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These are notes for a lecture (14 weeks, 1, 5 × 90 minutes per week) held at the
University of Hamburg in the summer semester 2016. The goal was to introduce the
necessary concepts in order to be able to outline the proof of the classification result for
semisimple complex Lie algebras. In particular, the classification theorem for irreducible
root systems is only stated but not proved and the construction of a (semi-)simple Lie
algebra from a given root system is only outlined.

For the most part I closely followed [2], basically just sometimes rearranging the order
in which topics are presented, explaining some of the proofs in more detail and omitting
several topics.

1. Basic concepts

Definition. Let g be a vector space over some field K endowed with an operation
g × g // g denoted by (x, y) � // [x, y] and called the bracket or commutator. The pair
(g, [ , ]) is called a Lie algebra over K if the following axioms are satisfied:
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(L1) The bracket is bilinear.
(L2) [x, x] = 0 for all x ∈ g.
(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

The third axiom is called the Jacobi idenity.

Note that

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x] ∀x, y ∈ g,

hence we have (L2’) [x, y] = −[y, x], that is, the bracket is anticommutative. If the
characteristic of K is not 2, then (L2’) implies (L2) ([x, x] = −[x, x]).

Definition. A K-algebra is a K-vector space A together with a K-bilinear map m : A×
A //A called the multiplication. One usually writes x·y instead of m(x, y). A K-algebra
is called associative if (x ·y) ·z = x · (y ·z) for all x, y, z ∈ A. A K-algebra is called unital
if there exists an element 1 ∈ A such that 1 · x = x · 1 = x for all x ∈ A. A K-algebra is
called commutative if x · y = y · x for all x, y ∈ A.

We will frequently write xy instead of x · y for the multiplication of two elements in
a K-algebra. If the underlying field is clear we will also frequently simply say algebra
instead of K-algebra. The dimension of an algebra is its dimension as a K-vector space.

{e:Algebras}
Example 1.1. (1) The polynomial ring K[x1, . . . , xn] over a field is an associative

commutative unital K-algebra.
(2) Let V be any K-vector space and A = End(V ) be the space of K-linear en-

domorphisms of V . This is an associative unital K-algebra with respect to the
composition of maps, the identity being the unit element.

(3) The space of n× n-matrices over a field K is an associative unital K-algebra.
{e:gl}

Example 1.2. Let A be any associative algebra. Define a new operation A × A //A
by sending (x, y) to xy − yx =: [x, y]. This operation clearly satisfies (L1) and (L2) and
an easy computation, which is left to the reader (see Exercise 1 on Sheet 1), shows that
(L3) also holds. Therefore, any associative algebra defines a Lie algebra.

As an explicit example, let A = End(V ). The corresponding Lie algebra will be
denoted by gl(V ). It is called the general linear Lie algebra.

Definition. Let A and B be two K-algebras.

(1) A K-algebra homomorphism from A to B is a K-linear map ϕ : A //B which is
compatible with the respective multiplications, that is, ϕ(x)ϕ(y) = ϕ(xy) for all
x, y ∈ A.

(2) A K-algebra homomorphism which is an isomorphism of K-vector spaces is called
an isomorphism of K-algebras.

(3) Assume that A and B are unital algebras. An algebra homomorphism ϕ : A //B
is called unital if ϕ(1A) = 1B.

{e:MapsAlg}
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Example 1.3. The map ϕ : K[x] //K defined by p � // p(0) is a unital homomorphism
of K-algebras. On the other hand, the map

det : Mat(n,K) //K

is compatible with multiplication, but is not linear, hence is not a homomorphism of
K-algebras.

{r:Liealghom}
Remark 1.4. Since a Lie algebra is in particular an algebra, the above definitions apply.
Hence, a Lie algebra homomorphism is a linear map ϕ : g // g′ between Lie algebras
respecting the brackets, that is ϕ([x, y]) = [ϕ(x), ϕ(y)].

{r:Algring}
Remark 1.5. An associative unital K-algebra A is simply a unital ring together with
a unital ring homomorphism K //A (which is automatically injective since K has no
non-trivial ideals) whose image is in the center of A. Recall that the center of a ring is
the space {x ∈ A | xy = yx ∀y ∈ A}.

For example, if A = End(V ), then the required ring homomorphism K //A is given
by sending λ ∈ K to λ · idV .

Definition. Let A be an algebra. A subalgebra is a vector subspace B such that for all
x, y ∈ B the element xy is also in B. Note that B is again an algebra.

A subalgebra B of a unital algebra A is called unital if 1A ∈ B.
Any subalgebra of the Lie algebra gl(V ) is called a linear Lie algebra.

Example 1.6. Let g be a Lie algebra and 0 6= x ∈ g. Then Kx is a Lie algebra with
trivial bracket (that is, [y, z] = 0 for all y, z ∈ Kx), because of (L2).

For a different example, consider A = K[x, y] and B = K[x].
Note that the intersection of two subalgebras is again a subalgebra. However, this does

not hold for the (span of the) union: Take A = Mat(3,C), B1 = {

0 λ 0
0 0 0
0 0 0

 | λ ∈ C},

B2 = {

0 0 0
0 0 λ
0 0 0

 | λ ∈ C}.

{e:Derivations}
Example 1.7. Let A be any K-algebra. A derivation of A is a linear map δ : A //A
which satisfies the Leibniz rule δ(xy) = δ(x)y + xδ(y). The space of all derivations of A
is a vector space (this is left to the reader), denoted by Der(A). The reader can check
that if δ, δ′ are derivations, then δδ′− δ′δ is also a derivation (see Exercise 1 on Sheet 1).
In other words, Der(A) ⊂ gl(A) is a Lie subalgebra.

In the following we will introduce some examples of linear Lie algebras. First note
that if V is finite-dimensional, then we can identify it with Kn after choosing a basis.
The algebra End(V ) can then be identified with the algebra Mat(n,K). We will denote
the corresponding Lie algebra by gl(n,K).
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{e:sl}
Example 1.8. Consider the space

sl(n,K) := {A ∈ gl(n,K) | tr(A) = 0}.

Clearly, this is a vector subspace. For any A,B ∈ gl(n,K) we have the equality

tr([A,B]) = tr(AB −BA) = tr(AB)− tr(BA) = 0,

hence sl(n,K) is a subalgebra of gl(n,K), called the special linear algebra. Since the
definition of the trace does not depend on the choice of a basis, it also makes sense to
talk about the Lie algebra sl(V ) if V is finite-dimensional.

Note that the subspace of tracefree matrices is not a subalgebra of the associative
algebra Mat(n,K) (e.g., take the product with itself of the diagonal matrix 2× 2-matrix
with entries 1 and −1).

Let us compute the dimension of sl(n + 1, K). First of all note that the dimension
of gl(n + 1, K) is (n + 1)2. Since sl(n + 1, K) is a proper subalgebra of gl(n + 1, K)
its dimension is at most (n + 1)2 − 1. Write Ei,j for the matrix which has a 1 in the
(i, j) position and 0 everywhere else and note that the matrices Ei,j for i 6= j and
Ei,i − Ei+1,i+1 for 1 ≤ i ≤ n are all in sl(n + 1, K) and are linearly independent. These
are (n+ 1)2− (n+ 1) +n = (n+ 1)2−1 matrices, hence dimK sl(n+ 1, K) = (n+ 1)2−1.

{e:OrthLie}
Example 1.9. Let V be a K-vector space and f : V × V //W be a bilinear map into
a vector space W . Consider the space

o(V, f) := {x ∈ gl(V ) | f(xv, w) + f(v, xw) = 0 ∀v, w ∈ V }.

This is a Lie subalgebra of gl(V ), since:

f([x, y]v, w) = f((xy − yx)v, w) = f(xyv, w)− f(yxv, w)

= f(v, yxw)− f(v, xyw) = −f(v, [x, y]w),

so if x, y ∈ o(V, f), then also [x, y] ∈ o(V, f).
Let us consider some specific examples, where W is always the base field.

(1) Let V ' K2n and let f be the bilinear map given by the matrix

(
0 In
−In 0

)
. Note

that this form is antisymmetric. In this case the Lie algebra o(V, f) is denoted
by sp(2n,K) and called the symplectic Lie algebra.

(2) Let V ' Kn and take f to be the identity matrix. The resulting Lie algebra
is called the orthogonal Lie algebra and denoted by so(n,K). It can be easily
checked that it consists of the n× n-matrices A with A = −At (see Remark 1.14
below).
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For computations it is sometimes more useful to have a different description.

Namely, if n = 2m is even, we let f be defined by the matrix

(
0 Im
Im 0

)
, while

for n odd, say n = 2m+ 1, we take the matrix

1 0 0
0 0 Im
0 Im 0

.

{e:TriandM}
Example 1.10. The set t(n,K) of all upper triangular n×n-matrices A (that is, Ai,j = 0
for all i > j) is a Lie subalgebra of gl(n,K). Similarly, the set n(n,K) of all strictly
upper triangular matrices A (that is, Ai,j = 0 for all i ≥ j) is also a Lie subalgebra of
gl(n,K). The set d(n,K) of all diagonal matrices is also easily seen to be a subalgebra
of gl(n,K). Compare Exercise 4 on Sheet 1.

Definition. A Lie algebra g is called abelian if [x, y] = 0 for all x, y ∈ g.
{e:AbLieAlg}

Example 1.11. Any vector space can be viewed as an abelian Lie algebra. Also note
that the diagonal matrices are an abelian subalgebra of gl(n,K). If g is any Lie algebra,
then Kx ⊂ g is an abelian algebra for any x 6= 0. In fact, there is, up to isomorphism,
only over one-dimensional Lie algebra, which is abelian.

Note that most examples we have looked at so far are linear Lie algebras. In fact,
every finite dimensional Lie algebra is isomorphic to some linear Lie algebra. This is the
content of theorems due to Ado and Iwasawa.

It might also be useful to contemplate abstract Lie algebras for a moment. As noted
above, every vector space V can be endowed with the trivial bracket and hence with
the structure of a Lie algebra, which is then abelian. Now assume that g is a finite-
dimensional Lie algebra with basis x1, . . . , xn, then the multiplication table of g can be
recovered from the structure constants akij which occur in the expressions

[xi, xj] =
n∑
k=1

akijxk.

Due to the anticommutativity of the bracket, it is enough to consider the constants akij
for i < j.

Conversely, one can define an abstract Lie algebra by specifying a set of structure
constants. That is, one takes a finite-dimensional vector space, fixes a basis and a set of
constants {akij} satisfying the relations

akii = 0 = akij + akji

and ∑
k

(akija
m
kl + akjla

m
ki + aklia

m
kj) = 0.

The first equation stems from axiom (L2) while the second stems from (L3). This
concludes the detour concerning abstract algebras.
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Definition. Let g be a Lie algebra and h, i be subalgebras of g. We will write [h, i] for
the subspace of g spanned by commutators [x, y] with x ∈ h and y ∈ i.

A Lie algebra is called simple if it is non abelian, that is [g, g] 6= 0, and every non-zero
homomorphisim into some other Lie algebra is injective.

A lot of concepts and notions which we will introduce are needed in order to prove the
following classification result, whose proof we will outline in the course of the lecture:

{t:MainThm}
Theorem 1.12 (Killing, Cartan). Each simple finite-dimensional complex Lie algebra
is isomorphic to one of the following classical Lie algebras

sl(n+ 1,C) n ≥ 1 (An)

so(2n+ 1,C) n ≥ 2 (Bn)

sp(2n,C) n ≥ 3 (Cn)

so(2n,C) n ≥ 4 (Dn).

or one of the following exceptional Lie algebras: e6, e7, e8, f4 or g2.

In order to make a comment on the above theorem, we need the following

Definition. Let A and B be two algebras. The direct sum algebra is the vector space
A⊕B endowed with the componentwise multiplication.

{r:ExcIsom}
Remark 1.13. Note that so(2,C) is one-dimensional (a basis vector is, for example,

the matrix

(
0 1
−1 0

)
), hence abelian and in particular not simple. There are also the

following isomorphisms:

so(3,C) ' sp(2,C) ' sl(2,C),

sp(4,C) ' so(5,C),

so(4,C) ' sl(2,C)⊕ sl(2,C),

so(6,C) ' sl(4,C).
{r:DimSympLie}

Remark 1.14. While we will not prove the isomorphisms of Remark 1.13 (Exercise 5 on
Sheet 1 deals with the first chain of isomorphisms), let us at least outline how to compute
the dimensions of the Lie algebras occurring there.

So, let f : Kn × Kn //K be a bilinear form given by an n × n-matrix F , that is,
f(x, y) = xtFy. A matrix A ∈ gl(n,K) is in o(Kn, f) if and only if (Ax)tFy+xtFAy = 0
for all x, y ∈ Kn. To put it differently,

A ∈ o(Kn, f)⇐⇒ AtF = −FA.
So, if, for example, F = In, then At = −A is skew-symmetric as stated in Example
1.9(2). Note that the dimension of the space of skew-symmetric n× n-matrices depends
on the characteristic of the base field: If the characteristic is not equal to 2, then this

space has dimension n(n−1)
2

. But if char(K) = 2, then the dimension is n(n−1)
2

+ n.
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Now, let us consider the case sp(2n,K), hence F =

(
0 In
−In 0

)
. Writing a matrix

A ∈ gl(2n,K) in block form (that is, the blocks are n× n-matrices), we get

A =

(
A1 A2

A3 A4

)
∈ sp(2n,K)⇐⇒

⇐⇒
(
At1 At3
At2 At4

)(
0 In
−In 0

)
= −

(
0 In
−In 0

)(
A1 A2

A3 A4

)
⇐⇒

(
−At3 At1
−At4 At2

)
=

(
−A3 −A4

A1 A2

)
⇐⇒ A2 = At2, A3 = At3, A1 = −At4.

Therefore, we get

dimK sp(2n,K) = n2 + 2
n(n+ 1)

2
= 2n2 + n.

2. Connection to Lie groups

This section is only motivational.
Recall that a topological space is a pair (X, σ), where X is a set and σ is a subset of

the power set of X satisfying the following conditions: a) ∅ ∈ σ, b) X ∈ σ, c) any union
of elements of σ is in σ and 4) any finite intersection of elements of σ is an element in σ.
The elements of σ are called the open sets of the topology.

Given two topological spaces, their product is a topological space by defining the open
subsets to be products of open subsets.

A map f : X //Y between topological spaces is continuous if the preimage of any open
subset if open. Equivalently, one can work with closed subsets, that is, the complements
of the open sets. For instance, the projection X × Y //Y is continuous. A bijective
continuous map whose inverse is also continuous is called a homeomorphism.

A topological space X is called Hausdorff if for any x 6= y ∈ X there exist open
subsets Ux 3 x and Uy 3 y such that Ux ∩ Uy = ∅.

A basis for a topology is a collection B of open subsets such that every open subset
can be written as a union of elements of B.

Definition. An m-dimensional Ck-manifold is a topological space M together with an
open covering M =

⋃
Ui and homeomorphisms

ϕi : Ui ' Vi

onto open subsets Vi ⊂ Rm such that a) M is Hausdorff, b) the topology of M admits a
countable basis and c) the functions ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) //ϕj(Ui ∩ Uj) are Ck-maps.
A differentiable manifold is a C∞-manifold of some finite dimension.
While a Ck-manifold is defined without an embedding into some Rn, the Whitney

embedding theorem states that any n-dimensional differentiable manifold can in fact
be embedded into R2n. However, note that defining manifolds without reference to



8 P. SOSNA

a surrounding space allows for constructions such as taking quotients by (reasonable)
group actions.

The datum {(Ui, ϕi)} is called an atlas and each tuple (Ui, ϕi) a chart. One says that
two atlases {Ui, ϕi} and {Vj, ψj} define the same manifold if the transition functions
ψj ◦ ϕ−1

i are differentiable for all tuples (i, j).

Let U ⊂M be an open subset. A function f : U //R is differentiable if

f ◦ ϕ−1
i : ϕi(Ui ∩ U) //R

is differentiable for any chart (Ui, ϕi). We will write CM(U) for the set of all differentiable
functions U //R. Note that if f ∈ CM(U) and V ⊂ U is open, then we can restrict f
to V and get an element of CM(V ). Also note that if M =

⋃
Vj is an open covering and

we are given elements fj ∈ CM(Vj) for all j which agree on the intersections, then they
glue to a unique element f ∈ CM(M).

Given two differentiable manifolds it is then clear what a differentiable map between
them is.

Definition. A Lie group is a differentiable manifold G together with a group structure
such that the multiplication G × G //G, (x, y) � //xy and taking the inverse G //G,
x � //x−1 are differentiable.

Example 2.1. (1) Every finite dimensional real vector space is a Lie group with
respect to addition.

(2) The space of all upper triangular n× n-matrices with 1 on the diagonal is a Lie
group with respect to matrix multiplication.

(3) Since any open subset of a manifold is a manifold, the space of invertible n× n-
matrices is a Lie group.

Recall that the tangent space TxM to x ∈M is the vector space of equivalence classes
of derivatives in 0 of curves γ : (−1, 1) //M satisfying γ(0) = x. Of course, we need to
pick a chart containing x to make sense of this definition, but the end result does not
depend on this choice. One can also define TxM using derivations. Of course, every open
subset U of Rm is a manifold and we have already used that a basis of the tangent space
to x ∈ U is given by the partial derivatives.

There is the following result {p:LieOnePara}
Proposition 2.2. Let G be a Lie group. There is a bijection between the space of C∞-
group homomorphisms ϕ : R //G, also called one-parameter subgroups, and TeG, where
e is the neutral element of G. The bijection is defined by sending ϕ to ϕ′(0). �

Now, if G is an arbitrary Lie group, let A ∈ TeG be a tangent vector. By Proposition
2.2 there is a unique one-parameter subgroup ϕA : R //G with ϕ′A(0) = A. Define the
exponential map

exp: TeG //G, A � //ϕA(1).

It can be checked that ϕtA(s) = ϕA(ts) for all t, s ∈ R. It follows that

exp(tA) = ϕtA(1) = ϕA(t).
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Definition. Let G be a Lie group. The Lie algebra of G is by definition the tangent
space TeG, where e is the neutral element of G, endowed with the following bracket

[A,B] := lim
t // 0

1

t2
{ϕA(t)−1ϕB(t)−1ϕA(t)ϕB(t)− e}

= lim
t // 0

1

t2
{exp(−tA) exp(−tB) exp(tA) exp(tB)− e}.

Example 2.3. Recall that G = GL(n,R) is a Lie group. In this case the one-parameter
subgroups are precisely the maps

R //GL(n,R), t � // exp(tA) = 1 + tA+
t2A2

2!
+ . . .

We can now compute

exp(−tA) exp(−tB) exp(tA) exp(tB)

= 1 + t(−A−B + A+B)+

+
t2

2
(A2 +B2 + A2 +B2 + 2AB − 2A2 − 2AB − 2BA− 2B2 + 2AB)+

+O(t3)

= 1 + t2(AB −BA) +O(t3).

Hence, [A,B] = AB −BA.

