, Φ is fully faithful.

Finally, the functor Φ is essentially surjective, because Db(A −mod) ' Kb(P), where P is

the category of projective A-modules and the latter is generated by the Pi which are in the

image of Φ. �

Example 6.7. Let us study one specific example. Consider the objects O and O(1) on P1.

We know that Hom(O,O) = C = Hom(O(1),O(1)). Furthermore, Hom(O,O(1)) = C2,

Hom(O(1),O) = 0 = Hom(O,O(1)[1]) = Hom(O(1),O[1]) and all the higher Ext-groups vanish

anyway since the global dimension is 1. Thus, O,O(1) is a strongly exceptional sequence. The

algebra A = Hom(E,E), where E = O ⊕ O(1), is equal to the path algebra of the Kronecker

quiver • ((
66 • . Let us check that the colection O,O(1) generates the category. Consider
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the exact sequence

0 // O(n− 2)
(y,−x)

// O(n− 1)⊕2
(x,y)t

// O(n) // 0.

Setting n = 1, we see that O(−1) is contained in the triangulated category generated by O and

O(1), and setting n = 2 proves the same assetion for O(2). Iterating the argument we get O(k)

for all k ∈ Z. Since every sheaf on P1 can be resolved by sums of copies of the sheaves O(k),

we conclude that our collection indeed generates the category. Thus, we have an equivalence

Db(P1) ' Db(A−mod).

7. Some remarks about homological mirror symmetry

In this section we very briefly recall some notions from algebraic and symplectic geometry

and give a vague introduction to the homological mirror symmetry conjecture.

7.1. Some notions from algebraic geometry. The following is a very brief and fairly im-

precise collection of some basic notions in algebraic geometry.

Classically, the objects of study in algebraic geometry were so-called algebraic sets X ⊂ Cn
given as zero sets of polynomials, that is, X = {p ∈ Cn | fi(p) = 0, i = 1, . . . , k} for some fi ∈
C[x1, . . . , xn]. Clearly, we can also just take the ideal I generated by the fi and the zero set will

not change. We denote it by V (I) = X. On the other hand, given an algebraic set X, we can

consider I(X) = {f ∈ C[x1, . . . , xn] | f(p) = 0 ∀p ∈ X}. Note that this ideal is radical, that is,

if a power of a polynomial is in I(X), then so is the polynomial itself. Obviously, if X = V (I),

then I(X) contains I and, furthermore, Hilbert’s Nullstellensatz states that I(V (I)) =
√
I, the

radical of I. In fact, there is a 1-1 correspondence between algebraic sets in Cn and radical

ideals in C[x1, . . . , xn].

Now, if one interprets elements of C[x1, . . . , xn] as functions on Cn, then functions on an

algebraic set X are given by C[x1, . . . , xn]/I(X). So we are actually studying finitely generated

C-algebras without nilpotent elements (since I(X) is radical).

Clearly, this is a fairly restrictive class of objects. Instead one considers an arbitrary commu-

tative ring with identity A, noetherian for simplicity, and associates to it a topological space,

its spectrum, denoted by Spec(A). As a set, these are just all prime ideals. The topology is

defined by declaring sets of the form V (I) := {P ∈ Spec(A) | I ⊂ P} for I ⊂ A (clearly, we

can also just take the ideal generated by I) to be the closed ones. Furthermore, one can define

a sheaf of rings on Spec(A), denoted by OSpec(A). While we will not recall its definition, the

important properties are the following. The stalk of OSpec(A) at a point P ∈ Spec(A) is AP , the

localisation of A at P . Given an element f ∈ A, we have an open set D(f) in Spec(A) defined

by D(f) := {P ∈ Spec(A) | f /∈ P}. The important thing is that the sections of OSpec(A) over

D(f) are Af , the localisation of A in the multiplicative set
{
fk, k ∈ N≥0

}
. More generally,

given an A-module M , one has a sheaf over Spec(A), denoted by M̃ , which is a module over

the sheaf OSpec(A). Its important properties are M̃(D(f)) = Mf and M̃P = MP . Furthermore,

the functor from A-modules to OSpec(A)-modules given by M // M̃ is fully-faithful, exact,

commutes with direct sums and tensor products.
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An affine scheme is, by definition the pair (Spec(A),OSpec(A)). This is an example of a

locally ringed space, that is, of a topological space equipped with a sheaf of rings whose stalks

are local rings. A morphism between locally ringed spaces (X,OX) and (Y,OY ) is a pair

(f, f ]) of a continuous map f : X // Y and a map f ] : OY // f∗OX of sheaves of rings on Y .

Furthermore, we assume that the induced map f ]P on the stalks is a local homomorphism of

local rings, that is, the inverse image of the maximal ideal is the maximal ideal. A scheme is

now defined to be a localy ringed space which locally looks like an affine scheme. So, a scheme

is, in particular, a pair (X,OX), where X is a topological space and OX a sheaf of rings on X.