3. Ideals

Definition. Let A be a K-algebra. A vector subspace I ⊂ A is called a left-sided ideal
of A if AI ⊂ I, a right-sided ideal if IA ⊂ I and an ideal if it is a left- and right-sided
ideal. Here, for example, AI ⊂ I means that ai ∈ I for all a ∈ A and i ∈ I.

Note that if A is a commutative or a Lie algebra, then any left- or right-sided ideal is
automatically an ideal. In the Lie algebra case this follows from axiom (L2’), anticom-
mutativity. Also note that any ideal is a subalgebra, but will usually not contain the
unit of A if it exists.

Remark 3.1. A vector subspace h of a Lie algebra g is a subalgebra if [h, h] ⊂ h and an
ideal if [g, h] ⊂ h.

{e:ExIdeals}
Example 3.2. Since tr(xy − yx) = 0 for all x, y ∈ gl(n,K), the subspace sl(n,K) is an
ideal in gl(n,K).

It is easy to see that n(n,K) is an ideal in t(n,K), the space of upper triangular
matrices. Note that it is not an ideal in gl(n,K). Indeed, take n = 2 and compute

[

(
0 1
0 0

)
,

(
0 0
1 0

)
] =

(
0 1
−1 0

)
.

{r:ExIdeals}
Remark 3.3. Let A be an algebra.
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(1) The subspaces 0 and A are ideals, called the trivial ideals.
(2) The intersection of ideals is an ideal.
(3) Any subset S of A defines an ideal, namely the smallest ideal containing S. It is

equal to the intersection of all ideals containing S.
(4) If I and J are ideals in A, then I + J := {x+ y | x ∈ I, y ∈ J} is also an ideal.
(5) Let g be a Lie algebra. The center

Z(g) := {z ∈ g | [x, z] = 0 ∀x ∈ g}
is an ideal (see Exercise 3 on Sheet 2). Note that g is abelian if and only if
Z(g) = g.

(6) Let g be a Lie algebra. The space [g, g] spanned by elements of the form [x, y] for
x, y ∈ g is easily seen to be an ideal. It is called the derived algebra of g. Note
that g is abelian if and only [g, g] = 0.

(7) Let g be a Lie algebra. If I and J are ideals in g, then [I, J ] := {
∑

k[xk, yk] |
xk ∈ I, yk ∈ J} is an ideal (the sums are of course finite). Note that the derived
algebra [g, g] is a special case of this construction.

We have seen above that if g is an abelian Lie algebra, then the derived algebra [g, g]
is trivial. On the other end, consider g = sl(n,K) (if char(K) = 2, then take n 6= 2).
Recall from Example 1.8 that it has a basis consisting of the matrices Ei,j for i 6= j and
Ei,i−Ei+1,i+1 for 1 ≤ i ≤ n. One can use the (easily checked) formula (compare Exercise
1 on Sheet 1)

(3.1) {eq:Commut} [Ei,j, Ek,l] = δjkEi,l − δliEk,j
to show that [sl(n,K), sl(n,K)] = sl(n,K) (compare Exercise 2 on Sheet 1) as follows.

Of course, inclusion ⊂ is clear. But sl(n,K) ⊂ [sl(n,K), sl(n,K)] as well. Indeed, for
i 6= j one easily checks that [Ei,i+1, Ei+1,i+1] = Ei,i−Ei+1,i+1, while [Ei,i−Ei+1,i+1, Ei,j] =
Ei,j.

{p:OpIdeals}
Proposition 3.4. Let A and B be algebras.

(1) If ϕ : A //B is an algebra homomorphism, then ker(ϕ) is an ideal in A.
(2) If I ⊂ A is an ideal, then there exists a unique algebra structure on the quotient

vector space A/I such that the canonical projection π : A //A/I is an algebra
homomorphism.

(3) If ϕ : A //B is an algebra homomorphism and I ⊂ A is an ideal contained in the
kernel of ϕ, then there exists a unique algebra homomorphism ϕ̃ : A/I //B such
that ϕ̃ ◦ π = ϕ. In particular, A/ ker(ϕ) ' im(ϕ) (the reader should check that
the image of a homomorphism is a subalgebra).

(4) If ϕ : A //B is an algebra homomorphism and J ⊂ B is an ideal, then ϕ−1(J)
is an ideal in A.

(5) If ϕ : A //B is a surjective algebra homomorphism and I ⊂ A is an ideal, then
ϕ(I) is an ideal in B.

Proof. Exercise (1 on Sheet 3). �
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{r:IdealsCorr}
Remark 3.5. In the following we collect some more statements concerning ideals. The
proofs are only outlined.

(1) One checks that there is a one-to-one correspondence between surjective homo-
morphisms and ideals of an algebra. Indeed, to an ideal I one associates the map
A //A/I and to a surjective map one associates its kernel.

(2) If I and J are ideals in an algebra A and I ⊂ J , then J/I is an ideal of A/I.
Conversely, the preimage of an ideal in A/I is an ideal J of A containing I.
This gives a one-to-one correspondence between ideals in A/I and ideals in A
contaning I.

(3) If I and J are ideals in A such that I ⊂ J , then

(A/I)/(J/I) ' A/J.

Note that since I ⊂ J , there is a natural surjective homomorphism A/I //A/J
by Proposition 3.4(3). One checks that its kernel if precisely J/I.

(4) If I and J are ideals in A, then there is a natural isomorphism between I/I ∩ J
and (I +J)/J . Indeed, one considers the canonical map I // I +J // (I +J)/J ,
checks that it is surjective with kernel I ∩J and concludes by Proposition 3.4(3).

{c:Liesimple}
Corollary 3.6. A Lie algebra g is simple if and only if [g, g] 6= 0 and its only ideals are
0 and g.

Proof. If the only ideals are 0 and g, then any non-trivial homomorphism ϕ : g // h is
injective by Proposition 3.4(1). Conversely, if any non-trivial homomorphism is injective,
then there cannot be any non-trivial ideals since otherwise the morphism g // g/I would
be a non-injective homomorphism by Proposition 3.4(2). �

{c:QuotAb}
Corollary 3.7. If g is any Lie algebra, then g/[g, g] is an abelian Lie algebra.

Proof. This immediately follows from the definition of the multiplication on g/[g, g]. �
{r:LieSimple}

Remark 3.8. Note that if g is simple, then in particular [g, g] 6= 0, so [g, g] = g, thus g is
not abelian. Therefore, Z(g) = 0, since the center is an ideal and it is not equal to g.

{e:sl2}
Example 3.9. Consider g = sl(2, K) and assume that char(K) 6= 2. In the following we
will show that this is a simple Lie algebra. Take the following matrices as a basis for g:

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

One checks immediately that [X, Y ] = H, [H,X] = 2X and [H, Y ] = −2Y .
Let I be an ideal in g and let aX + bY + cH be an arbitrary nonzero element in I.

Then

[X, aX + bY + cH] = bH − 2cX, so [X, [X, aX + bY + cH]] = −2bX.

Therefore, if b 6= 0, then X ∈ I, hence [X, Y ] = H ∈ I, and also [H, Y ] = −2Y ∈ I,
so Y ∈ I. Therefore, if b 6= 0, then I = g. Similarly, if a 6= 0, then computing
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[Y, [Y, [X, aX + bY + cH]]] shows that I = g. Finally, if a = b = 0, then 0 6= cH ∈ I,
hence H ∈ I and then, as before, I = g follows. Therefore, g is a simple Lie algebra as
predicted by Theorem 1.12. Over a field of characteristic two this algebra is not simple,
compare Exercise 2 on Sheet 1.

4. Solvable and nilpotent Lie algebras

Definition. Let g be a Lie algebra. The derived series of g is the following sequence of
ideals

g(0) = g, g(1) = [g, g], g(2) = [g(1), g(1)], . . . , g(i+1) = [g(i), g(i)], . . .

The algebra g is called solvable if g(n) = 0 for some n.

The fact that g(i) is indeed an ideal follows by a direct computation, compare Exercise
2 on Sheet 3. {e:ExSolv}
Example 4.1. Any abelian algebra is solvable. Indeed, if g is abelian, then all brackets
are trivial, hence g(1) = 0.

On the contrary, if g is simple, then it cannot be solvable. Indeed, by definition g(1) 6= 0
and, in fact g(1) = g. It follows that g(n) = g for all n.

Note that g(i) ⊂ g(i−1) is an ideal for all i.
{e:TriangSolv}

Example 4.2. Recall that g = t(n,K) denotes the Lie algebra of upper triangular n×n-
matrices over K. Clearly, it has a basis given by the matrices Ei,j for i ≤ j. In particular,

its dimension is n(n+1)
2

. We will now show that this algebra is solvable.
Recall Equation (3.1): [Ei,j, Ek,l] = δjkEi,l − δliEk,j. It implies that

(4.1) {eq:Matrices} [Ei,i, Ei,l] = Ei,l ∀i < l.

This, in turn, implies that the algebra of strictly upper triangular matrices is contained
in the derived algebra, that is, n(n,K) ⊂ [g, g]. Now recall from Exercise 4 on Sheet 1
that as vector spaces

g = n(n,K)⊕ d(n,K),

where d(n,K) is the algebra of diagonal matrices. Note that this algebra is abelian. Also
note the following equality:

[d(n,K), n(n,K)] = n(n,K),

which follows from Equation (4.1). Therefore,

[g, g)] ⊂ n(n,K),

so, summarising, g(1) = n(n,K).
We will from now on work inside n(n,K). Define the level of Ei,j to be j − i. Now, if

l 6= i, then
[Ei,j, Ek,l] = Ei,l if j = k and 0 otherwise.

So if i < j and k < l, then every Ei,l is the commutator of two matrices whose levels add
up to those of Ei,l. It follows that g(2) is spanned by those Ei,j of level at least 2, g(i) by
those of level at least 2i−1. In particular, g(i) = 0 whenever 2i−1 > n− 1.
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Let us now record some observations concerning solvability.
{p:PropSolv}

Proposition 4.3. Let g be a Lie algebra.

(1) If g is solvable, then any subalgebra and any homomorphic image of g is solvable.
(2) If I is a solvable ideal in g such that g/I is solvable, then g is solvable.
(3) If I and J are solvable ideals of g, then I + J is solvable as well.

Proof. (1) If h ⊂ g is a subalgebra, then by definition h(i) ⊂ g(i). If ϕ : g // g′ is a
surjective homomorphism, then by induction,

ϕ(g(i)) = ϕ[g(i−1), g(i−1)] = [ϕ(g(i−1)), ϕ(g(i−1))]

= [g′(i−1), g′(i−1)] = g′(i).

(2) Assume that (g/I)(n) = 0. Consider the canonical surjective homomorphism
π : g // g/I. Applying (1) to it, we get π(g(n)) = (g/I)(n) = 0. This means that
g(n) ⊂ I = ker(π). If I(m) = 0, then clearly (g(n))(m) = g(n+m) ⊂ I(m) = 0.

(3) By Remark 3.5(4), (I + J)/J ' I/(I ∩ J). The right-hand side is a homomor-
phic image of the solvable ideal I, hence solvable by (1). But J is solvable by
assumption, hence so is I + J by (2).

�

Note that the sum of solvable ideals is a solvable ideal by Proposition 4.3(3). In
particular, we can consider the sum of all solvable ideals in g. This is a solvable ideal.
This leads to the following

Definition. Assume that dimK g < ∞. Then there is a unique maximal solvable ideal
in g, called the radical of g and denoted by rad g.

Convention. From now on we will only consider finite dimensional Lie algebras. In
particular, the radical will always exist.

Definition. A Lie algebra g is called semisimple if rad g = 0.
{e:ExSemisim}

Example 4.4. A simple algebra is semisimple, since it has no non-trivial ideals, hence
rad g is either 0 or g and it cannot be g, because g is not solvable by Example 4.1.

The zero algebra is of course also semisimple.
For a less trivial example, consider the Lie algebra g/ rad g, which is semisimple.

Indeed, if rad(g/ rad g) 6= 0, then its preimage is a solvable ideal J (J is solvable, since
J/ rad g ' rad(g/ rad g), so we can use Proposition 4.3(2)) strictly contaning rad g which
is a contradiction. {r:SolvAlg}
Remark 4.5. Let g be a Lie algebra. Then g is solvable if and only if there exists a
sequence of subalgebras

g ⊃ I1 ⊃ I2 ⊃ . . . ⊃ Im = 0

such that Ii+1 ⊂ Ii is an ideal for all possible i and Ii/Ii+1 is an abelian Lie algebra for
all possible i.
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The proof is left to the reader, see Exercise 4 on Sheet 3.
{r:ExSeqSolv}

Remark 4.6. A short exact sequence of Lie algebras is a sequence of Lie algebra homo-
morphisms

g′
ϕ // g

ψ // g′′

such that ϕ is injective, ψ is surjective and ker(ψ) = im(ϕ).
In this case g is solvable if and only if g′ and g′′ are solvable. Indeed, by assumption,

g/g′ ' g′′, so we can use Proposition 4.3(2) for the “if”-direction and 4.3(1) for the “only
if”-direction.

Having had a look at solvability, we now move on to a different concept.

Definition. Let g be a Lie algebra. The descending central series or the lower central
series is the following sequence of ideals in g:

g0 = g, g1 = [g, g], g2 = [g, g1], . . . , gi = [g, gi−1], . . .

A Lie algebra g is called nilpotent if gn = 0 for some n.

Again, the fact that the members of the lower central series are indeed ideals follows
by a straightforward computation.

{r:NilpLie}
Remark 4.7. (1) Any abelian Lie algebra is nilpotent.

(2) Any nilpotent algebra is solvable, since g(i) ⊂ gi for all i. Also note that g(1) = g1.
{e:NilpLie}

Example 4.8. The algebra g = n(n,K) is easily seen to be nilpotent. Namely, g1 is
spanned by the matrices Ei,j of level ≥ 2, g2 by those of level ≥ 3 and so on.

Recall that h = t(n,K) is a solvable algebra, by Example 4.2. But h is not nilpotent,
since h2 = [h, h1] = h1 = h and, consequently, hn = h for all n ≥ 1.

We now collect some properties of nilpotency.
{p:NilpProp}

Proposition 4.9. Let g be a Lie algebra.

(1) If g is nilpotent, then any subalgebra and homomorphic image of g is nilpotent.
(2) If g/Z(g) is nilpotent, then so is g.
(3) If g is nilpotent and 0 6= g, then Z(g) 6= 0.

Proof. (1) The proof is the same as that of Proposition 4.3(1).
(2) Writing out what it means that g/Z(g) is nilpotent, shows that gn ⊂ Z(g) for

some n. Then gn+1 = [g, gn] ⊂ [g, Z(g)] = 0.
(3) Say gn = 0 (by assumption n ≥ 1), while gn−1 6= 0, then [g, gn−1] = 0, which

means that gn−1 ⊂ Z(g).
� {r:NilpExSeq}

Remark 4.10. Let g′ // g // g′′ be an exact sequence of Lie algebras. If g′ and g′′ are
nilpotent, then g need not be nilpotent. For example, consider the two-dimensional
complex Lie algebra g = spanC(x, y) with the commutator [x, y] = x (it is left to the
reader to check that this is indeed a Lie algebra; compare Exercise 2 on Sheet 2). Clearly,
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g(1) = g1 = span(x) =: g1, so g(2) = 0, hence g is solvable. But gi = g1 for all i ≥ 1,
hence g is not nilpotent. Setting g2 = spanC(y) gives a short exact sequence

g1
// g // g2.

It remains to note that g1 and g2 are abelian, hence in particular nilpotent.

We now come to a very important concept. Let g be a Lie algebra and x ∈ g. Define
the map adx : g // g by sending y to adx(y) := [x, y]. Another typical notation is adx
instead of adx. Let us check that this gives a homomorphism of Lie algebras g // gl(g):

ad[x,y](z) = [[x, y], z] = −[z, [x, y]] = [x, [y, z]] + [y, [z, x]]

= [x, [y, z]]− [y, [x, z]] = adx ady(z)− ady adx(z)

= (adx ady− ady adx)(z) = [adx, ady](z).

In fact, adx ∈ Der(g) for all x. Indeed,

adx([y, z]) = [x, [y, z]] = −[y, [z, x]]− [z, [x, y]]

= [[x, y], z] + [y, [x, z]] = [adx(y), z] + [y, adx(z)].
{r:CentAd}

Remark 4.11. Consider the homomorphism ad: g // gl(g). Its kernel is the set of ele-
ments x ∈ g such that [x, y] = 0 for all y ∈ g. In other words, ker(ad) = Z(g). In
particular, if g is simple, then Z(g) = 0 by Remark 3.8, so ad is an injective map, hence
a simple Lie algebra is linear.

Definition. Let g be a Lie algebra. An element x ∈ g is called ad-nilpotent if adx : g // g
is a nilpotent endomorphism, that is, there exists an n ≥ 1 such that (adx)

n = 0.
{r:NilpAd}

Remark 4.12. Let g be a nilpotent algebra. Then there exists some n such that

adx1 ◦ . . . ◦ adxn(y) = 0 ∀xi, y ∈ g.

Also note that any element of a nilpotent Lie algebra is ad-nilpotent. Indeed, if
y ∈ gi, then adx(y) = [x, y] ∈ gi+1. By induction, (adx)

k(y) ∈ gi+k. Hence, if gn = 0,
then (adx)

n = 0.

Our next goal is to prove the following result.
{t:Engel}

Theorem 4.13 (Engel). If all elements in a Lie algebra g are ad-nilpotent, then g is
nilpotent.

Before proving this result, let us establish a lemma which can be used to prove that
n(n,K) is nilpotent.

{l:nilp}
Lemma 4.14. Let x ∈ gl(V ) be a nilpotent endomorphism. Then adx is also nilpotent.

Proof. Define λx : End(V ) //End(V ) by sending y to xy (composition of endomor-
phisms). Furthermore, set ρx : End(V ) //End(V ), y � // yx. Clearly, λx and ρx commute.
If x is nilpotent, then so are λx and ρx. The binomial formula (a+ b)n =

∑n
i=1

(
n
i

)
aibn−i
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holds for commuting elements of any ring, hence λx − ρx is nilpotent. Now note that
adx = λx − ρx, since adx(y) = xy − yx = λx(y)− ρx(y). �

Now, clearly any matrix x in n(n,K) is nilpotent, so adx is nilpotent by the lemma,
hence n(n,K) is nilpotent by Engel’s Theorem.

{r:NilpAdnilp}
Remark 4.15. A matrix can be ad-nilpotent in gl(n,K) without being nilpotent. For
instance, the identity matrix has this property.

For the next result we need the following

Definition. The normaliser of a subspace h of a Lie algebra g is defined to be

Ng(h) := {x ∈ g | [x, h] ⊂ h}.
Note that if h is a subalgebra, then Ng(h) is a subalgebra of g. Indeed, if x, y ∈ Ng(h),

then by definition [x, h] ∈ h and [y, h] ∈ h for all h ∈ h. Then [[x, y], h] = −[h, [x, y]] =
[x, [y, h]] + [y, [h, x]] ∈ h.

{l:Engel}
Lemma 4.16. Let 0 6= V be a finite-dimensional K-vector space and let g be a subalgebra
of gl(V ). If g consists of nilpotent endomorphisms, then there exists a 0 6= v ∈ V such
that g.v = 0, that is, x(v) = 0 for all x ∈ g.

Proof. First of all recall that a nilpotent linear map has at least one eigenvector corre-
sponding to its unique eigenvalue 0. This gives the induction hypothesis if we perform
induction over dim(g).

Let h ( g be any subalgebra. Note that by Lemma 4.14 the algebra h acts via the
map ad as a Lie algebra of nilpotent linear transformations on the vector space g. But
then it also acts on g/h. Since dim(h) < dim(g), by the induction hypothesis we get
the existence of a vector x + h 6= h ∈ g/h which is killed by the image of h in gl(g/h).
In other words, [y, x] ∈ h for all y ∈ h, while by construction x /∈ h. This means that
h ( Ng(h).

Now take h to be a maximal proper subalgebra of g. By the previous paragraph,
Ng(h) = g, hence h is an ideal in g. If dim(g/h) > 1, then the inverse image of a one-
dimensional subalgebra of g/h (take Kw for any w ∈ g/h) would be a proper subalgebra
properly contaning h, a contradiction. Therefore, dim(h) = dim(g) − 1. Thus, we can
write g = h +Ku for any u ∈ g \ h.

By induction, W = {v ∈ V | h.v = 0} is not zero. If x ∈ g, y ∈ h and w ∈ W ,
then y(w) = 0 and [x, y](w) = 0, because h is an ideal. Therefore, y(x(w)) = x(y(w))−
[x, y]w = 0. Therefore, W is stable under g. Choose u ∈ g \ h as above. The nilpotent
endomorphism u acts on W and has an eigenvector 0 6= v0 ∈ W such that u(v0) = 0.
Therefore, g.v0 = 0. �

Proof of Engel’s theorem. Assume that g 6= 0 (the case g = 0 is trivial) and consider the
Lie algebra ad g ⊂ gl(g). By assumption, Lemma 4.16 applies to ad g. Therefore, there
exists an element 0 6= x ∈ g such that ad g.x = [g, x] = 0. In other words, Z(g) 6= 0.
Now note that g/Z(g) consists of ad-nilpotent elements and has cmaller dimension than
g. By induction, g/Z(g) is nilpotent, hence g is as well, by Proposition 4.9(2). �
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Definition. Let V be a finite dimensional vector space. A flag in V is a chain of
subspaces

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V, dimVi = i.

If x ∈ End(V ), then we say that x stabilises a flag if x(Vi) ⊂ Vi for all i.
{c:Engel}

Corollary 4.17. Let 0 6= V be a finite-dimensional K-vector space and let g be a sub-
algebra of gl(V ). If g consists of nilpotent endomorphisms, then there exists a flag (Vi)
in V such that x.Vi ⊂ Vi−1 for all i and x ∈ g. In other words, there exists a basis of V
relative to which the matrices of g are all in n(n,K).

Proof. Let v ∈ V be any nonzero element killed by g which exists by Lemma 4.16. Set
V1 = Kv. Let W = V/V1 and note that the action of g on W is also by nilpotent
endomorphisms. By induction on dim(V ), W has a flag which is stabilised by g. Taking
the inverse image of this flag gives the required flag in V . �

5. Representations of Lie algebras

Definition. Let g be a Lie algebra. A representation of g is a homomorphism ρ : g // gl(V ),
where V is a vector space over K.

{e:ReprLie}
Example 5.1. (1) Probably the most important representation is the adjoint repre-

sentation: It is the homomorphism

ad: g // gl(g), x � // adx .

Recall that we have already checked that this map is indeed a homomorphism.
In fact, adx is a derivation for all x ∈ g.

(2) If g and V are arbitrary, then the zero map g // gl(V ) is a representation of g.
(3) The trivial representation of a Lie algebra g is the base field K together with the

zero map g // gl(K).

Definition. Let g be a Lie algebra. A g-module is a vector space V endowed with
an operation g × V //V denoted by (x, v) � //x.v = xv = x(v) satisfying the following
conditions for all x, y ∈ g, a, b ∈ K and v, w ∈ V :

(M1) (ax+ by).v = a(x.v) + b(y.v);
(M2) x.(av + bw) = a(x.v) + b(x.w);
(M3) [x, y].v = x.y.v − y.x.v.

Note that (M1) and (M2) just say that the operation is bilinear.
{r:RepMod}

Remark 5.2. If V is a g-module, then ρ : g // gl(V ), x � //x(−) is a representation. In-
deed, this map is well-defined by (M2), linear by (M1) and a homomorphism of Lie
algebras by (M3).

Conversely, if ρ : g // gl(V ) is a representation, then setting x.v := ρ(x)(v) defines
a g-module structure on V . Since ρ maps to gl(V ), the map x(−) is linear for all x,
hence (M2) holds. Item (M1) holds since ρ is linear, while (M3) holds, since ρ is a
homomorphism.
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Thus, there is a one-to-one correspondence between g-modules and representations of
g.

Definition. If ρ : g // gl(V ) and ρ′ : g // gl(W ) are two representations, a morphism
of representations (sometimes called intertwiner) is a linear map φ : V //W such that
φ(ρ(x)(v)) = ρ′(x)(φ(v)) for all v ∈ V . If φ is an isomorphism of vector spaces, then we
call it an isomorphism of representations.

A representation ρ : g // gl(V ) is called faithful if ρ is injective.

A homomorphism of g-modules is a linear map φ : V //W such that φ(x.v) = x.φ(v).
This is, of course, just a reformulation of the above definition.

If V and W are representations of g, we will sometimes write Homg(V,W ) for the
space of morphisms between them. In particular, Endg(V ) is then defined.

Definition. If V is a g-module and U ⊂ V is a vector subspace, we call U a submodule
if x.v ∈ U for all x ∈ g and v ∈ U .

A g-module 0 6= V is called irreducible or simple if it has precisely two g-submodules,
namely 0 and V .

If V and W are two g-modules, then the direct sum V ⊕W is a g-module, with respect
to the operation x.(v, w) := (x.v, x.w).

A g-module V is called completely reducible or semisimple if it is a direct sum of
irreducible g-modules.

We leave it to the reader to rewrite the notions introduced in the definition using the
language of representations.

{e:SubRepr}
Example 5.3. If φ : V //W is a morphism of representations, then ker(φ) and im(φ)
are also representations.

An ideal of a Lie algebra g is simply a g-submodule of the adjoint representation
ad: g // gl(g).

{r:RemRepr}
Remark 5.4. Note that the Lie algebra g = K is simple as a g-module but not simple as
a Lie algebra, since it is abelian.

Also note that the adjoint representation of a simple Lie algebra is faithful. More
generally, since ker(ad) = Z(g), the adjoint representation is faithful if and only if the
center of g is trivial. In particular, if 0 6= g is abelian, then its adjoint representation is
not faithful. As a last remark, recall that the center of a non-trivial nilpotent algebra
is not trivial by Proposition 4.9(3), hence, for instance, the adjoint representation of
n(n,K) is not faithful.

We already have seen that we can define direct sums of representations. Here are some
other operations.

Definition. Let V be a g-module and U be a submodule. Then there exists a g-module
structure on V/U defined by x.(v+U) := x.v+U . This is called the quotient g-module.
This is the unique module structure such that π : V //V/U is a homomorphism of
modules.
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The dual g-module is the vector space V ∗ endowed with the following module structure:
if f ∈ V ∗, v ∈ V and x ∈ g, then set (x.f)(v) := −f(x.v).

Let us check that the definition of the dual g-module makes sense. Clearly, (M1) and
(M2) are satisfied. Let us check (M3):

([x, y].f)(v) = −f([x, y].v) = −f(x.y.v − y.x.v)

= −f(x.y.v) + f(y.x.v) = (x.f)(y.v)− (y.f)(x.v)

= −(y.x.f)(v) + (x.y.f)(v) = ((x.y − y.x).f)(v).

Recall that if V and W are vector spaces, their tensor product V ⊗W is the quotient
of the vector space Z with basis V ×W by bilinear relations. The image of (v, w) in
V ⊗W is denoted by v ⊗ w. Hence, V ⊗W is generated by elements of the form v ⊗ w
with v ∈ V and w ∈ W . If V has a basis (x1, . . . , xn) and W has a basis (y1, . . . , ym),
then V ⊗W has as basis the vectors vi ⊗ wj, 1 ≤ i ≤ n, 1 ≤ j ≤ m. In particular, if
dimK(V ) = n and dimK(W ) = m, then dimK(V ⊗W ) = mn.

Definition. Let V and W be two g-modules. Their tensor product is the vector space
V ⊗W endowed with the operation g×(V ⊗W ) //V ⊗W , x.(v⊗w) � //x.v⊗w+v⊗x.w.

Yet again, let us check that this is well-defined. Axioms (M1) and (M2) are easy and
left to the reader. As for (M3):

[x, y].(v ⊗ w) = [x, y].v ⊗ w + v ⊗ [x, y].w

= (x.y.v − y.x.v)⊗ w + v ⊗ (x.y.w − y.x.w)

= (x.y.v ⊗ w + v ⊗ x.y.w)− (y.x.v ⊗ w + v ⊗ y.x.w)

= x.(y.v ⊗ w + v ⊗ y.w)− y.(x.v ⊗ w + v ⊗ x.w)

= (x.y).(v ⊗ w)− (y.x).(v ⊗ w) = (xy − yx)(v ⊗ w).

Now recall that if dimK(V ) = n <∞, then V ∗⊗ V //End(V ), f ⊗ v � // [w � // f(w)v]
is an isomorphism of vector spaces (compare below for a more general statement). One
way to see this is by using a basis x1, . . . , xn of V , the corresponding dual basis x∗1, . . . , x

∗
n

of V ∗ and check that the given map is then surjective, hence injective as well, since both
spaces have the same dimension.

Note that if V is a g-module, the above isomorphism endows the space End(V ) with
a g-module structure. More generally, there is the following

Definition. Let V and W be two finite-dimensional g-modules. The space of linear
maps Hom(V,W ) has the structure of a g-module by setting (x.f)(v) := x.f(v)−f(x.v).

In fact, linear algebra tells us that V ∗ ⊗W and Hom(V,W ) are isomorphic via the
map which sends f ⊗ w ∈ V ∗ ⊗W to the linear map v � // f(v)w. One can check that
the formula in the definition is precisely the one arising from the g-module structure on
V ∗ ⊗W defined above. {l:LemSchur}
Lemma 5.5. Let g be a Lie algebra, let U, V,W be g-modules and let α : U //V ,
β : V //W and γ : U //W be module homomorphisms. Then
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(1) If U is irreducible, then α is either 0 or injective.
(2) If W is irreducible, then β is either 0 or surjective.
(3) If U and W are irreducible, then γ = 0 or an isomorphism.

Proof. (1) We know by Example 5.3 that ker(α) is a submodule of U . Hence, either
ker(α) = 0 or ker(α) = U .

(2) Use that im(β) is a submodule of W .
(3) Combine (1) and (2).

�
{r:DivAlg}

Remark 5.6. An associative unital algebra A over a field K is a division algebra if every
element 0 6= x has a multiplicative inverse. Thus, Lemma 5.5(3) in particular says that
if U is simple, then Endg(U) is a division algebra. If U is finite dimensional and K
is algebraically closed, then Endg(U) is already isomorphic to K. In other words, any
intertwiner φ : U //U is a scalar multiple of the identity.

Later we will classify the simple finite dimensional representations of sl(2, K) (if K
is algebraically closed and of characteristic zero). This classification plays an important
role in the general theory.

6. Jordan decomposition

Convention. Frow now on the base field K is assumed to be algebraically closed.

Let V be a finite dimensional K-vector space and x ∈ End(V ) be an endomorphism.
Recall from linear algebra that one can represent x in the Jordan normal form. Namely,
there exists a basis of V with respect to which x consists of blocks of the following form

λ 1 0 . . . . . . 0
0 λ 1 0 . . . 0

. . . . . .

1
0 . . . . . . . . . . . . λ


.

Note that the above matrix is the sum of a nilpotent matrix and a scalar multiple of
the identity matrix. In particular, both commute.

Definition. Let V be a finite dimensional K-vector space and x ∈ End(V ) be an endo-
morphism. We say that x is semisimple if and only if x is diagonalisable.

{r:DiagRoots}
Remark 6.1. Recall that x is diagonalisable if and only if the roots of its minimal poly-
nomial over K are all distinct.

Note that if W ⊂ V is a subspace and a semisimple x maps W into W , then the
rectriction of x to W is semisimple.
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One can extend the notion of semisimplicity of an endomorphism to arbitary fields
as follows. Namely, if K is not necessarily algebraically closed, then write K for its
algebraic closure. We then call x ∈ End(V ) semisimple if the map

x : K ⊗K V //K ⊗K V, , λ⊗ v � //λ⊗ x(v)

is diagonalisable.
{p:Jordan}

Proposition 6.2. Let V be a finite dimensional K-vector space and x ∈ End(V ) be an
endomorphism.

(1) There exist unique xs, xn ∈ End(V ) satisfying the conditions xs+xn = x, xsxn =
xnxs and xs is semisimple, xn is nilpotent.

(2) There exist polynomials p(T ), q(T ) with p(0) = q(0) = 0 such that xs = p(x) and
xn = q(x). In particular, xs and xn commute with any endomorphism y which
satisfies xy = yx.

(3) If U ⊂ W ⊂ V are subspace and x maps W into U , then xs and xn also map W
into U .

The decomposition x = xs + xn is called the Jordan-Chevalley decomposition or the
Jordan decomposition of x. The endomorphisms xs and xn are called the semisimple part
and the nilpotent part of x, respectively.

Proof. Let χ(T ) =
∏k

i=1(T − ai)
mi be the characteristic polynomial of x. If we set

Vi = ker(x− ai · id)mi , then

V ' V1 ⊕ . . . Vk
and on Vi the endomorphism x has characteristic polynomial (T − ai)mi .

Apply the Chinese Remainder Theorem to K[T ] to find a polynomial p with the
following properties

p(T ) ≡ ai (mod (T − ai)mi)
p(T ) ≡ 0 (mod T ).

Define q(T ) = T − p(T ). Since p(T ) ≡ 0 modulo T , both q and p have no constant
term.

Set xs = p(x) and xn = q(x). Then xsxn = xnxs, since both are polynomials in x
and, for the same reason, if some endomorphism y commutes with x, it also commutes
with xs and xn. Furthermore, xs and xn stabilise the spaces Vi (since x does). Since
p(T ) ≡ ai (mod (T − ai)mi), the restriction of xs − ai · id to Vi is zero for all i, hence xs
acts diagonally on Vi with single eigenvalue ai. Since xn = x− xs, this shows that xn is
nilpotent.

If x(W ) ⊂ U , then xi(W ) ⊂ U for all i ≥ 1, hence xs and xn map W into U , because
they are defined by the polynomials p and q which do not have a constant term.

So, we have proved all of (1)-(3), except for the uniqueness statement in (1). Let
x = s + n be another decomposition as in (1). Then xs − s = xn − n. By (2), all these
endomorphisms commute. The sum of two commuting nilpotent endomorphisms is again
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nilpotent (use the binomial formula). Furthermore, the sum of two commuting semisim-
ple endomorphisms is again semisimple, because they can be diagonalised simultaneously.
Therefore, xs − x = xn − n is both a semisimple and a nilpotent endomorphism, which
means that it is zero. This shows xs = x and xn = n. �

{r:Hau}
Remark 6.3. In more classical terms, xs is defined by requiring the generalised eigenspace
Hau(x, λ) =

⋃
k≥0 ker(x− λ)k of x for the eigenvalue λ to be the eigenspace of xs for λ.

Note that if x ∈ End(V ), y ∈ End(W ) and f : V //W satisfies fx = yf , then
fxs = ysf and fxn = ynf by (2), but this can also be seen since f respects the generalised
eigenspaces.

Let us prove a first useful application of the Jordan decomposition.
{l:Jordan}

Lemma 6.4. Let x ∈ End(V ) with V finite dimensional and let x = xs + xn be its
Jordan decomposition. Then adx = adxs + adxn is the Jordan decomposition of adx in
End(gl(V )).

Proof. We are considering the adjoint representation gl(V ) // gl(gl(V )). If y ∈ gl(V ) is
nilpotent, then ad y is also nilpotent by Lemma 4.14.

Now let y be semisimple. Choose a basis (v1, . . . , vn) of V with respect to which y is
a diagonal matrix (a1, . . . , an) (of course, the ai are not necessarily distinct). Let Ei,j be
the basis of gl(V ) such that Ei,j(vk) = δjk(vi). Then

ad y(Ei,j)(vj) = [y, Ei,j](vj) = y(Ei,j(vj))− Ei,j(y(vj))

= y(vi)− Ei,j(ajvj) = (aivi − ajvi) = (ai − aj)Ei,j(vj),
hence

(6.1) {eq:sem} ad y(Ei,j) = (ai − aj)Ei,j if y is semisimple.

. This means that with respect to Ei,j the endomorphism ad y is diagonal.
So, if x = xs + xn, then adxs is semisimple and adxn is nilpotent. Since

[adxs, adxn] = ad[xs, xn] = 0,

these two endomorphisms commute. The claim follows by Proposition 6.2(1). �

7. The theorems of Lie and Cartan

Convention. Frow now on the base field K is assumed to be of characteristic zero and
algebraically closed, unless stated otherwise.

{t:Eigenv}
Theorem 7.1. Let K be an algebraically closed field of characteristic zero. Let g be a
solvable subalgebra of gl(V ) for some finite dimensional vector space V . If 0 6= V , then
V contains a common eigenvector for all the endomorphisms contained in g.

Proof. We will use induction on dim(g). Note that the case dim(g) = 0 is trivial. The
strategy is as follows: (1) find an ideal h in g of codimension one; (2) show by induction
that a common eigenvector exists for h; (3) verify that the space of h-eigenvectors is stable
under g and (4) find in this space an eigenvector for a u ∈ g satisfying g = h +Ku.
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So, let g be of dimension at least 1. Since g is solvable and of positive dimension,
[g, g] ( g. Now recall that g/[g, g] is an abelian Lie algebra by Corollary 3.7, hence every
subspace of it is an ideal. Take a subspace of codimension one. Its preimage is an ideal
by Proposition 3.4(4) and it is of course of codimension one in g. Thus, step (1) is done.

Assume that dimK(g) = 1. Then an eigenvector for a basis vector of g shows the
statement of the theorem.

So, assume that dimK(g) ≥ 2 and let h ⊂ g be an ideal of codimension one. By
induction, there exists a common eigenvector v ∈ V for h. This means that x.v = λ(x).v
for some function λ : h //K. Note that λ is linear by (M1). Define

W = {w ∈ V | x.w = λ(x).w ∀x ∈ h}.