It then makes sense to say when a sheaf of abelian groups on X is an OX -module. An OX -

module F is quasi-coherent if, roughly speaking, over an affine subspace Spec(A) ⊂ X it looks

like M̃ for an A-module M . It is coherent if M is a finitely generated module. The categories

of (quasi-)coherent sheaves (Q) Coh(X) on a scheme are abelian. In fact, it determines the

scheme. Namely, a result of Gabriel states that two schemes X and Y are isomorphic if and

only if the categories Coh(X) and Coh(Y ) are equivalent.

On the other hand, the bounded derived category Db(X) := Db(Coh(X)) does not determine

the geometry. In fact, Mukai proved that, given an abelian variety A and its dual abelian variety

Â, there is always an equivalence Db(A) ' Db(Â) of triangulated categories, although in general

A and Â are not isomorphic.

We, of course, know how Db(X) looks like but under additional assumptions we can under-

stand it even better. The assumptions will be that our scheme X is a complex smooth projective

variety. Here, “complex” roughly means that all the rings X is glued from are finitely gener-

ated C-algebras, “variety” means that these algebras are integral domains, “projective” means

that X can embedded into projective space and “smooth” algebraically means that all stalks

of the structure sheaf OX are regular local rings. In this case we can associate to X a smooth

complex manifold Xan and the sheaf OX corresponds to the sheaf of holomorphic functions on

Xan. Furthermore, given any coherent sheaf on X there is an associated sheaf on Xan and the

sheaf cohomology groups agree.

A locally free sheaf on a scheme X is a sheaf which locally is isomorphic to the n-th direct

sum of the structure sheaf. Any such sheaf gives a vector bundle over X and vice versa. If X

is smooth and projective, then the full triangulated subcategory of complexes of locally free

sheaves is actually equivalent to Db(X). Combining this with the previous explanations, we

could see objects in Db(X) as complexes of holomorphic vector bundles.

7.2. Symplectic geometry and homological mirror symmetry. A symplectic manifold

is a smooth manifold M equipped with a symplectic form ω, a closed (dω = 0) differential 2-

form, which is assumed to be non-degenerate (it gives an isomorphism between the tangent and

cotangent bundle). Any such manifold has even dimension over R. An isotropic submanifold

N is a submanifold of M such that the symplectic form restricts to zero (tangent space of N

is isotropic subspace of the tangent space of M). An isotropic submanifold is Lagrangian if it

is of maximal dimension, that is, dim(N) = 1
2 dim(M).

Now, let X be a Calabi–Yau variety, that is, a smooth projective variety with trivial canonical

bundle. Alternatively see this as the data of a complex structure on a manifold and a Ricci
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flat Kähler form ω. This data (along with a “B-field”) describes a sypersymmetric nonlinear

sigma model which is believed to provide a (2,2) superconformal field theory (SCFT), which

depends on the complex and the symplectic structure. A procedure called topological twisting

is supposed to isolate the two structures. Kontsevich proposed that the two parts obtained via

the topological twisting should be the derived category of coherent sheaves on the complex side

and the Fukaya category of Lagrangian submanifolds on the symplectic side. The definition of

the latter category is not as easy as that of the former one, but, very roughly speaking, objects

are Lagrangian submanifolds and morphisms are defined in terms of Floer homology. One can

enlarge this category to get something triangulated, denoted by DbF(−).

The homological mirror symmetry (HMS) conjecture can now be stated as follows. If two

Calabi–Yau manifolds X and X ′ define mirror symmetric SCFTs, then Db(X) ' DbF(X ′) and

vice versa. The important thing here is that one side depends only on the complex structure

and the other on the symplectic structure.

Assuming this conjecture does hold, the groups of exact autoequivalences on both sides

should coincide. In particular, DbF(X) comes with an action of symplectomorphisms mod-

ulo those homotopic to the identity. Denote this by π0(Sympl(X)). Hence, we get a group

homomorphism π0(Sympl(X)) //Aut(DbF(X ′)) and, by HMS, a group homomorhism

π0(Sympl(X)) //Aut(Db(X)).

Now, in symplectic geometry there is the notion of a Dehn twist, a symplectomorphism which is

a local construction that is performed along a Lagrangian sphere. The spherical twist functors

found by Seidel and Thomas correspond to these Dehn twists via HMS, and were in some sense

the first “honest” autoequivalences of Db(X), since they, in general, tear apart the standard

t-structure, which is not the case for the autoequivalences known before.

8. Fourier–Mukai functors

The goal of this section is to unterstand how objects on the product of two smooth projective

varieties give rise to exact functors between the derived categories of these varieties. The basic

idea is fairly simple.