By what we have seen above, W 6= 0.
Now, let w ∈ W and x ∈ g. We want to prove that x.w ∈ W . By definition, this

means that we need to check that for any y ∈ h we have yx.w = λ(y)x.w. Compute

(7.1) {eq:L} yx.w = xy.w − [x, y].w = λ(y)x.w − λ([x, y]).w,

where we used that [x, y] ∈ h, since h is an ideal and that y ∈ h. So it is enough to show
that λ([x, y]).w = 0 to prove our claim.

For w, x as above, let n > 0 be the smallest integer for which {w, x.w, . . . , xn.w} is a
linearly dependent set. Set W0 = 0 and Wi = spanK(w, x.w, . . . , xi−1.w). In particular,
dimKWn = n, Wn = Wn+i for all i ≥ 0 and x maps Wn into Wn. Furthermore, one can
use Equation (7.1) and the fact that h is an ideal to see that

(�) y.Wi ⊂ Wi ∀y ∈ h.

We will next prove the following claim:

(∗) yxi.w − λ(y)xi.w ∈ Wi.

We use induction on i, the case i = 0 being obvious. Now yxi.w = yxxi−1.w = xyxi−1.w−
[x, y]xi−1.w. By induction,

yxi−1.w − λ(y)xi−1.w ∈ Wi−1,

so x(yxi−1.w− λ(y)xi−1.w) ∈ Wi. Since [x, y] ∈ h, the element [x, y]xi−1.w is in Wi−1 by
(�). Therefore,

yxi.w = x(yxi−1.w − λ(y)xi−1.w + λ(y)xi−1.w)− [x, y]xi−1.w

= λ(y)xi.w + x(yxi−1.w − λ(y)xi−1.w)− [x, y]xi−1.w,

and we are done proving (∗) since the last two summands are in Wi.
Now, (∗) means that the action of y ∈ h on Wn with respect to the ordered basis

w, x.w, . . . , xn−1.w is represented by an upper triangular matrix whose diagonal entries
equal λ(y). Hence, trWn(y) = nλ(y) for any y ∈ h. In particular, this holds for [x, y],
where y ∈ h is arbitrary and x ∈ g is the fixed element from above. Now, both x and
y map Wn to itself, hence [x, y] acts on Wn as the commutator of two endomorphisms
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of Wn, meaning that trWn([x, y]) = 0 = nλ([x, y]). Since char(K) = 0, this means that
λ([x, y]) = 0. In other words, g maps W into W .

To conclude the proof of the theorem, write g = h + Ku. Since K is algebraically
closed, there exists an eigenvector v0 ∈ W of u. Then v0 is the common eigenvector for
g we were looking for. �

We can now prove
{t:LiesThm}

Theorem 7.2 (Lie’s theorem). Let V be an n-dimensional K-vector space and let g be
a solvable subalgebra of gl(V ). Then g stabilises some flag in V . In other words, with
respect to a suitable basis of V the matrices of g are all upper triangular.

Proof. Use Theorem 7.1 and induction on dimK(V ). �
{c:LiesCor}

Corollary 7.3. Let g be a solvable Lie algebra of dimension n. Then there exists a chain
of ideals of g

0 = g0 ⊂ g1 ⊂ . . . ⊂ gn = g

such that dimK gi = i.

Proof. If g is any solvable finite dimensional Lie algebra and φ : g // gl(V ) is a finite
dimensional representation of g, then φ(g) is a solvable algebra by Proposition 4.3(1),
hence it stabilises a flag by Theorem 7.2. If we take φ to be the adjoint representation,
then note that a flag in V = g which is stabilised by g is just a chain of ideals in g by
Example 5.3, and each is of codimension 1 in the next. �

Notation. If h ⊂ g is a subalgebra and x ∈ h, then adh x is considered as an element in
gl(h), while adg x is considered as an element in gl(g).

As an example, let x be a diagonal matrix. Consider the inclusion of Lie algebras
d(n,K) ⊂ gl(n,K). Then add(n,K)(x) = 0, since x commutes with any diagonal matrix,
but adgl(n,K)(x) need not be zero.

{c:LiesCor2}
Corollary 7.4. Let g be solvable of dimension n. If x ∈ [g, g], then adx is nilpotent. In
particular, the algebra [g, g] is nilpotent.

Proof. Find a chain of ideals as in Corollary 7.3. Fix a basis (x1, . . . , xn) of g such that
gi = spanK(x1, . . . , xi). With respect to this basis, the matrices of ad g are all upper tri-
angular. Therefore, the matrices of [ad g, ad g] are all in n(n,K), as an easy computation
shows. Therefore, adx is nilpotent for x ∈ [g, g]. Hence, ad[g,g] x is nilpotent, so [g, g] is
nilpotent by Engel’s Theorem 4.13. �

Having proved Lie’s theorem and some of its consequences, we move on to Cartan’s
Criterion which is a criterion for solvability of a Lie algebra. We will require the following

{l:Cartan}
Lemma 7.5. Let A ⊂ B be subspaces of gl(V ), dimK V = m < ∞. Set M = {x ∈
gl(V ) | adx(b) ∈ A ∀b ∈ B}. Suppose that x ∈M satisfies the equality tr(xy) = 0 for all
y ∈M . Then x is nilpotent.
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Proof. Let x = xs+xn be the Jordan decomposition of x. For simplicity, write xs = s and
xn = n. Fix a basis (v1, . . . , vm) of V with respect to which s has matrix diag(a1, . . . , am).
Since K has characteristic zero, K is a Q-vector space. Let E be the Q-vector subspace
of K spanned by the eigenvalues a1, . . . , am. We have to show that s = 0 or, equivalently,
that E = 0. By construction, E is finite dimensional over Q, hence it suffices to show
that its dual space E∗ is zero. In other words, we will show that any Q-linear function
f : E //Q is zero.

So, let f : E //Q be a Q-linear function. Define y ∈ gl(V ) to be given by the diagonal
matrix diag(f(a1), . . . , f(am)). Recall that {Ei,j} denotes the usual basis of gl(V ) and
that by Equation (6.1)

ad s(Ei,j) = (ai − aj)Ei,j, ad y(Ei,j) = (f(ai)− f(aj))Ei,j.

Note that if ai−aj = ak−al, then f(ai)−f(aj) = f(ak)−f(al). Therefore, there exists (by
Lagrange interpolation, compare Exercise 1 on Sheet 7) a polynomial r ∈ K[T ] without
constant term satisfying r(ai − aj) = f(ai)− f(aj). By construction, ad y = r(ad s).

Recall that by Lemma 6.4, ad s is the semisimple part of adx. By Proposition 6.2(2),
it can be written as a polynomial in adx without constant term. Since ad y = r(ad s),
ad y is also a polynomial in adx without constant term. By hypothesis, adx maps B
into A, so the same holds for ad y. In other words, y ∈M . By our assumption,

0 = tr(xy) =
m∑
i=1

f(ai)ai.

The right-hand side is an element in E. Applying f to it, we get
∑m

i=1 f(ai)
2 = 0. But

f(ai) ∈ Q for all i, hence f(ai) = 0 for all i. Since the ai span E, f = 0. Therefore,
E∗ = 0, so E = 0, hence s = 0 and x = n is nilpotent as claimed. �

{l:TrThree}
Lemma 7.6. Let V be a finite dimensional vector space over an arbitrary field. If
x, y, z ∈ End(V ), then

tr([x, y]z) = tr(x[y, z]).

Proof. We have [x, y]z = xyz − yxz, x[y, z] = xyz − xzy. Now apply the well-known
equality tr(ab) = tr(ba) to a = y, b = xz. �

{l:DANilpSo}
Lemma 7.7. Let g be a finite dimensional Lie algebra. If [g, g] is nilpotent, then g is
solvable.

Proof. A nilpotent algebra is in particular solvable, hence [g, g] = g(1) is solvable. Then
g is solvable by definition. �

{t:Cartan}
Theorem 7.8. [Cartan’s Criterion] Let g be a subalgebra of gl(V ), where V is fnite
dimensional. The following statements are equivalent.

(1) tr(xy) = 0 for all x ∈ [g, g] and all y ∈ g.
(2) g is solvable.
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Proof. “(2)⇒(1)” If g is solvable, then, by Lie’s Theorem 7.2, the matrices of g are upper
triangular with respect to a suitable basis of V . Then any element in [g, g] is a strict
upper triangular matrix and (1) follows by an easy computation.

“(1)⇒(2)” By Lemma 7.7 it is enough to show that [g, g] is nilpotent. By Lemma
4.14 if x is nilpotent, then so is adx and by Engel’s Theorem 4.13 an algebra whose all
element are ad-nilpotent is nilpotent. Therefore, it is enough to show that all x ∈ [g, g]
are nilpotent.

We apply Lemma 7.5 as follows: V is as given, A = [g, g], B = g. Therefore,

M = {x ∈ gl(V ) | adx(g) ⊂ [g, g]}.

Of course, g ⊂M . Our hypothesis tells us that tr(xy) = 0 for all x ∈ [g, g] and all y ∈ g.
To apply Lemma 7.5 we need the stronger statement that tr(xy) = 0 for all x ∈ [g, g]
and y ∈M .

Now recall that [g, g] is generated by the commutators [u,w]. If z ∈ M , then, by
Lemma 7.6, tr([u,w]z) = tr(u[w, z]) = tr([w, z]u). Now note that since z ∈ M , the
element [w, z] is in [g, g] by definition of M . Therefore, tr([w, z]u) = 0, hence Lemma
7.6 applies and we are done. �

{c:Cartan}
Corollary 7.9. Let g be a finite dimensional Lie algebra such that tr(adx ady) = 0 for
all x ∈ [g, g], y ∈ g. Then g is solvable.

Proof. Consider the adjoint representation ad: g // gl(g). Cartan’s Criterion shows that
ad(g) ⊂ gl(g) is solvable. Now note that ker(ad) = Z(g) is solvable (being abelian) and
that ad(g) ' g/Z(g). We conclude by Proposition 4.3(2). �

8. The Killing form and semisimplicity

Definition. Let g be a Lie algebra. If x, y ∈ g, set

κ(x, y) := tr(adx ady).

This is a symmetric bilinear form on g, called the Killing form.

It is clear that κ is symmetric, and bilinearity follows from the fact that ad is a Lie
algebra homomorphism and that the trace is bilinear. Also note that

κ([x, y], z) = tr(ad [x, y] ad z) = tr([ad x, ad y] ad z)

= tr(adx, [ad y, ad z]) = tr(ad x, ad [y, z])

= κ(x, [y, z]),

where we used Lemma 7.6 for the third equality. We will call this property of κ associa-
tivity.

{l:Killing}
Lemma 8.1. Let I be an ideal of g. If κ is the Killing form of g and κI is the Killing
form of I (recall that any ideal is in particular a Lie algebra), then κI = κ|I×I .
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Proof. We will use the following easy fact from linear algebra: If W is a subspace of a
finite dimensional vector space V and φ ∈ End(V ) maps V into W , then tr(φ) = tr(φ|W ).
Indeed, take a basis of W , extend it to a basis of V and consider the resulting matrix of
φ.

Now, if x, y ∈ I, then adx ad y is an endomorphism of g and it maps g into I, since I
is an ideal. Therefore, κ(x, y) = tr(ad x ad y) coincides with the trace of (ad x ad y)|I =
adI x adI y. �

Definition. Let V be a finite dimensional vector space and let

β : V × V //K

be a symmetric bilinear form. We call β nondegenerate if its radical S is 0, where

S = {x ∈ V | β(x, y) = 0 ∀y ∈ V }.

By bilinearity, S is a vector subspace of V . Note that β is nondegenerate if and
only if the map V //V ∗, x � // β(x,−) is an isomorphism. A practical way of checking
nondegeneracy is the following. Fix a basis (x1, . . . , xn) of V and consider the matrix A
whose (i, j)-entry is β(xi, xj). Then β is nondegenerate if and only if A is invertible if
and only if det(A) 6= 0.

In particular, this definition applies to a symmetric bilinear form on a Lie algebra. For
the Killing form we have

{l:RadKill}
Lemma 8.2. If g is a Lie algebra and κ its Killing form, then the radical of κ is an
ideal in g.

Proof. If x ∈ S and y ∈ g, then κ([x, y], z) = κ(x, [y, z]) = 0 for all z ∈ g by associativity
of κ. �

{e:sl2Killing}
Example 8.3. Recall that the Lie algebra sl(2, K) has as basis the matrices

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

We fix the ordered basis B = (X,H, Y ). In Example 3.9 we already computed the
following equalities:

[X, Y ] = adX(Y ) = H,

[H,X] = adH(X) = 2X,

[H, Y ] = adH(Y ) = −2Y.

From this we get that with respect to B, adH is a diagonal matrix diag(2, 0,−2). Fur-
thermore,

adX =

0 −2 0
0 0 1
0 0 0
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and

adY =

 0 0 0
−1 0 0
0 2 0

 .

Using this, one checks that κ(X, Y ) = tr(adX adY ) = 4 = κ(Y,X) and κ(H,H) = 8,
while all the other pairings have trace zero. This means that κ is given by the following
matrix 0 0 4

0 8 0
4 0 0

 .

Its determinant is −128. In particular, if char(K) 6= 2, then κ is non-degenerate.

Recall that a Lie algebra is called semisimple if rad(g) = 0, where rad(g) is the unique
maximal solvable ideal. We have the following easy

{l:SemiAb}
Lemma 8.4. A Lie algebra g is semisimple if and only if it has no nonzero abelian
ideals.

Proof. If 0 6= I is a nonzero abelian ideal, then I ⊂ rad(g) (since any abelian ideal is
solvable), so g cannot be semisimple.

Conversely, if h = rad(g) 6= 0, then its derived series is

h ⊃ h(1) ⊃ . . . h(k−1) ⊃ h(k) = 0.

If we assume that k is minimal with the property that h(k) = 0, then, by Remark 4.5,
0 6= h(k−1) is an abelian algebra. In particular, h(k−1) is an abelian ideal in g. �

The following result relates semisimplicity and the Killing form.
{t:KillingSeSi}

Theorem 8.5. A Lie algebra g is semisimple if and only if its Killing form is nonde-
generate.

Proof. Suppose that g is semisimple, hence rad(g) = 0. Let S be the radical of κ. By
definition, tr(adx ad y) = 0 for all x ∈ S and y ∈ g (in particular, for y ∈ [S, S]). By
Corollary 7.9, S is solvable. Therefore, S ⊂ rad(g) = 0, so κ is nondegenerate.

Conversely, suppose that S = 0. By Lemma 8.4, it suffices to show that any abelian
ideal I of g is contained in S. So, let x ∈ I and let y ∈ g. Then ad x ad y maps g
into I. Therefore, (adx ad y)2 maps g into [I, I] = 0. Thus, adx ad y is nilpotent, hence
0 = tr(ad x ad y) = κ(x, y), so x ∈ S. �

A little later we will show that a Lie algebra is semisimple of and only if it is a direct
sum of simple algebras. But first we want to introduce yet another class of Lie algebras.
Recall that the center of a Lie algebra is of course solvable, so Z(g) ⊂ rad(g).

Definition. A Lie algebra is called reductive if Z(g) = rad(g).

Actually, there is an equivalent description.
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{l:reductive}
Lemma 8.6. A Lie algebra g is reductive if and only if every solvable ideal I is central,
that is [g, I] = 0.

Proof. If g is reductive, then rad(g) is central, hence every solvable ideal is as well.
Conversely, if every solvable ideal is central, this in particular holds for rad(g). �

{e:reductive}
Example 8.7. Every semisimple Lie algebra is reductive.

The converse does not hold: If 0 6= g is an abelian Lie algebra, then it is reductive,
but not semisimple.

{p:reductive}
Proposition 8.8. Let ρ : g ⊂ gl(V ) be a faithful irreducible representation of a Lie
algebra. Then g is reductive and dimK Z(g) ≤ 1. If, furthermore, tr(ρ(x)) = 0 for all
x ∈ g, then g is semisimple.

Proof. Let I be a solvable ideal in g. As in the proof of Theorem 7.1 one shows that there
exists a basis of V such that for all y ∈ I the matrix ρ(y) is upper triangular with λ(y)
on the diagonal, where λ : I //K is a linear function. But the proof there shows even
more. Noamely, let x ∈ [g, I] ⊂ I. Then tr(ρ(x)) = 0, since the trace of a commutator
vanishes. Therefore, λ[g,I] = 0. Going back to the proof of Theorem 7.1, this shows that
the subspace

W = {w ∈ V | x.w = λ(x).w ∀x ∈ I}
is stable under g, hence a subrepresentation of V , hence equal to V . Therefore, ρ(y)
is a diagonal matrix diag(λ(y), . . . , λ(y)) for all I. Since ρ is faithful, it follows that
dimK I ≤ 1. Furthermore, [g, I] = 0, so g is reductive. If tr(ρ(x)) = 0 for all x ∈ g,
then, in particular, tr(ρ(y)) = 0 for all y ∈ I, hences I = 0, so every solvable ideal in
g is trivial and, therefore, g admits no nonzero abelian ideals, thus g is semisimple by
Lemma 8.4. �

{c:GLred}
Corollary 8.9. The Lie algebra gl(n,K) is reductive. The Lie algebra sl(n,K) is
semisimple. �

Of course, Theorem 1.12 predicts that sl(n,C) is even simple. Exercise 4 on Sheet 5
tells us that sl(n,K) is simple if char(K) = 0.

Definition. Leg g be a Lie algebra. We say that g is the direct sum of ideals I1, . . . , It
if g is the direct sum of its subspaces I1, . . . , It.

In particular, Ii∩Ij = 0 for i 6= j. Since [Ii, Ij] ⊂ Ii∩Ij, this means that also [Ii, Ij] = 0
for i 6= j. Note that to say that g is the direct sum of ideals just means that it is a direct
sum of the corresponding vector spaces and the bracket of g is defined componentwise.

{t:SimSemisim}
Theorem 8.10. Let g be a semisimple Lie algebra. Then there exist ideals g1, . . . , gt of
g which are simple as Lie algebras and such that g = g1 ⊕ . . .⊕ gt. Every simple ideal I
of g coincides with one of the gi. Moreover, the Killing form of gi is the restriction of κ
to gi × gi.
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Proof. Let I be an arbitrary ideal of g. Define

I⊥ := {x ∈ g | κ(x, y) = 0 ∀y ∈ I}.
This is an ideal in g, because I is and because κ is associative. Note that κ|I∩I⊥ is 0.
In particular, applying Cartan’s Criterion (Theorem 7.8) to the Lie algebra I, we see
that I ∩ I⊥ is solvable. Since g is semisimple, this implies that I ∩ I⊥ = 0. Now, κ is
nondegenerate, therefore dim I + dim I⊥ = dim g, hence g = I ⊕ I⊥.

Note that any ideal J of I is automatically an ideal in g (namely, J ⊕ 0), because the
bracket on g is defined componentwise. The same argument holds for ideals of I⊥. In
particular, both I and I⊥ are also semisimple. We can thus continue by induction on
dim(g) to arrive at the claimed decomposition of g.

Next we prove that these ideals are unique. If J is any simple ideal of g, then [g, J ]
is also an ideal of J . Since Z(g) = 0, this means that [g, J ] = J . On the other hand,
J = [g, J ] = ⊕ti=1[gi, J ]. Therefore, all summands bar one are zero. Say, [gi, J ] = J .
Then J ⊂ gi, hence J = gi, since gi is simple.

The last assertion is just Lemma 8.1. �
{c:SimSemisim}

Corollary 8.11. If g is a semisimple Lie algebra, then g = [g, g] and all ideals and
homomorphic images of g are semisimple. Moreover, each ideal of g is a sum of certain
simple ideals of g.

Proof. To check that g = [g, g] use that [gi, gj] = 0 for i 6= j and [gi, gi] = gi since gi is
simple, compare Remark 3.8. The other assertions are rather obvious. �

Recall that a derivation is an endomorphism of a vector space which satisfies the
Leibniz rule. {t:SemiSiDer}
Theorem 8.12. If g is semisimple, then ad g = Der(g).

Proof. Recall that Z(g) ⊂ rad(g) = 0, so ad: g // gl(g) is injective. We already remarked
in Example 5.1(1) that M = ad g ⊂ Der(g) = D. A simpe computation shows the
following formula (which is needed to show Exercise 2 on Sheet 4)

(�) [δ, adx] = ad(δx) ∀x ∈ g, ∀δ ∈ D.
In other words, [D,M ] ⊂ M . Since g ' ad(g) = M , M is semisimple, hence the Killing
form κM of M is nondegenerate. On the other hand, κM is the restriction of κD to M×M
by Lemma 8.1. If I = M⊥ is the orthogonal to M under κD, then the nondegeneracy of
κM forces I ∩M = 0. Now I and M are ideals of D, so [I,M ] = 0. If δ ∈ I = M⊥, then
ad(δx) = [δ, adx] = 0, for all x ∈ g, since adx ∈ M . Since ad is injective, this means
that δx = 0 for all x ∈ g, so δ = 0. Hence, I = 0, so M = ad(g) = g = D = Der(g). �

9. Weyl’s Theorem

Convention. In this section all representations will be finite dimensional. The conven-
tions concerning the base field remain as does the convention that any Lie algebra we
consider is finite dimensional.
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In this section we will study representations of a semisimple Lie algebra. Weyl’s
theorem will tell us that any representaion is completely reducible in this case.

First we will need some preparations. Let V be a finite dimensional K-vector space and
V ∗ its dual space. Fix a basis (x1, . . . , xn) of V and consider the dual basis (x∗1, . . . , x

∗
n)

of V ∗ characterised by the property x∗i (xj) = δij. Recall that Φ: V ∗ ⊗ V ' End(V ),
where Φ is defined via f ⊗ v � // [w � // f(w)v]. Note that

n∑
i=1

x∗i ⊗ xi = Φ−1(idV ).

Indeed, Φ(x∗i ⊗ xi) is the map which sends xi to xi and xj to 0 if j 6= i. Therefore,

Φ(
n∑
i=1

x∗i ⊗ xi) sends any xj to itself, that is, it is the identity map. In particular, the

element
n∑
i=1

x∗i ⊗ xi does not depend on the choice of a basis of V .

Now, let g be a semisimple Lie algebra and let φ : g // gl(V ) be a faithful representation
of g, that is, φ is injective. Define a map

β : g× g //K, (x, y) � // tr(φ(x)φ(y)).

Note that β is a symmetric bilinear form on g. Due to Lemma 7.6, the form β is
associative. In particular, its radical Sβ is an ideal of g. Consider φ(Sβ) ' Sβ. By
Cartan’s Criterion (Theorem 7.8) and the definition of Sβ, the algebra Sβ is solvable.
But g is semisimple, hence the maximal solvable ideal rad(g) = 0, so Sβ = 0. In other
words, β is nondegenerate. Note that the Killing form is just β if φ = ad.

Let g be a semisimple Lie algebra and β be any nondegenerate symmetric associative
bilinear form on g. If (x1, . . . , xn) is a basis of g, there is a uniquely determined dual
basis (y1, . . . , yn) described by the property β(xi, yj) = δij.

If x ∈ g, we can of course write

[x, xi] =
n∑
j=1

aijxj

for some aij ∈ K and similarly,

[x, yi] =
n∑
j=1

bijyj.
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Now we compute

aik =
n∑
j=1

aijβ(xj, yk) = β([x, xi], yk)

= β(−[xi, x], yk) = β(xi,−[x, yk])

= −
n∑
j=1

bkjβ(xi, yj) = −bki.

If β is any nondegenerate symmetric associative bilinear form on g and φ : g // gl(V )
is any representation of g, set

cφ(β) =
n∑
i=1

φ(xi)φ(yi) ∈ End(V ),

where xi and yi are elements of dual bases with respect to β.
Note that in End(V ) we have

[x, yz] = xyz − yzx = xyz − yxz + yxz − yzx = [x, y]z + y[x, z].

Using this and the equation aik = −bki established above, we now compute for any x ∈ g

[φ(x), cφ(β)] = [φ(x),
n∑
i=1

φ(xi)φ(yi)]

=
n∑
i=1

[φ(x), φ(xi)φ(yi)]

=
n∑
i=1

[φ(x), φ(xi)]φ(yi) +
n∑
i=1

φ(xi)[φ(x), φ(yi)]

=
n∑
i=1

φ([x, xi])φ(yi) +
n∑
i=1

φ(xi)φ([x, yi])

=
n∑

i,j=1

aijφ(xj)φ(yi) +
n∑

i,j=1

bijφ(xi)φ(yj) = 0.

In other words, we have proved
{p:Casicomm}

Proposition 9.1. The map cφ(β) commutes with φ(g). �

Definition. If β is any nondegenerate symmetric associative bilinear form on g, φ : g // gl(V )
is any representation of g and xi and yi are elements of dual bases with respect to β,
then cφ(β) ∈ End(V ) is called the Casimir element of φ. If β is understood from the
context, we will simply write cφ.

{l:TrCasi}
Lemma 9.2. We have tr(cφ) = dim g.

Proof. Indeed, tr(cφ) = tr(
∑n

i=1 φ(xi)φ(yi)) =
∑n

i=1 β(xi, yi) = dim g. �
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{r:Casi}
Remark 9.3. Assume that φ is an irreducible faithful representation of g. By Remark 5.6,
the only elements commuting with φ(g) are the scalar multiples of the identity. Hence,
cφ = λ · idV , so λ = dim g

dimV
.

{e:Casi}
Example 9.4. Let g = sl(2, K), V = K2, φ = id: g // gl(V ). Let (X,H, Y ) be the basis
of g used before. With respect to the trace form, one quickly computes tr(XY ) = 1,
tr(XX) = 0, tr(XH) = 0, tr(HH) = 2, tr(HY ) = 0 and tr(Y Y ) = 0. It follows that the
dual basis is of the form (Y, 1

2
H,X), hence

cφ = XY +
1

2
H2 + Y X =

(
3
2

0
0 3

2

)
.

Note that 3
2

= dim g
dimV

.
{r:CasiFai}

Remark 9.5. Assume that φ is not necessarily faithful. Then its kernel ker(φ) is a sum of
certain simple ideals of g by Corollary 8.11. If we denote by g′ the sum of the remaining
simple ideals, then the restriction of φ to g′ is a faithful representation of g′ and one can
apply the above construction to it.

The following result will be useful in the proof of Weyl’s Theorem.
{l:SemiSiSL}

Lemma 9.6. Let φ : g // gl(V ) be a representation of a semisimple Lie algebra g. Then
φ(g) ⊂ sl(V ). In particular, g acts trivially on any one dimensional g-module.

Proof. By Corollary 8.11, g = [g, g]. Now use that sl(V ) = [gl(V ), gl(V )] (for this one
can, for instance, use Equation 3.1) to see the first claim. For the second just note that
sl(K) = 0. �

We also need the following

Definition. Let V be a g-module. The set

V g := {v ∈ V | x.v = 0 ∀x ∈ g}
is called the invariant submodule of V . Its elements are called invariant vectors.

The quotient space Vg := V/gV is called the space of coinvariants.

For example, if V and W are two g-modules, then we have seen that Hom(V,W ) is also
a g-module. Recall that Homg(V,W ) denotes the space of morphisms of representations.
It follows directly from the definitions that Homg(V,W ) = Hom(V,W )g.

{l:Weyl}
Lemma 9.7. Let (V, ρ) be a representation of a semisimple Lie algebra g. Then

V = V g ⊕ gV,

where we abuse notation by writing gV for ρ(g)V .

Proof. We use induction on dim(V ). Note that the case dim(V ) = 1 is precisely the
content of Lemma 9.6, since it gives that V = V g in this case.
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Now assume that dim(V ) > 1. If V = V g, there is nothing to prove. So assume
that V 6= V g. By Corollary 8.11, ρ(g) is a semisimple subalgebra of gl(V ). We have
the Casimir operator cφ : V //V , where we use the bilinear form β(x, y) = tr(xy) for
x, y ∈ gl(V ).

Since K is algebraically closed, the vector space V decomposes into a direct sum of
generalised eigenspaces Vλ of cφ. We have seen in Proposition 9.1 that cφ commutes with
ρ(g), hence every Vλ is a subrepresentation of V . There are now two cases.

• cφ has at least two eigenvalues. Then V is a direct sum of smaller dimensional
subrepresentations Vλ, to which we can apply the induction hypothesis.
• cφ has a single eigenvalue. We have seen in Lemma 9.2 that tr(cφ) = dim g 6= 0.

Therefore, the unique eigenvalue of cφ is not zero, hence V = cφV , thus also
V = gV .

�

We are now ready to prove the following
{t:Weyl}

Theorem 9.8 (Weyl’s Theorem). Any representation φ : g // gl(V ) of a semisimple
algebra g is completely reducible.

Proof. Let U ⊂ V be a subrepresentation. We have a morphism of representations

Hom(V, U) //Hom(U,U)

given by restriction. In particular, this morphism is surjective. By Lemma 9.7, we can
restrict this surjective morphism to the invariant vectors and get a surjection

Hom(V, U)g //Hom(U,U)g.

In particular, we have an element f ∈ Hom(V, U)g mapping to idU .
We claim that V = U ⊕ ker(f). Indeed, ker(f) is of course a subrepresentation of

V . Furthermore, U ∩ ker(f) = 0, since if v ∈ U ∩ ker(f), then f(v) = 0 = v. Finally,
V = U + ker(f), since for any v ∈ V we can write v = f(v) + (v − f(v)). Of course,
f(v) ∈ U . But f(v − f(v)) = f(v) − f(v) = 0, hence v − f(v) ∈ ker(f) as claimed.
Summarising, we have proved that V = U ⊕ ker(f), hence we can continue decomposing
the components U and ker(f) until we reach irreducible representations. �

10. Jordan decomposition of a semisimple Lie algebra

We begin this section with a quite general result.
{p:JordanDer}

Proposition 10.1. Let A be a finite dimensional algebra and let δ ∈ Der(A) ⊂ End(A)
be a derivation. Consider the Jordan decomposition δ = σ + ν of δ in End(A) with σ
semisimple and ν nilpotent. Then σ and ν are derivations.

Proof. Since δ = σ+ν and sums of derivations are derivations, it will be enough to show
that σ ∈ Der(A). For any α ∈ K, set

Aα = {x ∈ A | ∃k ≥ 1 : (δ − α · id)kx = 0},
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that is, Aα is the generalised eigenspace of α. Therefore, A is isomorphic to the direct sum
of those Aα for which α is an eigenvalue of δ or, equivalently, of σ. Since σ is semisimple,
it acts on Aα via multiplication with α. Now the reader can check by induction on n the
following formula:

(δ − (α + β) · id)n(xy) =
n∑
i=0

(
n

i

)
(δ − α · id)n−i(x)(δ − β · id)i(y).

It implies that AαAβ ⊂ Aα+β. Therefore, if x ∈ Aα and y ∈ Aβ, then σ(xy) = (α+β)xy,
since xy ∈ Aα+β (the latter space could of course be zero). On the other hand,

σ(x)y + xσ(y) = (α + β)xy.

Since the decomposition into generalised eigenspaces is direct, it follows that σ is indeed
a derivation. �

Now recall from Theorem 8.12 that for a semisimple Lie algebra g we have ad(g) =
Der(g). Furthermore, g = ad(g), since ker(ad) = Z(g) ⊂ rad(g) = 0. Hence,

g = ad(g) = Der(g).

If x ∈ g, then adx is a derivation, hence by Proposition 10.1 its semisimple and nilpotent
parts are again derivations. Therefore, any x ∈ g determines unique elements s, n ∈ g
such that adx = ad s + adn, where the latter is the usual Jordan decomposition of
adx ∈ End(g). Thus, x = s+n, [s, n] = 0, ad s is semisimple and adn is nilpotent. This
is the abstract Jordan decomposition of a semisimple Lie algebra. This decomposition is
unique.

{t:AbstractJ}
Theorem 10.2. Let g ⊂ gl(V ) be a semisimple Lie algebra. Then g contains the
semisimple and nilpotent parts in gl(V ) of all its elements. In particular, the abstract
and usual Jordan decomposition of g coincide.

Proof. The second statement follows from the first because both the abstract and usual
Jordan decompositions are unique.

Let x ∈ g be arbitrary and consider its Jordan decomposition x = xs + xn in gl(V ).
Since adx(g) ⊂ g, it follows from Proposition 6.2(3) that ad xs(g) ⊂ g and adxn(g) ⊂ g.
Here ad = adgl(V ). In other words,

xs, xn ∈ Ngl(V )(g) =: N,

where N is the normaliser of g in gl(V ). We have seen that N is a subalgebra of gl(V ).
Clearly, it contains g as an ideal.

At this point we would like to have the equality N = g, but this does not hold in
general. Indeed, g ⊂ sl(V ) and the scalar multiples of the identity are in N but not in
g.

To circumvent this problem, we will show that xs, xn are contained in a smaller sub-
algebra of N and then show that this subalgebra is equal to g.
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So, let W be any g-submodule of V . Define

gW := {y ∈ gl(V ) | y(W ) ⊂ W, tr(y|W ) = 0}.

As an example: gV = sl(V ). In general, any gW is a Lie algebra.
Note that since W is a g-submodule and g ⊂ sl(V ), g is contained in gW for any W .
We now consider g′, the intersection of N with all the algebras gW . Of course, g′ is

a subalgebra of N and g is contained in g′. Furthermore, g is an ideal in g′ (since it is
one in N). In fact, more is true: if x ∈ g, then xs, xn ∈ gW for all W , hence xs, xn ∈ g′.
Indeed, xs, xn map W into W as x does and xn is tracefree, hence so is xs.

Our goal is to show that g = g′. Now, being completely reducible is equivalent to the
following statement: every submodule has a complement (Exercise 1 on Sheet 6). Since
g′ is a finite dimensional g-module, g is semisimple and g ⊂ g′, we can write g′ = g⊕M
for some g-module M . Since g′ ⊂ N , we have [g, g′] ⊂ g. In other words, the action of g
on M is trivial.

Let y ∈ M and let W be an irreducible g-submodule of V . Since [y, g] = 0, Remark
5.6 tells us that y acts on W as a scalar matrix. Since y ∈ gW , we have tr(y|W ) = 0.
Hence, y acts trivially on W . By Weyl’s theorem 9.8, V decomposes into a direct sum
of irreducible submodules, so by the preceding argument y ∈ g′ ⊂ gl(V ) acts trivially on
V . Hence, it is trivial. We have thus proved that M = 0, hence g = g′. �

{c:Jord}
Corollary 10.3. Let φ : g // gl(V ) be a representation of a semisimple Lie algebra g.
If x = s + n is the abstract Jordan decomposition of an element x ∈ g, then φ(x) =
φ(s) + φ(n) is the usual Jordan decomposition of φ(x) in gl(V ).

Proof. The image φ(g) ⊂ gl(V ) is a semisimple Lie algebra by Corollary 8.11. Let x ∈ g.
Consider the following diagram

g //

adx

��

φ(g) //

adφ(x)

��

gl(V )

adφ(x)

��
g // φ(g) // gl(V ).

Here, by abuse of notation we denote the action of φ(x) on φ(g) and gl(V ) by the same
symbol. It is obvious that the diagram is commutative. By Remark 6.3, this remains
true if we take the semisimple or the nilpotent part of the respective endomorphisms.
Let us consider the diagram with semisimple parts.

Recall that by definition (adx)s = ad s. By Lemma 6.4, the semisimple part of adφ(x)
in gl(V ) is the ad of the semisimple part of φ(x). In symbols, (adφ(x))s = ad(φ(x)s).
This leads to the following commutative diagram

g //

ad s

��

φ(g) //

��

gl(V )

ad(φ(x)s)
��

g // φ(g) // gl(V ).



LIE ALGEBRAS 37

Therefore, adφ(s) = ad(φ(x)s). Since ad: φ(g) // gl(φ(g)) is injective, we get φ(s) =
φ(x)s. Similarly, φ(n) = φ(x)n. �

11. Representations of sl(2, K)

Recall that we work over an algebraically closed field K of characteristic zero and
assume all representations to be finite dimensional over K. Also recall that the Lie
algebra g = sl(2, K) has as basis the matrices

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

Let V be an arbitrary g-module. Note that H is semisimple, hence Corollary 10.3
gives that H acts on V as a diagonal matrix. Therefore, we can decompose V as a direct
sum of eigenspaces Vλ = {v ∈ V | H.v = λv} for some λ ∈ K.

Definition. If λ ∈ K is an eigenvalue of H acting on V , that is, Vλ 6= 0, then we call λ
a weight of H in V and we call Vλ a weight space.

{l:Weightsl2}
Lemma 11.1. If v ∈ Vλ, then X.v ∈ Vλ+2 and Y.v ∈ Vλ−2.

Proof. Recall that [X, Y ] = H, [H,X] = 2X and [H,Y ] = −2Y . Therefore,

H.X.v = [H,X].v +X.H.v = 2X.v − λX.v = (2 + λ)X.v.

The second claim is proved similarly. �
{r:WeightNilp}

Remark 11.2. Note that since dimK(V ) < ∞ and we have a direct sum decomposition
V =

⊕
λ∈K Vλ (of course, “most” Vλ = 0), there exists a Vλ 6= 0 such that Vλ+2 = 0. Any

nonzero vector v ∈ Vλ is called a maximal vector of weight λ.
Also note that the lemma implies that X and Y act as nilpotent endomorphisms of

V . Of course, this is also implied by Corollary 10.3.
{l:ClassRepSL2}

Lemma 11.3. Assume that V is an irreducible g-module. Choose a maximal vector
v ∈ Vλ. Set v−1 = 0 and vi = 1

i!
Y i.v0 for i ≥ 0. Then

(1) H.vi = (λ− 2i)vi;
(2) Y.vi = (i+ 1)vi+1;
(3) X.vi = (λ− i+ 1)vi−1 for all i ≥ 0.