Definition. Let X and Y be two smooth projective complex varieties, write q : X × Y //X

and p : X×Y // Y for the projections and let P ∈ Db(X×Y ) be an object. The Fourier–Mukai

functor ΦP with kernel P is defined to be the exact functor

ΦP : Db(X) //Db(Y ), F• � // p∗(q
∗F• ⊗ P).

Of course, all the functors in the above definition are required to be derived. Let us have a

closer look at the background necessary to be able to write the formula down.

8.1. Direct image. Let X and Y be two schemes and f : X // Y be a morphism. If F is an

OX -module, then f∗F is an f∗OX -module. Using the map f ] : OY // f∗OX , we see that f∗F
is an OY -module. This is the direct image of F , which turns out to be a left-exact functor

from QCoh(X) to QCoh(Y ). To get a feeling for this, let X = Spec(A) and Y = Spec(B)
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be two affine schemes and let f : X // Y be a morphism (which corresponds to φ : B //A).

If N is an A-module and Ñ the associated sheaf on X, then f∗(Ñ) = (NB)∼, where NB is N

considered as a B-module.

Since QCoh(X) has enough injectives, the right derived functor

Rf∗ : D+(QCoh(X)) //D+(QCoh(Y ))

exists.

The higher direct images Rif∗(F•) are, by definition, the cohomology sheaves of Rf∗(F•).
The global section functor is a special case of the direct image functor, namely when Y =

Spec(k).

It is a fact that for f as above Rif∗(F) are trivial for any quasi-coherent sheaf F and

i > dim(X). Therefore, we have an exact functor

Rf∗ : Db(QCoh(X)) //Db(QCoh(Y )).

One has to assume more if one wants a functor between Db(Coh(X)) and Db(Coh(Y )).

Namely, if f is a proper morphism of noetherian schemes, then the higher direct images of a

coherent sheaf F are again coherent. Thus, if f is proper, we get an exact functor

Rf∗ : Db(X) //Db(Y )

defined as the composition of the embedding of Db(X) into Db(QCoh(X)) and the functor

Rf∗ for quasi-coherent sheaves. If X and Y are smooth and projective over C, then any map

f between them is in fact proper, hence we always get the derived functor.

8.2. Inverse image. If G is a sheaf of OY -modules, there is an inverse image f∗G which is an

OX -module. This gives a right-exact functor from OY -modules to OX -modules.

We will not give the precise definition, but again just consider the affine case. So, let X, Y

and f : X // Y (corresponding to a ring homomorhism φ) be as in the previous subsection and

let M be a B-module. Then f∗(M̃) = (M ⊗B A)∼. In particular, if φ is a flat map, then f∗ is

an exact functor.

Given a map between two schemes f : X // Y , one says that X is flat over Y if OX is, which

means that the stalk of OX at any point x is a flat module over the stalk of OY at y = f(x)

(we can consider OX,x as a module over OY,y via the map f ]). The above translates to the fact

that the functor f∗ is exact if f is a flat map. It is a fact that the projection maps from X ×Y
to X and Y are flat if X and Y are smooth and projective. Hence, we do not need to derive

q∗ in the above definition.

8.3. Tensor product. Let F and G be coherent sheaves on a smooth projective complex

variety X. We can naturally define a presheaf on X by setting (F ⊗ G)(U) := F(U) ⊗ G(U)

for any U ⊂ X open. It is a fact that this construction does not give a sheaf in general, but

through the construction of sheafification, the tensor product sheaf F⊗G exists and is coherent.

In fact,

F ⊗ (−) : Coh(X) // Coh(X)

is a right exact functor, similar to what one expects from modules.
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For any coherent sheaf G there exists a locally free sheaf E and a surjection from E to G.

In other words, Coh(X) has enough locally free sheaves and hence every sheaf has a locally

free resolution. Furthermore, if E• is an acyclic bounded above complex of locally free sheaves,

then F ⊗ E• is still acyclic (this follows from the local situation, as an acyclic complex of free

modules remains acyclic if tensored by any module). Thus, the class of locally free sheaves is

adapted to the functor F ⊗ (−) and the left-derived functor

F ⊗L (−) : D−(X) //D−(X)

exists.

Since X is smooth, there always exists a resolution of length n = dim(X), so the above

functor is actually defined on the bounded derived category Db(X).

In order to define the derived tensor product of complexes, one has to work a bit harder.

Let F• be a bounded above complex of coherent sheaves. This gives the exact functor

F• ⊗ (−) : K−(Coh(X)) //K−(Coh(X)),

(F• ⊗ E•)i :=
⊕
k+l=i

Fk ⊗ E l, d = dF ⊗ 1 + (−1)i1⊗ dE .

One now has to verify that the category of complexes of locally free sheaves is adapted to

F• ⊗ (−). This boils down to checking that the image of an acyclic complex of locally free

sheaves is again acyclic. Hence, one gets a functor on the bounded above complexes and since

everything is smooth, in fact on Db(X). By construction, the tensor product in the definition

need not be derived, if P is a complex of locally free sheaves.

For later use we also review

8.4. Derived dual. If M is a finite rank module over a ring R, we can define the dual module

to be HomR(M,R). There is a similar construction for sheaves. Namely, let F be a quasi-

coherent sheaf on a smooth projective variety X. The quasi-coherent sheaf Hom(F , E) is given

by X ⊃ U � //Hom(F|U , E|U ). This gives a left exact endofunctor of QCoh(X), which can be

derived since QCoh(X) has enough injectives. Similarly, one can also plug in a complex of

sheaves. Under our assumption we get a bifunctor Db(X)op × Db(X) //Db(X). The dual of

a complex F• ∈ Db(X) is defined to be (F•)∨ := RHom(F•,OX) ∈ Db(X). If F• is, for

example, a line bundle (more generally a vector bundle), then the dual is just the dual line

bundle (resp. vector bundle). Similarly, for a complex of vector bundles, taking the derived

dual amounts to taking the usual dual Hom(−,OX) of each term in the complex.

8.5. The construction and Orlov’s result. Using the above, we can associate an exact

functor to any object P ∈ Db(X × Y )

ΦP : Db(X) //Db(Y ).

Note that our notation is slightly ambiguous, since we could have equally well defined a functor

in the opposite direction. Before we come to examples, let us state an important result, due to

Orlov, which shows why functors of this type are important.
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Theorem 8.1. Let F : Db(X) //Db(Y ) be an exact equivalence between bounded derived cat-

egories of two smooth projective varieties. Then there exists an object P ∈ Db(X × Y ), unique

up to isomorphism, and an isomorphism of functors F ' ΦP . �

In fact, Orlov proves a more general statement, since he only needs F to be fully faithful and

to admit a left and a right adjoint functor. The theorem was later extended to other situations.

Example 8.2. Let us consider some autoequivalences which always exist and the kernels

associated to them.

(1) The identity functor is naturally isomorphic to the Fourier–Mukai transform with ker-

nel O∆, the structure sheaf of the diagonal ∆ ⊂ X × X. More generally, if f is an

automorphism of X, then f∗ (which is the inverse of f∗) is an exact equivalence on

Coh(X) and hence induces an autoequivalence of Db(X). The associated kernel is the

structure sheaf OΓf
of the graph Γf of f .

(2) If L is a line bundle on X, then tensoring with it gives an exact equivalence of Coh(X)

(the inverse is, of course, L−1 ⊗ (−)) and hence we get an autoequivalence of Db(X).

The kernel here turns out to be ι∗L, where ι : X //X ×X is the diagonal embedding.

(3) The shift functor T : Db(X) //Db(X) can be described as the Fourier–Mukai transform

with kernel O∆[1].

If X is a smooth projective variety we a priori only have the above three types of autoe-

quivalences of Db(X) at our disposal. So, we have three injective maps Z //Aut(Db(X)),

Pic(X) //Aut(Db(X)) and Aut(X) //Aut(Db(X)). In fact, sometimes this is all there is, as

shown by the following result due to Bondal and Orlov.

Theorem 8.3. Let X be as always a smooth projective complex variety and assume that either

the canonical bundle or its dual is ample (that is, a power of it defines an embedding of X into

projective space). Then

Aut(Db(X)) ' Z× (Aut(X) n Pic(X)).

�

Note that two of the three types above come from the abelian level and the shift only moves

the heart of the standard t-structure.

Remark 8.4. Let us collect some nice properties of Fourier–Mukai transforms. As always, X

and Y are smooth projective complex varieties. We write ω for the canonical bundle.

(1) Let P ∈ Db(X × Y ) be an object, denote the associated Fourier–Mukai transform by

F and define PL := P∨ ⊗ p∗ωY [dim(Y )] and PR := P∨ ⊗ q∗ωX [dim(X)]. Consider the

induced FM transforms G := ΦPL
and H := ΦPR

from Db(Y ) to Db(X). Then G is left

adjoint to F and H is right adjoint to F , as follows from Grothendieck–Verdier duality.

(2) Let, in addition, Z be another variety and Q ∈ Db(Y × Z) be an object. Write, for

example, πXY for the projection X × Y × Z //X × Y . Then the composition of ΦP
and ΦQ is isomorphic to the FM transform with kernel

R = πXZ∗(π
∗
XY P ⊗ π∗Y ZQ).
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We cannot expect the kernel of the composition to be uniquely determined if the com-

position is not an equivalence.

(3) We have, in fact, a functor Φ from Db(X × Y ) to the category of exact functors from

Db(X) to Db(Y ), where the morphisms in the latter are natural transformations com-

patible with shifts. This category is not expected to have a triangulated structure,

because the cone is not functorial. However, it is additive and has a shift functor. The

above functor Φ is, in general, neither full nor faithful.