Proof. Item (2) is trivial, while item (1) follows immediately from (a repeated application
of) Lemma 11.1.
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To prove (3), we use induction over i. Note that v−1 = 0 by definition, while X.v0 = 0
by Lemma 11.1 and the fact that v0 is a maximal vector, that is, Vλ+2 = 0. Now compute

iX.vi = iX.
1

i!
Y i.v0 =

1

(i− 1)!
X.Y.Y −1.v0

= X.Y.vi−1 = [X, Y ]vi−1 + Y.X.vi−1

= H.vi−1 + Y ((λ− i+ 2)vi−2)

= (λ− 2(i− 1))vi−1 + (λ− i+ 2)Y.vi−2

= (λ− 2(i− 1))vi−1 + (λ− i+ 2)(i− 1)vi−1

= (λ− 2i+ 2− λ+ i− 2 + (λ− i+ 2)i)vi−1

= i(λ− i+ 1)vi−1,

where we used the definition for the first and second equality, (1) and induction for the
fifth and (2) for the seventh. �

Note that (1) implies that all the nonzero vi are linearly independent, since they are
eigenvectors associated with distinct eigenvalues. Since dimK(V ) < ∞, there exists a
smallest integer m such that vm 6= 0, but vm+1 = 0. Obviously then also vm+i = 0 for all
i > 0. Combining these arguments shows that

0 6= U = spanK(v0, . . . , vm) ⊂ V

is not only a sub vector space, but also a submodule. Since V is irreducible, U = V .
Furthermore, with respect to the given ordered basis of V , the endomorphism V is
represented by a diagonal matrix, X is represented by a strictly upper triangular matrix
and Y by a strictly lower triangular matrix. In particular, as we already knew, X and
Y are represented by nilpotent matrices.

Now consider the formula in (3) for i = m+1: 0 = X.vm+1 = (λ−m)vm. Since vm 6= 0,
we have λ = m. On other words, the weight of a maximal vector is a nonnegative integer,
equal to dimK(V )− 1. We will call this integer the highest weight of V .

Moreover, each weight µ occurs with multiplicity one (that is, if Vµ 6= 0, then dimK(Vµ) =
1) by (1). Summarising, we have proved

{t:ReprSL2}
Theorem 11.4. Let V be an irreducible (m + 1)-dimensional representation of g =
sl(2, K). Then the following holds.

(1) The representation V is a direct sum of weight spaces Vµ with respect to H, where
µ = m,m− 2, . . . ,−(m− 2),−m and dimK(Vµ) = 1 for all µ.

(2) The representation V has up to nonzero scalar multiples a unique maximal vector,
whose weight is m.

(3) The action of g on V is completely described by the formulas in Lemma 11.3. In
particular, there exists at most one irreducible g-representation (up to isomor-
phism) of each possible dimension m+ 1, m ≥ 0. �
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{c:ReprSL2}
Corollary 11.5. Let V be any finite dimensional sl(2, K)-module. The eigenvalues of H
on V are all integers and each occurs along with its negative (an equal number of times).
Moreover, in any decomposition of V into a direct sum of irreducible submodules, the
number of summands is precisely dimV0 + dimV1.

Proof. If V = 0, there is nothing to prove. Otherwise, we can write V as a direct sum of
irreducible submodules by Weyl’s Theorem 9.8. The latter are all described by Theorem
11.4 and this argument immediately gives the first assertion. For the second, observe
that each irreducible g-module has a unique occurrence of either the weight 0 or the
weight 1, but not both by Theorem 11.4(1). �

To conclude this section, we answer the question whether sl(2, K) does indeed have
an irreducible module of each possible highest weight. In fact, the formulas of Lemma
11.3 do define an irreducible representation on an (m + 1)-dimensional vector space V
with basis (v0, . . . , vm) (see Exercise 3 on Sheet 9). Such a representation is denoted
by V (m). To make this more explicit, one could take as V (m) the vector space of
degree m polynomials in two variables s, t, that is V (m) = spanK(sitm−i) ⊂ K[s, t] for
i = 0, . . . ,m. Clearly, this is an (m + 1)-dimensional vector space. One can check that
letting X act by s∂t, Y act by t∂x and H act by s∂s − t∂t gives K[s, t] the structure of
an sl(2, K)-representation and the spaces V (m) are then irreducible representations (see
Exercise 2 on Sheet 6).

12. Root space decomposition

Let g be a semisimple finite dimensional Lie algebra over an algebraically closed field
of characteristic zero. By Engel’s Theorem 4.13 if all elements in a Lie algebra are ad-
nilpotent, then the algebra is nilpotent. Since g is not nilpotent, not all its elements
are ad-nilpotent, so there exists an x ∈ g whose semisimple part xs in the abstract
Jordan decomposition is nonzero. Therefore, g possesses nonzero subalgebras consisting
of semisimple elements.

Definition. Let g be a semisimple Lie algebra. A subalgebra h ⊂ g is called toral if it
consists of semisimple elements.

{l:toral}
Lemma 12.1. Any toral subalgebra of a semisimple algebra is abelian.

Proof. Let T be a toral subalgebra and let x ∈ T . Since adx is semisimple, it is di-
agonalisable by our assumption that K = K. We need to show that [x, y] = 0 for all
y ∈ T or, in other words, that adT x = 0. We will thus show that adx has no nonzero
eigenvalues. Of course, the assertion is trivial for x = 0, so let x 6= 0.

Suppose that adx(y) = [x, y] = ay for some 0 6= a ∈ K and some y ∈ T . Then
z := adT y(x) = [y, x] = −ay. It follows that z is an eigenvector of adT y, since adT y(z) =
[y,−ay] = 0. On the other hand, since adT y is also diagonalisable, we can find a basis
of T consisting of eigenvectors (v1, . . . , vn) of adT y. Say, adT y(vi) = µivi and write
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x =
∑n

i=1 aivi. Then

z = adT y(x) = adT y(
n∑
i=1

aivi) = [y,
n∑
i=1

aivi] =
n∑
i=1

aiµivi

and thus

0 = adT y(z) =
n∑
i=1

aiµ
2
i vi,

hence ai = 0 for all indices i where µi 6= 0. Hence, x =
∑
aivi, where vi ker adT y, so

x ∈ ker adT y, a contradiction. Therefore, adx(y) = 0 for all y ∈ T , so T is indeed
abelian. �

Now fix a maximal toral subalgebra of g. We will denote such an algebra by h. By the
lemma, adg h is a commuting family of diagonalisable endomorphisms of g. Therefore,
adg h is simulteneously diagonalisable, that is, there exists a basis of common eigenvectors
for all elements of adg h. In other words, g can be written as a direct sum of subspaces

gα := {x ∈ g | adh(x) = [h, x] = α(h)x ∀h ∈ h},
where α ∈ h∗. Indeed, if x ∈ g is a common eigenvector for all h ∈ h, then [h, x] = λhx
for some λh ∈ K. Clearly, the map h � //λh is linear, hence an element in h∗.

Note that by definition g0 = {x ∈ g | [h, x] = 0 ∀h ∈ h} = Cg(h). By Lemma 12.1,
h ⊂ g0.

Definition. Let g be a semisimple Lie algebra and h a maximal toral subalgebra. The
set of all 0 6= α ∈ h∗ for which gα 6= 0 will be denoted by Φ; the (finitely many) elements
of Φ are called the roots of g relative to h. The decomposition

g = g0 ⊕
⊕
α∈Φ

gα

is called the root space decomposition or the Cartan decomposition.
{p:Cartandec}

Proposition 12.2. Let g, h and Φ be as above. Then

(1) For all α, β ∈ h∗, we have [gα, gβ] ⊂ gα+β.
(2) If x ∈ gα for α 6= 0, then adx is nilpotent.
(3) We have κ(gα, gβ) = 0 for α, β ∈ h∗ and α 6= −β.

Proof. Let x ∈ gα, y ∈ gβ and h ∈ h. Then

adh[x, y] = [h, [x, y]] = −[x, [y, h]]− [y, [h, x]]

= [x, [h, y]] + [[h, x], y] = β(h)[x, y] + α(h)[x, y]

= (α + β)(h)[x, y].

This proves (1). To see (2), let x ∈ gα and write any y ∈ g as y0 +
∑

β∈Φ yβ with respect

to the Cartan decomposition. By (1), adx(yβ) ∈ gα+β, adx2(y) ∈ g2α+β and so on.
Hence, by the finiteness of the direct sum, adx is nilpotent on

⊕
β∈Φ

gβ. On the other
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hand, adx(y0) ∈ gα so by the same argument adx is nilpotent on g0. Therefore, ad x is
indeed nilpotent.

Finally, to see (3), let h ∈ h be an element such that (α + β)(h) 6= 0 and use the
associativity of the Killing form to compute, for x ∈ gα and y ∈ gβ:

α(h)κ(x, y) = κ([h, x], y) = −κ([x, h], y)

= −κ(x, [h, y]) = −β(h)κ(x, y),

hence (α + β)(h)κ(x, y) = 0, so κ(x, y) = 0. �
{c:Cartandec}

Corollary 12.3. The restriction of the Killing form to g0 = Cg(h) is nondegenerate.

Proof. By Proposition 12.2(3), κ(g0, gα) = 0 for all α ∈ Φ. If x ∈ g0 is orthogonal to g0,
then κ(x, g) = 0. But κ is nondegenerate by Theorem 8.5, so x = 0. �

We have seen that h ∈ g0 = Cg(h). We will now show equality. For this record the
following obvious fact.

(�): If x, y are commuting elements in a ring such that y is nilpotent, then xy is
nilpotent.

{p:ToralCentr}
Proposition 12.4. Let h be a maximal toral subalgebra of g. Then h = Cg(h).

Proof. Write C = Cg(h).
Claim 1 : The algebra C contains the semisimple and nilpotent parts of its elements.
Indeed, x ∈ C if and only if adx(h) = 0. By Proposition 6.2(3), the same holds for

the semisimple and nilpotent parts of adx, that is, (ad x)s and (adx)n. By the discussion
before Theorem 10.2, (adx)s = adxs and similarly for (adx)n. Hence, adxs and adxn
map h to 0, so they are in C by definition of C.

Claim 2: All semisimple elements of C lie in h.
Let x be a semisimple element in C. Then h + Kx is an abelian subalgebra of g and

it is toral, since the sum of commuting semisimple elements is again semisimple. Since
h is maximal, h +Kx = h, hence x ∈ h.

Claim 3: The restriction of the Killing form κ to h is nondegenerate.
Let h ∈ h be an element such that κ(h, h) = 0. If x ∈ C is a nilpotent element (recall

that this means that adx is nilpotent), then xy is nilpotent for all y ∈ h by (�), because
[x, h] = 0, so in particular adx commutes with ad y. Therefore, κ(x, y) = tr(ad x ad y) =
0 for all y ∈ h. Now write any c ∈ C as c = s + n, where s is semisimple and n is
nilpotent. By Claim 2, s ∈ h, so κ(h, s) = 0. By Claim 1, n ∈ C and n is nilpotent,
so by the previous argument, κ(h, n) = 0. In summary, κ(h, c) = 0 for all c ∈ C. But
h ⊂ C and κ is nondegenerate on C by Corollary 12.3, which forces h = 0.

Claim 4: The algebra C is nilpotent.
Let x ∈ C. If x is semisimple, then x ∈ h by Claim 2, so adC x is zero and thus

nilpotent. If x ∈ C is nilpotent, then adC x is of course also nilpotent. Thus, let x ∈ C
be arbitrary and write x = xs + xn. By Claim 1, xs and xn are in C, hence they are
nilpotent, being a sum of nilpotent elements. We conclude by Engel’s Theorem 4.13.

Claim 5: h ∩ [C,C] = 0.
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By definition, [h, C] = 0. By the associativity of κ, we have κ(h, [C,C]) = κ(C, [h, C]) =
0. So if z ∈ h ∩ [C,C], then κ(h, z) = 0 for all h ∈ h, forcing z = 0 by Claim 3.

Claim 6: The algebra C is abelian.
Assume the converse. Then [C,C] 6= 0. By Claim 4, C is nilpotent. We now claim

that Z(C) ∩ [C,C] 6= 0. This follows from the following general statement.
(∗): If D is a nilpotent Lie algebra and 0 6= I is an ideal in D, then I ∩ Z(D) 6= 0.
Indeed, D acts on I via the adjoint representation, so by Lemma 4.16 there exists a

vector 0 6= v ∈ I such that D.v = 0. In other words, v ∈ Z(D).
So, applying (∗) to I = [C,C] gives that Z(C)∩ [C,C] 6= 0. Let z ∈ Z(C)∩ [C,C] be a

nonzero element. Since z ∈ [C,C], by Claim 5 z /∈ h, so by Claim 2, z is not semisimple.
Thus its nilpotent part n is nonzero and lies in C by Claim 1. Since z ∈ Z(C), n ∈ Z(C)
by Proposition 6.2(2). Then κ(n,C) = 0 by (�), contradicting Corollary 12.3.

Claim 7: h = C.
Otherwise, C contains a nonzero nilpotent element x by a combination of Claims 1

and 2. By Claim 6 and (�), κ(x, y) = tr(adx ad y) = 0 for all y ∈ C, contradicting
Corollary 12.3. �

{c:Kappah}
Corollary 12.5. The restriction of κ to h is nondegenerate. �

Since κ is nondegenerate when restricted to h, it identifies h and h∗, that is, the map

h // h∗, h � //κ(−, h)

is an isomorphism. In other words, for all φ ∈ h∗ there exists a unique tφ ∈ h such that

φ(h) = κ(tφ, h) ∀h ∈ h.
{p:InteProp}

Proposition 12.6. Let g, h, Φ be as above.

(1) Φ spans h∗.
(2) If α ∈ Φ, then −α ∈ Φ.
(3) If α ∈ Φ, x ∈ gα, y ∈ g−α, then [x, y] = κ(x, y)tα.
(4) If α ∈ Φ, then [gα, g−α] is one dimensional, with basis tα.
(5) α(tα) = κ(tα, tα) 6= 0 for any α ∈ Φ.
(6) If α ∈ Φ and 0 6= xα ∈ gα, then there exists an element yα ∈ g−α such that

xα, yα, hα := [xα, yα] span a three dimensional subalgebra of g isomorphic to
sl(2, K) via the map xα

� //X, yα
� //Y and hα

� //H.
(7) hα = 2tα

κ(tα,tα)
, hα = −h−α.

Proof. (1) If Φ does not span h∗, then, using the isomorphism h ' h∗ given by κ,
there exists an element 0 6= h ∈ h such that α(h) = 0 for all α ∈ Φ. In other
words, [h, gα] = 0 for all α ∈ Φ. But [h, h] = 0 since h is abelian, so [h, g] = 0,
that is, h ∈ Z(g) = 0, contradiction.

(2) If α ∈ Φ, hen κ(gα, gβ) = 0 for all β 6= −α ∈ h∗ by Proposition 12.2(3). If
−α /∈ Φ, then g−α = 0, so κ(gα, gβ) = 0 for all β ∈ h∗, hence κ(gα, g) = 0,
contradiction to the nondegeneracy of κ.
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(3) Let α ∈ Φ, x ∈ gα, y ∈ g−α. Let h ∈ h be arbitrary. Since κ is associative, we
have

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(tα, h)κ(x, y)

= κ(κ(x, y)tα, h) = κ(h, κ(x, y)tα),

so κ(h, [x, y] − κ(x, y)tα) = 0 for all h. Since [x, y] and κ(x, y)tα are both in h,
the nondegeneracy of κ on h implies that [x, y]− κ(x, y)tα = 0.

(4) We have seen in (3) that tα spans [gα, g−α], assuming of course [gα, g−α] 6= 0. Let
0 6= x ∈ gα. If κ(x, g−α) = 0, then, as in the proof of (2), one immediately sees
that κ(x, g) = 0, hence x = 0, contradiction. Therefore, there exists an element
0 6= y ∈ g−α such that κ(x, y) 6= 0.

(5) Suppose α(tα) = 0. Then α(tα)x = [tα, x] = 0 = [tα, y] for all x ∈ gα and y ∈ g−α
(recall that tα ∈ g0). As in (4) one can find x, y such that κ(x, y) 6= 0. Scaling
one of them, we can wlog assume that κ(x, y) = 1. Then [x, y] = tα by (3). It
follows that S = spanK(x, y, tα) is a three dimensional solvable subalgebra of g,
because S(1) = spanK(tα), hence S(2) = 0. One checks that S ' adg S ⊂ gl(g).
By Corollary 7.4, adg x is nilpotent for any x ∈ [S, S]. In particular, adg tα is
nilpotent. But tα is also semisimple (being in h), hence adg tα = 0. Therefore,
tα ∈ Z(g) = 0, contradiction.

(6) Let 0 6= x ∈ gα and find y ∈ g−α such that κ(xα, yα) = 2
κ(tα,tα)

which is possible

by (4) and (5). Set hα = 2tα
κ(tα,tα)

and note that then [xα, yα] = hα by (3). Also

note in passing that α(hα) = 2 by (5).
We now have

[hα, xα] =
2

α(tα)
[tα, xα] =

2α(tα)

α(tα)
xα = 2xα,

where we used that tα ∈ h, xα ∈ gα for the second equality. Similarly one
shows that [hα, yα] = −2yα. Therefore, xα, yα and hα span a three dimensional
subalgebra of g which has the same multiplication table as sl(2, K).

(7) The first assertion was the definition of hα.
We defined tα by the equation κ(tα, h) = α(h) for all h ∈ h. This immediately

shows that tα = −t−α and hence hα = −h−α.
� {r:Coroot}

Remark 12.7. We have seen in the course of the proof that for every root α ∈ Φ ⊂ h∗

there exists an element hα ∈ [gα, g−α] ⊂ h with the property that α(hα) = 2. Such an
element is frequently called the coroot or dual root and denoted by α∨.

We now prove the following
{l:RootTrace}

Lemma 12.8. Let g, h, Φ be as above. If α ∈ Φ, then dimK gα = 1 and Zα ∩ Φ =
{α,−α}.
Proof. Pick xα ∈ gα and yα ∈ g−α such that [xα, yα] = hα. Consider the space Q
spanned over K by yα, hα and all the spaces gtα for t ≥ 1 (t ∈ N). Note that adxα(Q) ⊂
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Q, by Proposition 12.2(1). Similarly, adhα and ad yα leave Q invariant, since adhα
acts diagonally on all components involved and for ad yα we again invoke Proposition
12.2(1) (and note that it acts trivially on Kyα). Now adhα = ad[xα, yα] = [adxα, ad yα].
Therefore, tr(adhα) = 0. On the other hand, hα acts on Q diagonally, namely via −2
on Kyα, via 0 on Khα and on gtα it acts as a diagonal matrix with entry 2t. Therefore,
setting dβ = dimK gβ, we have

0 = tr adhα = −2 + 2dα + 4d2α + 6d3α + . . .

Here, the sum is of course finite. It follows that dα = 1 and dtα = 0 for all t ≥ 2. �
{p:RootTrace}

Proposition 12.9. Let g, h, Φ be as above. If α ∈ Φ, then Kα ∩ Φ = {α,−α}.