9. Spherical twists

In this section we will construct a class of autoequivalences of Db(X) whose existence was

predicted by homological mirror symmetry and which have the interesting property that they

do not come from a functor on the level of Coh(X). These equivalences will be built from a

certain class of objects.

Definition. Let X be a smooth complex projective variety of dimension d. An object E ∈
Db(X) is called spherical if (i) E ⊗ ωX ' E and (ii) Hom(E,E[i]) = C for i = 0, d and 0

otherwise.

Recall that X is a Calabi–Yau variety if ωX ' OX and if H i(X,OX) = 0 for i 6= i, d (for

example, the vanishing set of a generic quartic polynomial in P3 or a generic quintic polynomial

in P4). It follows that OX and, more generally, any line bundle on X is a spherical object.

Note that condition (ii) can be reformulated by saying that the Ext-groups of E have the

same pattern as the cohomology of a d-dimensional sphere. This explains the name.

Given a spherical object E, we can now consider PE defined by the following triangle

q∗E∨ ⊗ p∗E //O∆
//PE // q∗E∨ ⊗ p∗E[1].

Here O∆ is the structure sheaf of the diagonal, that is, ι∗OX for the diagonal embedding

ι : X //X ×X and q and p are the projections. The first map in the triangle is given as the

composition of the restriction map

q∗E∨ ⊗ p∗E // ι∗ι
∗(q∗E∨ ⊗ p∗E) = ι∗(E

∨ ⊗ E)

and the trace map E∨ ⊗ E //OX .

Definition. The spherical twist associated to a spherical object E is the Fourier–Mukai functor

ΦPE
with kernel PE . This will be denoted by TE .

Note that the object PE is defined only up to a non-unique isomorphism, since the cone is

not functorial.

Remark 9.1. A useful description of the action of the spherical twist on objects is the following

TE(F ) ' cone(⊕i(Hom(E,F [i])⊗ E[−i]) //F ).

This implies that

TE(E) ' E[1− dim(X)] and TE(F ) ' F
for F ∈ E⊥.
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In order to prove that a spherical twist is an equivalence we will need some general notions

that we will now recall.

Definition. A collection Ω of objects in a triangulated category D is called a spanning class

if for all B ∈ D the following two conditions are satisfied.

(1) If Hom(A,B[i]) = 0 for all A ∈ Ω and all i ∈ Z, then B ' 0.

(2) If Hom(B[i], A) = 0 for all A ∈ Ω and all i ∈ Z, then B ' 0.

We will need the following general result.

Lemma 9.2. Let F : A //B be a functor between arbitrary categories and let G be a left

adjoint. Then the functor morphism g : G◦F // idA induces the following commutative diagram

for any A,A′ ∈ A:

Hom(A,A′)

◦gA
��

F

))
Hom(GF (A), A′)

∼ // Hom(F (A), F (A′)).

A similar statement holds for a right adjoint H (see below for the appropriate triangle).

Proof. Let f : A //A′ be an arbitrary map and let B ∈ B. Then the following diagram

commutes

Hom(G(B), A)
∼ //

f◦
��

Hom(B,F (A))

F (f)◦
��

Hom(G(B), A′)
∼ // Hom(B,F (A′)).

Apllying this to B = F (A) gives

Hom(G(F (A)), A)
∼ //

f◦
��

Hom(F (A), F (A))

F (f)◦
��

Hom(G(F (A)), A′)
∼ // Hom(F (A), F (A′)).

The vertical map on the right sends idF (A) to F (f). Its image running in the opposite direction

is f ◦ gA. The proof for the right adjoint is similar. �

Proposition 9.3. Let F : D //D′ be an exact functor admitting a left adjoint G and a right

adjoint H. Suppose Ω is a spanning class of D such that for any two objects A,A′ ∈ Ω and all

i ∈ Z the natural homomorphisms

F : Hom(A,A′[i]) //Hom(F (A), F (A′)[i])

are bijective. Then F is fully faithful.
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Proof. The above lemma gives the following commutative diagram for arbitrary A,B ∈ D (g

is as above and h : idB //F ◦H):

(9.1) Hom(A,B)
hB◦ //

◦gA
��

F

))

Hom(A,FH(B))

∼
��

Hom(GF (A), B)
∼ // Hom(F (A), F (B)).

Let A ∈ Ω. Complete the map GF (A) //A to a triangle

GF (A)
gA // A // C // GF (A)[1].

Applying Hom(−, B) for an arbitrary object B ∈ D gives, in combination with the lower

commutative triangle, the commutative diagram

Hom(C,B[i]) // Hom(A,B[i])

F

))

◦gA // Hom(GF (A), B[i])

∼
��

Hom(F (A), F (B)[i]).

If B ∈ Ω, the map F is an isomorphism, hence the map Hom(A,B[i]) //Hom(GF (A), B[i]) is

an isomorphism. Thus Hom(C,B[i]) = 0 for all i ∈ Z, thus C ' 0 and gA : GF (A) //A is an

isomorphism for all A ∈ Ω.

Therefore, if A ∈ Ω, all the maps in (9.1) are isomorphisms. In particular,

hB◦ : Hom(A,B) //Hom(A,HF (B))

is an isomorphism for any B ∈ D. Consider a triangle

B // HF (B) // C // B,

apply Hom(A,−) for A ∈ Ω to it to conclude that C ' 0 and hence hB : B ' HF (B) for

any B ∈ D. Thus, hB◦ : Hom(A,B) ' Hom(A,HF (B)) for any A ∈ D. Looking at the

upper triangle in (9.1) we see that this implies that F gives a bijection for any A,B ∈ D as

claimed. �

Proposition 9.4. If E is a spherical object, then TE is fully faithful.

Proof. We will use Proposition 9.3. Note that any FM-transform has a right and a left adjoint.

Set Ω = E ∪ E⊥, where E⊥ = {F | Hom(E,F [i]) = 0 ∀i ∈ Z}. Let us first check that this is

indeed a spanning class. Suppose that F is an object such that Hom(G,F [i]) = 0 for all G ∈ Ω

and all i ∈ Z. In particular, this holds for G = E, so F ∈ Ω. Hence, Hom(F, F ) = 0 and thus

F ' 0.

If F is such that Hom(F,G[i]) = 0 for all G ∈ Ω and all i ∈ Z, we use Serre duality which

states that

Hom(A,B) ' Hom(B,A⊗ ωX [dim(X)])∗
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for all A,B ∈ Db(X). So, the above condition translates to Hom(G,F ⊗ ωX [i]) = 0 (here we

use that Db(X) has finite-dimensional Hom-spaces). As before, this gives F ⊗ ωX ' 0 and

hence F ' 0.

We now have to check that

TE : Hom(G1, G2[i]) ' Hom(TE(G1), TE(G2)[i])

for all G1, G2 ∈ Ω and all i. This is clear if G1 = E and G2 ∈ E⊥, since both sides are then

zero. Next one considers the case E = G1 = G2. The image of id ∈ Hom(E,E) is the identity

map on TE(E) ' E[1− dim(X)]. The argument for i = dim(X) is similar.

Lastly, we have the case where G1 and G2 are in E⊥. Here one uses that TE(G1) ' G1 and

can check that the above map is indeed an isomorphism. �

We are left with checking that TE is an equivalence. Again, we first need some general

notions and results.

Definition. A decomposition of a triangulated category D is given by non-trivial triangulated

subcategories D1 and D2 such that

(1) Hom(D1, D2) = 0 = Hom(D2, D1) for all Di ∈ Di.
(2) For all X in D there exists a triangle

D1
// X // D2

// D1[1]

with Di ∈ Di.
A triangulated category is called indecomposable if it does not admit a decomposition.

Remark 9.5. It can be shown that Db(X) is indecomposable if and only if X is connected.

Proposition 9.6. Let F : D //D′ be a fully faithful exact functor between triangulated cate-

gories. Suppose that D 6= 0 and that D′ is indecomposable. Then F is an equivalence if it has

a left adjoint G and a right adjoint H such that for any Y ∈ D′ one has: H(Y ) ' 0 implies

G(Y ) ' 0.

Proof. Define D′1 to be the image of F and D′2 to be the kernel of H. These are triangulated

subcategories of D′. The former can be equivalently described as the subcategory of objects

Y such that F (H(Y )) ' Y (any such object is, of course, in the image of F ). This is seen as

follows. If Y ' F (X), then H(Y ) ' H(F (X)) ' X, since

Hom(X,X) ' Hom(F (X), F (X)) ' Hom(X,HF (X)),

so Y ' F (X) ' FH(Y ). Now, let Y be an object in D′. Complete the natural map

FH(Y ) // Y to a triangle

FH(Y ) // Y // W // FH(Y )[1].

Since, by purely categorical arguments, HFH(Y ) ' H(Y ), the object W has the property

that H(W ) ' 0. Hence, any object Y can be decomposed by a distinguished triangle as in the

definition. Write FH(Y ) = D1 and W = D2. For any Di ∈ D′i we have

Hom(D1, D2) ' Hom(FH(Y ),W ) ' Hom(H(Y ), H(W )) ' 0
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and

Hom(D2, D1) ' Hom(W,FH(Y )) ' Hom(G(W ), H(Y )) ' 0,

since by assumption H(D2) ' 0 implies G(D2) ' 0. Since D′ is indecomposable, either D′1 or

D′2 is trivial. If D′1 is trivial, then F (X) ' 0 for all X ∈ D, so HF (X) ' 0 and thus X ' 0

which is a contradiction. Hence, D′2 has to be trivial, therefore F is an equivalence. �

This is applied in the geometric setting as follows.