Proof. Consider the subspace M of g spanned by h along with the spaces gcα for c ∈
K∗. By Proposition 12.2(1) this is an Sα-submodule of g, where Sα ' sl(2, K) is the
subalgebra of g constructed in Proposition 12.6(6). Note that by Lemma 12.8, Sα is the
span of hα, gα and g−α.

Now, since M is a representation of Sα, the eigenvalues of hα on M are integers by
Corollary 11.5. By construction, hα acts on gcα with eigenvalue 2c, so 2c ∈ Z for all
c ∈ K∗ or, in other words, c ∈ 1

2
Z.

By Weyl’s theorem, M = ⊕n≥0V (n)µ(n), where V (n) is the irreducible Sα-representation
of dimension n+ 1. Note that M0 = h. By Corollary 11.5,

∑
n µ(n) = dimM0 + dimM1.

It follows that
∑

2n≥0 µ(2n) = dim h. Set dim h = l. Note that ker(α) ⊂ h is (dim h− 1)-

dimensional (it is the complement to hα), so V (0)l−1 ⊂ h ⊂ M . On the other hand,
V (2) ' Sα ⊂M as well. Write Mev for the part of M belonging to the even n. It follows
that Mev = h⊕Sα. In particular, the only even weights occurring in M are 0, 2 and −2.
Note that this implies that if α is a root, then 2α is not a root. Therefore, 1

2
α is not a

root (since α is). Hence, 1 is not a weight of hα in M (because α(hα) = 2 and α
2

is not a
root, there is no element β ∈ Φ such that β(hα) = 1), implying that M = Mev = h⊕Sα.
The latter shows that Kα ∩ Φ = {±α}. �

Now let us understand how the algebra Sα acts on the root spaces gβ if β 6= ±α. Set
N = ⊕i∈Zgβ+iα. By Lemma 12.8, the space gβ+iα is one dimensional if β + iα is a root.
Also note that β + iα 6= 0 by choice of β and Proposition 12.9. Similar arguments as
in the case of M show that N is an Sα-submodule of g. If β + iα ∈ Φ, then the action
of hα on the one dimensional space gβ+iα is given by β(hα) + iα(hα) = β(hα) + 2i ∈ Z
by Remark 12.7. Hence, the eigenvalues of hα on N are all of this form. In particular,
either 0 or 1 can occur as a weight. By Corollary 11.5 this implies that the number
of summands in a decomposition of N into irreducible submodules is 1, which is the
dimension of the eigenspace to eigenvalue 0 or 1. In other words, N is irreducible. These
arguments eventually lead to

{p:InteRoots}
Proposition 12.10. Let g, h, Φ be as above. Then

(1) If α ∈ Φ, then dim gα = 1. In particular, the algebra Sα constructed in Propo-
sition 12.6(6) is the direct sum of gα, g−α and Hα = [gα, g−α]. Furthermore,
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for a given 0 6= xalpha ∈ gα there exists a unique 0 6= yalpha ∈ g−α such that
[xα, yα] = hα.

(2) If α ∈ Φ, then Kα ∩ Φ = {±α}.
(3) If α, β ∈ Φ, then β(hα) ∈ Z and β − β(hα)α ∈ Φ.
(4) If α, β, α + β ∈ Φ, then [gα, gβ] = gα+β.
(5) Let α, β ∈ Φ, β 6= ±α. Let r and q be the largest integers for which β − rα and

β + qα are roots. Then β + iα ∈ Φ for all −r ≤ i ≤ q and β(hα) = r − q.
(6) g is generated by the root spaces gα as a Lie algebra.

Proof. Statements (1) and (2) are Lemma 12.8 and Proposition 12.9, respectively.
To see (4) note that [gα, gβ] ⊂ gα+β by Proposition 12.2(1). Now gα ⊂ Sα acts on N ,

hence on gβ ⊂ N and N is irreducible. By Lemma 11.3(3), the bracket [gα, gβ] is not
trivial. Since all three spaces occurring in (4) are one dimensional, this shows the claim.

To prove (5), just note that if β − rα is a root, then gβ−rα 6= 0 and hα acts on it with
weight β(hα)− 2r. Similarly, if β + qα is a root, then gβ+qα 6= 0 and hα acts on it with
weight β(hα) + 2q. Since N is irreducible, the weights of hα on it form an arithmetic
progression with difference 2, so the roots β + iα form a string β − rα, . . . , β + qα. Also
note that, since the lowest and the highest weight of the action of hα on N have the
same absolute value, we have

β(hα)− 2r = −β(hα)− 2q,

so β(hα) = r − q, showing (5).
To see (6) recall that Φ spans h∗, so the set {hα | α ∈ Φ} spans h, because sending

α to hα defines an isomorphism h ' h∗. By (1), any hα can be generated by the root
spaces gα, hence (6) holds.

It remains to show (3). We have seen above that, for any i ∈ Z such that β + iα ∈ Φ,
we have β(hα) + iα(hα) = β(hα) + 2i ∈ Z, so β(hα) ∈ Z. Now, the second claim of (3) is
obvious if β = ±α, so assume that β 6= ±α. The eigenvalue of hα on gβ is of course β(hα)
and the eigenvalue of hα on 0 6= g−β is −β(hα) = β(hα) − 2β(hα) = (β − β(hα)α)(hα).
This equation means that there is an eigenvector of hα with eigenvalue −β(hα), that is,
that the space gβ−β(hα)α is not trivial. �

Let us rewrite some of the statements we have proved. Recall that if α ∈ Φ, then
hα = 2tα

κ(tα,tα)
, so for any β ∈ Φ we have

β(hα) =
2β(tα)

κ(tα, tα)
.

The Killing form is nondegenerate on h by Corollary 12.5, hence h∗ ' h, where φ =
κ(tφ,−) ∈ h∗ is sent to tφ ∈ h. Therefore, we can define, for any γ, γ′ ∈ h∗:

(12.1) {eq:Bilform} (γ, γ′) := κ(tγ, tγ′).

Thus the above equation reads

(12.2) {eq:R1} β(hα) =
2β(tα)

κ(tα, tα)
=

2

κ(tα, tα)
κ(tβ, tα) =

2(β, α)

(α, α)
∈ Z.
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This element is indeed in Z by Proposition 12.10(3).
Rewriting the second statement of Proposition 12.10(3) gives

(12.3) {eq:R2} β − 2(β, α)

(α, α)
α ∈ Φ.

Lemma 12.11. Let g, h and Φ be as above. The elements hα for α ∈ Φ span h.

Proof. let h be in the orthogonal complement with respect to κ to the span of the hα in
h. Let α ∈ Φ and xα ∈ gα, yα ∈ g−α be as above. Then

0 = κ(h, hα) = κ(h, [xα, yα])

= κ([h, xα], yα) = α(h)κ(xα, yα).

Since κ(xα, yα) 6= 0 by the proof of Proposition 12.6(6), we conclude that α(h) = 0 for
all α ∈ Φ. In other words, [h, gα] = 0 for all α ∈ Φ. Since in any case, [h, h] = 0, we get
[h, g] = 0, hence h = 0. �

Proposition 12.12. Consider the vector space E∗ := hK′ := spanK′(hα)α∈Φ, where
K ′ = Q or R. Then for any t1, t2 ∈ hK′, the number κ(t1, t2) is in K ′. Furthermore, κ
is positive definite on hK′. In other words, hK′ is a rational/real vector space endowed
with a scalar product.

The same statements hold for E = spanK′(α)α∈Φ.

Proof. Let h, h′ ∈ h. Then (compare Exercise 2 on Sheet 10)

κ(h, h′) = tr(adh adh′) =
∑
α∈Φ

α(h)α(h′),

since the elements h and h′ act as multiplication with α(h) and α(h′) on gα, respectively.
The second claim is clear by Equation (12.1). �

Let us summarise the facts we proved so far.
{t:Roots}

Theorem 12.13. Let g be a semisimple Lie algebra, h be a maximal toral subalgebra,
g = h ⊕

⊕
α∈Φ gα be the Cartan decomposition of g with respect to h and E be the real

vector space spanned by the elements of Φ. Then the following statements hold.

(1) Φ spans E and 0 /∈ Φ.
(2) If α ∈ Φ, then −α ∈ Φ, but no other scalar multiple of α is an element in Φ.

(3) If α, β ∈ Φ, then 2(β,α)
(α,α)

∈ Z.

(4) If α, β ∈ Φ, then β − 2(β,α)
(α,α)

α ∈ Φ.

Proof. (1) is Proposition 12.6(1) and the definition of Φ, (2) is Proposition 12.9, (3) is
Equation (12.2) and (4) is Equation (12.3). �

This is the first step on the way to proving Theorem 1.12. Namely, we have set up a
correspondence which sends a pair (g, h) to a pair (E,Φ). We thus need to classify the
pairs (E,Φ), check that the correspondence is actually 1-1 and does not depend on the
choice of h.
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13. Root systems

Definition. Let V be a finite dimensional Euclidean vector space with scalar product
( , ). A reflection in V is an invertible linear transformation whose fixed point locus is
some hyperplane.

If 0 6= v ∈ V is arbitrary, then the corresponding reflection is

sv : V //V, w � //w − 2(w, v)

(v, v)
v.

Note that sv(v) = −v and sv(w) = w when w ∈ Pv = {z ∈ V | (z, v) = 0}. Clearly, a
reflection is an isometry and is of order 2 in GL(V ).

We will frequently write 〈w, v〉 for 2(w,v)
(v,v)

.
{l:refl}

Lemma 13.1. Let Φ be a finite set which spans V . Assume 0 /∈ Φ and suppose that
for all α ∈ Φ the reflection sα maps Φ to itself. If σ ∈ GL(V ) leaves Φ invariant, fixes
pointwise a hyperplane P of V and sends some nonzero α ∈ Φ to −α, then σ = sα and
P = Pα.

Proof. Consider the element τ := σsα ∈ GL(V ). Clearly, τ(Φ) = Φ, and τ(α) = α, so
τ acts as identity on Rα. On the other hand, both σ and sα act as identity on V/Rα,
hence τ does as well. We conclude that all the eigenvalues of τ are equal to 1, hence its
minimal polynomial divides (T − 1)dim(V ).

Now, Φ is finite by assumption, so for any β ∈ Φ there exists a positive integer kβ such
that τ kβ(β) = β, because the set {β, τ(β), τ 2(β), . . .} is a subset of Φ. Letting k =

∏
β kβ

we see that τ k(β) = β for all β ∈ Φ. Since Φ spans V by assumption, this means that
τ k = idV , hence the minimal polynomial of τ divides T k − 1. Therefore, the minimal
polynomial of τ divides the greatest common divisor (g.c.d.) of T k−1 and (T −1)dim(V ).
Since the g.c.d. is T−1, the minimal polynomial of τ is T−1. In other words, τ = id. �

Definition. Let V be a finite dimensional Euclidean vector space. A subset Φ of V is
called a root system if the following conditions are satisfied.

(R1) The set Φ is finite, spans E and 0 /∈ Φ.
(R2) If α ∈ Φ, then −α ∈ Φ, but no other scalar multiple of α is an element in Φ.

(R3) If α, β ∈ Φ, then β − 2(β,α)
(α,α)

α = sα(β) ∈ Φ.

(R4) If α, β ∈ Φ, then 2(β,α)
(α,α)

= 〈β, α〉 ∈ Z.

The elements of Φ are called roots. The rank of Φ is the dimension of V .

In other words, we have seen that the Cartan decomposition provides us with a root
system. In the following we will investigate properties of root systems.

Definition. Let Φ be a root system in V . The Weyl group of Φ is the subgroup W of
GL(V ) generated by the reflections sα for α ∈ Φ.

Note that (R3) implies that W permutes the set Φ, hence can be considered as a
subgroup of the symmetric group S|Φ|. In particular, W is a finite group.
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{l:Weylgroup}
Lemma 13.2. Let Φ be a root system in V with Weyl group W . If τ ∈ GL(V ) leaves Φ
invariant, then τsατ

−1 = sτ(α) for all α ∈ Φ and 〈β, α〉 = 〈τ(β), τ(α)〉 for all α, β ∈ Φ.

Proof. Since sα(β) ∈ Φ, we have τsατ
−1(τ(β)) = τsα(β) ∈ Φ. Computing the latter

explicitly gives
τsα(β) = τ(β − 〈β, α〉α) = τ(β)− 〈β, α〉τ(α).

Since τ is an automorphism of Φ, τ(β) runs over Φ when β runs over Φ. This means
that τsατ

−1 leaves Φ invariant. Note that for any v ∈ Pα we have

τsατ
−1(τ(v)) = τ(v)

and, furthermore, τsατ
−1(τ(α)) = −τ(α). By Lemma 13.1 (τ leaves τ(Pα) invariant),

τsατ
−1 = sτ(α). Now compute

τ(β)− 〈β, α〉τ(α) = τsατ
−1(τ(β)) = sτ(α)(τ(β)) = τ(β)− 〈τ(β), τ(α)〉τ(α).

Therefore, 〈β, α〉 = 〈τ(β), τ(α)〉 for all α, β ∈ Φ. �

Definition. Let Φ be a root system in V and Φ′ be a root system in V ′. The pairs
(V,Φ) and (V ′,Φ′) are called isomorphic if there exists an isomorphism of vector spaces
f : V //V ′ mapping Φ into Φ′ such that 〈f(β), f(α)〉 = 〈β, α〉 for all α, β ∈ Φ.

Note that we do not assume f to be an isometry. Also note that

sf(α)(f(β)) = f(β)− 〈f(β), f(α)〉f(α) = f(β)− 〈β, α〉f(α) = f(sα(β)).

In particular, an isomorphism of root systems induces an isomorphism of Weyl groups
W //W ′ given by σ � // f ◦ σ ◦ f−1.

Note that by Lemma 13.2 an automorphism of a root system Φ is the same thing as
an automorphism of V which leaves Φ invariant.

Example 13.3. If V ' R, then the only root system in V is Φ = {1,−1}. This root
system is denoted by A1. Its Weyl group is isomorphic to S2.

Before giving more interesting examples, let us examine the restrictions the axioms
impose on a pair of roots. So, let α, β ∈ Φ be two roots. Recall that the angle θ between
two vectors v and w in a Euclidean vector space is defined by

‖v‖‖w‖ cos(θ) = (v, w).

Now,

〈β, α〉 =
2(β, α)

(α, α)
=

2(β, α)

‖α‖2
= 2
‖β‖
‖α‖

cos(θ).

This implies (exchange α and β in the previous formula) that

4 cos2(θ) = 〈β, α〉〈α, β〉.
Since 0 ≤ cos2(θ) ≤ 1, this means that

0 ≤ 〈β, α〉〈α, β〉 ≤ 4.
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Table 1.
{tab:1}

〈α, β〉 〈β, α〉 cos(θ) θ ‖β‖2
‖α‖2

0 0 0 π
2

??
1 1 1

2
π
3

1
−1 −1 −1

2
2π
3

1

1 2
√

2
2

π
4

2

−1 −2 −
√

2
2

3π
4

2

1 3
√

3
2

π
6

3

1 −3 −
√

3
2

5π
6

3

Now note that 〈β, α〉 and 〈α, β〉 are either both nonpositive or both nonnegative. So,
without loss of generality, let us assume that 〈α, β〉 ∈ {0, 1,−1}. This leads to the
following possibilities

{ex:RootsR2}
Example 13.4. Let us describe some root systems in V = R2. Note that any root
system has at least four roots, since it has to span V and for any root its negative is also
a root. Using the above table, we get the following root systems.

α

β
A1 × A1

α

β A2

α

β B2
α

β

G2

Here, the A1×A1 corresponds to the first line in the table, A2 corresponds to the third,
B2 corresponds to the fifth and G2 corresponds to the seventh line.

Note that, for example, the Weyl group of A1 × A1 is isomorphic to Z/2Z× Z/2Z.

The following result will be useful later on.
{l:roots1}

Lemma 13.5. Let Φ be a root system in V and let α, β be nonproportional roots. If
(α, β) > 0, then α− β is a root. If (α, β) < 0, then α + β is a root.

Proof. Note that (α, β) is positive if and only if 〈α, β〉 is. According to the table above,
this means that either 〈α, β〉 = 1 or 〈β, α〉 = 1. If 〈α, β〉 = 1, then sβ(α) = α − β ∈ Φ
by (R3). If 〈β, α〉 = 1, then sα(β) = β − α ∈ Φ, again by (R3), and then sβ−α(β − α) =
α− β ∈ Φ.

The second claim follows from the first by applying it to −β instead of β. �
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Let us put this lemma to use. Consider nonproportional roots α and β and the α-
string through β which by definition are all roots of the form β + iα for i ∈ Z. Let
r, q ∈ Z>0 be the largest integers for which β − rα ∈ Φ and β + qα ∈ Φ. If there exists
an i with −r < i > q such that β + iα /∈ Φ, we can find p < s such that β + pα ∈ Φ,
β + (p + 1)α /∈ Φ, β + sα ∈ Φ, β + (s − 1)α /∈ Φ (indeed, if, for instance, i is the only
element with the above property, we can simply take p = i− 1 and s = i+ 1, otherwise
call the smallest i with this property i− and the biggest i+ and set p = i− − 1 and
s = i+ + 1).

Since α+(β+pα) is not a root, by Lemma 13.5 we have the inequality (α, β+pα) ≥ 0.
Similarly we get the inequality (α, β + sα) ≤ 0. A short computation then gives p ≥ s,
a contradiction. Therefore, the α-string through β is unbroken, that is, an element i as
above never exists. Any such string is invariant under sα, which after all only adds and
subtracts multiples of α. A moment’s thought shows that sα reverses the string (the
string corresponds to the sequence −r,−r + 1, . . . , q − 1, q; write z = 〈β, α〉, then sα
maps q to −(q + x), −r to (r − x) etc., now use that α gives a bijection), hence

β − rα = sα(β + qα) = β − 2
(β + qα, α)

(α, α)
α = β − 〈β, α〉α− qα

thus r − q = 〈β, α〉. Therefore, all strings are of length at most 4.

Definition. Let Φ be a root system in an l-dimensional Euclidean space V . A subset ∆
of Φ is called a base if

(B1) ∆ is a basis of V .
(B2) each root β can be (by (B1) in a unique way) written as β =

∑
α∈∆ kαα with

kα ∈ Z and all kα ≥ 0 or all kα ≤ 0.

The elements of ∆ are called simple roots.
The height of a root β with respect to a base ∆ is defined to be the integer ht(β) =∑
α∈∆ kα.
A root β is called positive if all the kα are nonnegative and negative if all the kα are

nonpositive. Write β > 0 in the former case and β < 0 in the latter.

As an example consider the root system A1 ×A1. Taking e1 and e2 as ∆, we see that
these are the only positive roots and their negatives are the only negative roots. If we
consider the root system A2 and take α and β from the picture, then their sum is also a
positive root. The other three roots are all negative.

The collection of all positive roots with respect to a base ∆ is denoted by Φ+(∆) or
simply Φ+. For the negative roots we will write Φ−(∆) = Φ−. Note that if α and β are
in Φ+ and α + β is a root, then α + β ∈ Φ+. Also note that Φ− = −Φ+.