Proposition 9.7. Let ΦP : Db(X) //Db(Y ) be a fully faithful Fourier–Mukai transform be-

tween smooth projective varieties. If dim(X) = dim(Y ) and P ⊗ q∗ωX ' P ⊗ p∗ωY , then ΦP
is an equivalence.

Proof. By the previous proposition we need to check that the adjoint functors G = ΦPL
and

H = ΦPR
satisfy: H(F•) ' 0, then G(F•) ' 0. Recalling that PL := P∨ ⊗ p∗ωY [dim(Y )] and

PR := P∨ ⊗ q∗ωX [dim(X)], we dualise our assumption and get that G ' H. �

Remark 9.8. In fact, the converse of the statement in the proposition also holds.

We are now ready to prove the

Theorem 9.9. If E is a spherical object, then TE is an equivalence.

Proof. We only need to check that PE ⊗ q∗ωX ' PE ⊗ p∗ωX . This basically follows from

E ⊗ ωX ' E, since PE is a cone of q∗(E∨)⊗ p∗(E) //O∆, so

P ⊗ q∗ωX = C
(
q∗(E∨ ⊗ ωX)⊗ p∗(E) //O∆ ⊗ q∗ωX

)
' C(q∗E∨ ⊗ p∗E //O∆ ⊗ p∗ωX) ' PE ⊗ p∗ωX .

�

Any Fourier–Mukai transform induces a group homomorphism on the level of Grothendieck

groups. For this we need the group homomorphism f! : K(X) //K(Y ) induced by a map

X // Y , which is defined as f!(F) =
∑

(−1)iRif∗(F). Given a class e ∈ K(X × Y ) one then

defines

ΦK
e : K(X) //K(Y ), α � // p!(e⊗ q∗(α)).

It can be checked that the following diagram commutes

Db(X)
ΦP //

��

Db(Y )

��
K(X)

ΦK
P // K(Y ).

In fact, one can descend even further and consider the induced map on rational cohomology.

The action of the spherical twist on cohomology can be described explicitly and is going to be

done next.

First, let H∗(X,Q) be the rational cohomology of the complex manifold associated to a

smooth projective variety X. It has a natural ring structure. Any map f : X // Y induces
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a map f∗ : H∗(Y,Q) //H+(X,Q) and using Poincaré duality one sees that there also exists

a map f∗ : H∗(X,Q) //H∗+2 dim(Y )−2 dim(X)(Y,Q). Using this, one can define, for any class

α ∈ H∗(X×Y,Q), the map ΦH
α : H∗(X,Q) //H∗(Y,Q), β � // p∗(q

∗β.α), where p and q are the

projections as usual.

One option to pass from K(X) to H∗(X,Q) is given by the Chern character. Recall that

the Chern character is additive and the Chern character of a line bundle L is given by

ch(L) =
∑
i

c1(L)i/i!,

where the first Chern class c1 of a line bundle is defined by using the map H1(X,O∗X) =

Pic(X) //H2(X,Z) induced by the exponential sequence. One can reduce the computation of

the Chern character of a vector bundle to line bundles by using the splitting principle.

Also recall that the Todd class is a characteristic class having the following properties:

td(E1 ⊕ E2) = td(E1)td(E2) and td(L) = c1(L)
1−exp(−c1(L) for any line bundle L. One usually

writes td(X) for td(TX).

Definition. Let E• ∈ Db(X). Its Mukai vector is the cohomology class

v(E•) = ch(E•)
√

td(X).

The square root in the above formula is the cohomology class whose square is td(X). Its

existence is shown by a formal power series calculation (note that the degree 0 term of td(X)

is 1).

The induced map v : K(X) //H∗(X,Q) is additive.

To establish compatibilities between the FM-transform and the transform it induces on the

cohomological level, one needs the Grothendieck–Riemann–Roch formula. It states that for a

projective map f : X // Y and any e ∈ K(X) we have

ch(f!(e))td(Y ) = f∗(ch(e)td(X)).

This can be used to check that, given a class e ∈ K(X × Y ), the following diagram commutes

K(X)

v

��

ΦK
e // K(Y )

v

��
H∗(X,Q)

ΦH
v(e) // H∗(Y,Q).

Using Hirzebruch–Riemann–Roch we have

χ(E•, F •) : =
∑
i

dimC Hom(E•, F •[i]) = χ(X, (E•)∨ ⊗ F •)

=

∫
X

ch((E•)∨)ch(F •)td(X) =

∫
X

ch((E•)∨)
√

td(X)ch(F •)
√

td(X)

=

∫
X

ch((E•)∨)
√

td(X)v(F •)
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One would like to express ch((E•)∨)
√

td(X) in terms of v(E•) and this is indeed possible.

Namely,

v(E•) = v(E•)∨ exp(
c1(X)

2
),

where for any v =
∑

k v
k ∈ ⊕H2k(X,Q), we set v∨ :=

∑
k(−1)kvk.

Based on the above we define the Mukai pairing on H∗(X,Q) by

〈v, v′〉 =

∫
X

exp(
c1(X)

2
)(v∨.v′).

By construction, we have

χ(E•, F •) = 〈v(E•), v(F •)〉.

With all this information one can prove the following

Proposition 9.10. Let ΦP : Db(X) //Db(Y ) be an equivalence. Then the cohomological

Fourier–Mukai transform

ΦH
P : H∗(X,Q) //H∗(Y,Q)

is an isometry. �

Note that if E is spherical, then 〈v(E), v(E)〉 is equal to 2 if the dimC(X) is even and 0

otherwise. One can prove the

Proposition 9.11. Let E be spherical object in Db(X). Then the induced isometry THE is

given by v � // v − 〈v(E), v〉v. �

In particular, if X is even-dimensional, then TE acts on H∗(X,Q) by reflection in the hy-

perplane orthogonal to v(E).

Appendix: Stability conditions

Tilting theory originated in representation theory, in particular of hereditary algebras. Lately,

it was used in a different context, namely in the construction of stability conditions.

A stability condition on a triangulated category D consists of a heart A of a bounded t-

structure and a stability function with HN-property on A. Let us explain these notions. A

stability function on an abelian category A is a group homomorphism Z : K(A) //C such that

for all 0 6= E ∈ A the complex number Z(E) lies in the space

H := {r exp(iπφ) | r > 0 and 0 < φ ≤ 1} ⊂ C.

The phase of an object E ∈ A is then defined to be

φ(E) =
1

π
arg(Z(E)) ∈ (0, 1].

Given a function Z one says that an object E ∈ A is semistable with respect to Z if for any

subobject 0 6= F ⊂ E one has φ(F ) ≤ φ(E).
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A stability function Z is said to have the Harder–Narasimhan property if any object possesses

a HN-filtration: A Harder–Narasimhan filtration of a nonzero object E ∈ A is a finite chain of

subobjects

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E

such that the factors Fi = Ei/Ei−1 are semistable objects in A, called the HN-factors of E, of

A and

φ(F1) > φ(F2) > · · · > φ(Fn).

This concept was introduced by Bridgeland inspired by work of Douglas on Π-stability in

string theory. The set of all stability conditions satisfying a further technical assumption called

local finiteness is a (possibly infinite-dimensional) complex manifold. The interest in this space

comes, as alluded to above, from string theory. To be more precise, we consider the bounded

derived category of coherent sheaves Db(X) on a smooth complex projective variety X and

study its stability manifold. In fact, in this context one studies numerical stability conditions.

Define a bilinear form on Db(X), the Euler form, by

χ(E,F ) =
∑
i

(−1)i dimC Hom(E,F [i]).

The numerical Grothendieck group N(X) is the quotient of K(Db(X)) ' K(Coh(X)) by the

nullspace of the Euler form. It is a fact that N(X) is a free abelian group of finite rank. The

manifold of numerical stability conditions is then finite-dimensional.

If X is a Calabi–Yau threefold, then a suitable quotient of the space of numerical stability

conditions is expected to be the stringy Kähler moduli space of X.

Thus, in order to construct examples of stability conditions one needs a bounded t-structure

plus a function on it. If X is one-dimensional we can indeed take the standard t-structure

with heart Coh(X) and construct a stability condition with this heart. But if dim(X) ≥ 2,

then Coh(X) does not admit a function with HN-property. The method of tilting gives us the

possibility to construct new hearts.

Let X be a surface. One takes R-divisors β and ω so that ω is in the ample cone

Amp(X) =
{
ω ∈ NS(X)⊗ R | ω2 > 0 and ω · C > 0 for any curve C ⊂ X

}
.

Recall that the slope µω(E) of a torsion-free sheaf E on X with respect to ω is defined by

µω(E) =
c1(E) · ω

rk(E)
.

This gives us the possibility to define semistability with respect to the slope. It turns out

that any torsion-free sheaf has a HN-filtration with respect to µω. One can then show that

there exists a torsion pair (T ,F) on Coh(X) defined as follows: The category T consists of

those sheaves whose torsion-free parts have µω-semistable HN-factors of slope µω > β ·ω and F
consists of torsion-free sheaves on S all of whose µω-semistable HN-factors have slope µω ≤ β ·ω.

It follows from this construction that the torsion pair does not depend on β, but only on ω

and the product β · ω. Tilting with respect to this torsion pair gives a heart B ⊂ Db(X) on

which a stability condition can be constructed.
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Unfortunately, there is so far no example of a stability condition on a Calabi–Yau threefold.

It is known that tilting the standard heart Coh(X) twice gives a bounded t-structure and there

is a candidate for a stability condition on it. However, the HN-property is not yet known to

hold.
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