{l:AngleNotroot}
Lemma 13.6. If ∆ is a base of Φ, then (α, β) ≤ 0 whenever α 6= β ∈ ∆, and α − β is
not in Φ.

Proof. Assume to the contrary that (α, β) > 0. By assumption, α 6= β and, of course, α
cannot be equal to −β. By Lemma 13.5, α− β is a root. But this contradicts (B2). �
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{l:Samesidehyper}
Lemma 13.7. Let 0 6= v ∈ V . If w1, . . . , wk are vectors in V with the property that
(wi, v) > 0 for all i and (wi, wj) ≤ 0 for all i 6= j, then the vectors w1, . . . , wk are
linearly independent.

Proof. Let
∑k

i=1 aiwi = 0 and set I+ = {i | ai > 0}, I− = {i | ai < 0}. Then
n =

∑
i∈I+ aiwi =

∑
i∈I−(−ai)wi. Note that

(n, n) =
∑

i∈I+,j∈I−
ai(−aj)(wi, wj) ≤ 0,

hence n = 0. Then
0 = (n, v) =

∑
i∈I+

ai(wi, v),

a contradiction, since the right hand side is a sum of positive numbers. Therefore, I+ = ∅
and similarly one shows that I− = ∅. �

Our next order of business is proving that every root system admits a base. First we
need some notation. If v ∈ V , then write

Φ+(v) = {α ∈ Φ | (α, v) > 0}.
It is clear how to define Φ−(v).

Definition. Let Φ be a root system of rank l in V .
A vector v ∈ V is called regular if v ∈ V \

⋃
α∈Φ Pα.

A root α ∈ Φ+(v) is called decomposable if α = β1 + β2 with βi ∈ Φ+(v). Otherwise,
call α indecomposable.

Note that if v is regular, then Φ = Φ+(v) ∪ Φ−(v), since otherwise there would exist
an α ∈ Φ such that (α, v) = 0.

{t:BaseRootSys}
Theorem 13.8. Every root system Φ has a base.

In fact, we will prove the following more precise
{t:BaseRootSys1}

Theorem 13.9. If v ∈ V is a regular vector, then the set ∆(v) of all indecomposable
roots in Φ+(v) is a base of Φ. Furthermore, every base of Φ is obtained in this manner.

Proof. Claim 1: Each root in Φ+(v) is a nonnegative Z-linear combination of elements
in ∆(v).

Assume on the contrary that there exists an α in Φ+(v) which cannot be written in
the stated way. Choose an α such that (α, v) is minimal (possible since Φ+(v) ⊂ Φ is
finite). In particular, α /∈ ∆(v), hence α = β1 + β2 with βi ∈ Φ+(v). Since

(α, v) = (β1, v) + (β2, v),

both summands on the left are positive and (α, v) was chosen minimal, we conclude that
both β1 and β2 satisfy the claim, hence so does α.

Claim 2: If α, β ∈ ∆(v), then (α, β) ≤ 0, unless α = β.



52 P. SOSNA

Assume (α, β) > 0. Then of course, α 6= ±β, so by Lemma 13.5, α − β is a root. In
particular, either α−β ∈ Φ+(v) or β−α ∈ Φ+(v). In the first case, α = β+(α−β) which
means that α is decomposable. In the second case, β = α+ (β −α) is decomposable. In
either case, we get a contradiction.

Claim 3: The set ∆(v) is linearly independent.
This follows from Claim 2 and Lemma 13.7.
Claim 4: The set ∆(v) is a base of Φ.
Recall that Φ = Φ+(v) ∪ Φ−(v). Claim 1 shows that (B2) is satisfied. It is also clear

that ∆(v) spans V , hence by Claim 3, ∆(v) is indeed a base of Φ.
Claim 5: Each base ∆ of Φ is of the form ∆(v) for some regular v.
Let ∆ be given. Choose v ∈ V so that (v, α) > 0 for all α ∈ ∆. Note that this is

possible since the intersection of the finitely many positive open half-spaces associated
with any basis of V is non-empty. By (B2), (v, α) 6= 0 for all α ∈ Φ. In other words, v is
regular. Furthermore, Φ+ ⊂ Φ+(v) (any positive Z-linear combination of elements of ∆
has positive scalar product with v) and Φ− ⊂ Φ−(v), hence equality holds in both cases
(e.g., if β ∈ Φ+(v), then (β, v) > 0, so β must be a positive combination of ∆-elements).

Now let α ∈ ∆. By the above arguments α ∈ Φ+(v). If α were decomposable, then we
would be able to write it as a linear combination of at least two elements in ∆. Hence,
α is indecomposable. In other words, ∆ ⊂ ∆(v). But both sets have cardinality l, so
they are equal. �

Of course, in dimension 1 and 2 it is easy to construct a basis just by looking at the
pictures. The reader is invited to construct all possible bases for l = 2.

In order to continue, we need a notion from topology. A topological space X is called
connected if it cannot be written as a disjoint union of open subsets. There is a partial
order on connected subsets of X given by inclusion. The maximal elements with respect
to this ordering are called connected components. These are disjoint. Indeed, if U1 and
U2 are connected components and they were to intersect, then their union would be a
strictly larger connected subset, contradiction. For example, if X is connected, then
there is only one connected component, namely X itself. If X = {(x, y) ∈ R2 | x 6= 0}
with the subspace topology, then X = {(x, y) ∈ R2 | x > 0} ∪ {(x, y) ∈ R2 | x < 0} is
the decomposition into connected components.

Definition. Let V be a finite dimensional Euclidean vector space, Φ a root system in
V . The connected components of the space

V \
⋃
α∈Φ

Pα

are called the Weyl chambers of V .

In particular, every regular vector v belongs to exactly one Weyl chamber (since the
Weyl chambers are disjoint), denoted by C(v). If C(v) = C(w), then v and w lie one
the same side of Pα for all α ∈ Φ (that is, ∀α ∈ Φ either (v, α) > 0 and (w, β) > 0 or
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(v, α) < 0 and (w, β) < 0). Therefore, Φ+(v) = Φ+(w) and ∆(v) = ∆(w). We thus have
proved

{p:ChambersBases}
Proposition 13.10. There exists a one-to-one correspondence between bases of a root
system and the Weyl chambers. �

Definition. If ∆ = ∆(v), we thus can write C(∆) for C(v). This is called the funda-
mental Weyl chamber relative to ∆.

Note that the fundamental chamber consists of all v ∈ V which satisfy the inequalities
(v, α) > 0 for all α ∈ ∆. In other words, C(v) is the intersection of the open half-spaces
{z | (z, α) > 0} for α running over ∆. Clearly, this set is open, being a finite intersection
of open sets. It is also convex, that is, for w,w′ ∈ C(v), the line segment (1− t)w + tw′

is contained in C(v) for all t ∈ [0, 1].

Example 13.11. Let us consider the situation in the example of A2. We pick {α, β} as
a base.

α

β A2

In the above picture, the dotted lines are the hyperplanes and the shaded area is the
fundamental chamber, which is bound by Pα and Pβ.

Example 13.12. Now consider the root system B2, with base {α, β}.

α

β
B2

Again, the shaded region is the fundamental chamber with respect to the base we picked.
The hyperplanes here coincide with the directions of the roots, so they are omitted in
the picture.

Note that the Weyl group W sends one Weyl chamber onto another. More precisely,
σ(C(v)) = C(σ(v)) if σ ∈ W and v is regular. Indeed, v ∈ V \

⋃
α∈Φ Pα iff (v, α) 6= 0 for

all α ∈ Φ iff (σ(v), σ(α)) 6= 0 for all α ∈ Φ. Now just note that σ(α) runs over Φ when
α runs over Φ.
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Furthermore, W permutes bases, since σ ∈ W just sends ∆ to σ(∆) and the latter
is clearly again a base. Note that σ(∆(v)) = ∆(σ(v)). Indeed, ∆(v) consists of the
indecomposable roots which pair positively with v and ∆(σ(v)) consists of the indecom-
posable vectors which pair positively with σ(v). Now use (σ(v), σ(α)) = (v, α).

Ultimately our goal is to classify root systems in some reasonable way. For this we
will in particular need some helpful results. In the following ∆ is a fixed base of a root
system Φ in V .

{l:RootsA}
Lemma 13.13. If α is a positive root, which is not simple, then α− β is a positive root
for some β ∈ ∆.

Proof. If (α, β) ≤ 0 for all β ∈ ∆, then by Lemma 13.7 (which applies because ∆ = ∆(v)
for some v and α is a positive root) the set ∆∪{α} would be linearly independent, which
is absurd. Hence, (α, β0) > 0 for some β0 ∈ ∆. By Lemma 13.5 (note that α 6= β0 since
α is assumed to be non simple), α− β0 is a root.

Write α =
∑

γ∈∆ kγγ, where kγ ≥ 0 and kγ > 0 for some γ 6= β0 (again, because α

is not proportional to β0). Subtracting β from α yields a linear combination of simple
roots, where at least one coefficient is positive, hence they all have to be by (B2). �

{c:RootsA}
Corollary 13.14. Each β ∈ Φ+ can be written in the form α1 + . . . + αk with αi ∈ ∆
(not necessarily distinct, e.g. 2α + β is allowed) such that every partial sum is also a
root.

Proof. Use the lemma and induction over the height of β. �
{l:RootsB}

Lemma 13.15. Let α be a simple root. Then sα permutes the positive roots other than
α.

Proof. Let β ∈ Φ+(∆) \ {α} and write β =
∑

γ∈∆ kγγ with kγ ∈ Z≥0 for all γ. By
assumption, β 6= ±α. Therefore, kγ0 6= 0 for some γ0 6= α. Now

sα(β) = β − 〈β, α〉α,

so the coefficient of γ0 in sα(β) is still kγ0 > 0. Hence, by (B2), all the coefficients are
positive. Of course, sα(β) 6= ±α. �

{c:RootsB}
Corollary 13.16. Set δ = 1

2
(
∑

β>0 β) = 1
2
(α+

∑
β>0,β 6=α β). Then sα(δ) = δ− α for all

α ∈ ∆.

Proof. Follows from sα(δ) = 1
2
(−α +

∑
β>0,β 6=α β). �

{l:RootsC}
Lemma 13.17. Let α1, . . . , αt ∈ ∆ (not necessarily distinct). For simplicity write si for
sαi. Assume that s1 . . . st−1(αt) is a negative root. Then for some index 1 ≤ p < t, we
have s1 . . . st = s1 . . . sp−1sp+1 . . . st−1.

Proof. Define βi = si+1 . . . st−1(αt) for 0 ≤ i ≤ t− 2 and βt−1 = αt. Note that sk(βk) =
βk−1 for all possible k.
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Now β0 is negative by assumption, while βt−1 = αt is positive. Therefore, there exists
a smallest index p such that βp > 0. Then sp(βp) = βp−1 < 0. Since βp is positive and sp
permutes the positive roots other than αp by Lemma 13.15, we conclude that βp = αp.

Now set τ = sp+1 . . . st−1, α = αt. Applying Lemma 13.2 gives sτ(α) = τsατ
−1. In

other words, sτ(α) = sβp = sαp = sp = τsατ
−1 = sp+1 . . . st−1stst−1 . . . sp+1.

Multiplying with τst from the right and then with s1 . . . sp−1 from the left gives the
lemma. �

{c:RootsC}
Corollary 13.18. If τ = s1 . . . st is an expression for τ ∈ W in terms of reflections
corresponding to simple roots with t as small as possible, then τ(αt) < 0.

Proof. If τ(αt) > 0, then s1 . . . st−1(αt) = τ(−αt) < 0, hence Lemma 13.17 would provide
a shorter expression for τ . �

{t:Weylgroup}
Theorem 13.19. Let ∆ be a base of a root system Φ.

(1) If v ∈ V is a regular vector, then there exists σ ∈ W such that (σ(v), α) > 0 for all
α ∈ ∆. In other words, σ(v) lies in the fundamental chamber, which means that
W operates transitively (in general, a group G operates transitively on a space X
if for any elements x, y ∈ X there exists an element g ∈ G such that g · x = y)
on Weyl chambers.

(2) If ∆′ is another base of Φ, then σ(∆′) = ∆ for some σ ∈ W . In other words, W
acts transitively on bases.

(3) If α ∈ Φ, there exists σ ∈ W such that σ(α) ∈ ∆.
(4) The Weyl group W is generated by sα for α ∈ ∆.
(5) If σ(∆) = ∆, then σ = id. In other words, W acts simply transitively on bases.

Proof. Denote by W ′ the subgroup of W generated by sα for α ∈ ∆. We will first prove
that (1)-(3) holds for W ′.

(1) Write δ = 1
2

∑
α>0 α and choose σ ∈ W ′ for which (σ(v), δ) is maximal. For any

simple root α the composition sασ is an element of W ′, hence

(σ(v), δ) ≥ (sασ(v), δ) = (σ(v), sα(δ)) = (σ(v), δ)− (σ(v), α),

where we used Corollary 13.16 for the last equality. This implies that (σ(v), α) ≥
0 for all α ∈ ∆. Since v is a regular vector, this inequality is actually strict.
Indeed, if 0 = (σ(v), α) = (v, σ−1(α)), then this is a contradiction, since σ−1(α) ∈
Φ and v is regular. Therefore, σ(v) lies in the fundamental chamber with respect
to ∆.

(2) Proposition 13.10 established a 1-1-correspondence between Weyl chambers and
bases, hence (1) implies (2).

(3) Using (2), it is enough to show that α is contained in some base of Φ. If β 6= ±α,
then Pβ 6= Pα. Therefore, there exists γ ∈ Pα, γ /∈ Pβ (β 6= ±α) (note that the
union of the proper intersections Pα ∩ Pβ cannot be Pα). Choose v′ such that
(v′, α) = ε > 0 while |(v′, β)| > ε for all β 6= ±α. The first inequality shows
that α ∈ Φ+(v′), while the second shows that α ∈ ∆(v′) (some of the β’s are
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in ∆(v′) and any linear combination of these will, by construction, have larger
scalar product with v′ than α).

(4) It is enough to show that for any α ∈ Φ the reflection sα is in W ′. Use (3) to find
τ ∈ W ′ such that τ(α) ∈ ∆. Then sτ(α) = τsατ

−1, hence sα = τ−1sτ(α)τ ∈ W ′.
Thus, we have shown that W ′ = W .

(5) Let σ(∆) = ∆. If σ 6= id, then by (4) we can write σ as a product of reflections in
simple roots and we can choose a minimal such expression. But this contradicts
Corollary 13.18.

�

So, in particular, the theorem says that the Weyl group W of Φ is generated by
the reflections in simple roots with respect to any base. Furthermore, W acts simply
transitively (so the action is not only transitive, but also free, that is, all stabilisers are
trivial) on the Weyl chambers.

Definition. Let ∆ be a base of a root system Φ and let τ be an element of the Weyl
group of Φ. Write τ = sα1 . . . sαt as a minimal product of reflections with αi ∈ ∆. Such
an expression will be called reduced and its length t =: l(τ) will be called the length of
τ with respect to ∆. We set l(id) = 0.

{p:length}
Proposition 13.20. Let ∆ be a base of a root system Φ and let τ be an element of the
Weyl group of Φ. Write n(τ) for the number of positive roots α for which τ(α) < 0.
Then l(τ) = n(τ).

Proof. We use induction over the length. If l(τ) = 0, then τ = id, so n(τ) = 0 as well.
Write τ = sα1 . . . sαt and assume this expression is reduced. Set α = αt. By Corollary

13.18, τ(α) < 0. By Lemma 13.15, n(sα) = 1, so n(τsα) = n(τ) − 1 (sα permutes the
positive roots and sends α to its negative). On the other hand, l(τsα) = l(τ)−1 by choice
of α. By the induction hypothesis, l(τsα) = n(τsα), which proves the proposition. �

Before we prove the last result in this section, recall that the closure A of a subset A of
a topological space X is the smallest closed subset contanining A. Of course, A = A if A
is closed. Otherwise the closure is simply the intersection of all closed subsets containing
A. For example, the closure of the open interval (0, 1) in R is the closed interval [0, 1].

{p:ClosureFund}
Proposition 13.21. Let ∆ be a base of a root system Φ and let λ, µ be two elements in
the closure of the fundamental chamber C(∆). If τλ = µ for some τ ∈ W , then τ is a
product of simple reflections which fix λ. In particular, λ = µ.

Proof. Yet again we use induction over the length of τ , the case l(τ) = 0 being obvious.
Assume l(τ) > 0. By Proposition 13.20, n(τ) > 0, so τ sends some positive root to a
negative root. In particular, τ cannot send all simple roots to positive roots. Assume
that τα0 < 0, α0 ∈ ∆. Since µ ∈ C(∆) we have 0 ≥ (µ, τα0). The latter term is equal to
(τ−1µ, α0) = (λ, α0). The right hand side is ≥ 0, since λ ∈ C(∆). Combining everything,
we see that (λ, α0) = 0, that is, λ ∈ Pα0 . In other words, sα0λ = λ, so τsα0λ = µ. By
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the same argument as in the proof of Proposition 13.20, l(τsα0) = l(τ)− 1, hence we are
done by induction. �

14. Classification of root systems

Throughout this section we fix an n-dimensional Euclidean vector space V and a root
system Φ in V . As before, ∆ denotes a base of Φ and W its Weyl group.

Definition. A root system Φ is called irreducible if it cannot be partitioned into a union
of two proper subsets Φ1, Φ2 such that each root in Φ1 is orthogonal to all roots in Φ2

and vice versa.

Note that A1 × A1 is not irreducible, while A2, B2 and G2 are.

Definition. Let ∆ be a base of Φ. We call ∆ irreducible if it cannot be partitioned into
a union of two proper subsets ∆1, ∆2 such that each root in ∆1 is orthogonal to all roots
in ∆2 and vice versa.

{p:IrredBase}
Proposition 14.1. A root system is irreducible if and only if all its bases are irreducible.

Proof. Assume that Φ = Φ1 ∪ Φ2 is reducible. Let ∆ be any base of Φ. If ∆ ⊂ Φ1,
then (α, β) = 0 for all α ∈ ∆ and for all β ∈ Φ2. Since ∆ spans V , this implies that
(V,Φ2) = 0, a contradiction. Similarly one shows that ∆ ( Φ2. Therefore, we can write
∆ = ∆1 ∪∆2, where ∆i = ∆ ∩ Φi. Thus, ∆ is not irreducible.

Now assume that Φ is irreducible and ∆ = ∆1 ∪∆2 with (∆1,∆2) = 0. By Theorem
13.19(3), for any α ∈ Φ there exists a τ ∈ W such that τ(α) ∈ ∆. Writing Φi for the
set of roots mapping to ∆i under W , we get Φ = Φ1 ∪ Φ2 (we do not yet know that the
union is disjoint).

An easy computation shows that if (α, β) = 0, then sαsβ = sβsα. By Theorem
13.19(4), W is generated by the simple reflections and looking at the formula of a re-
flection shows that any root in Φi is obtained from one in ∆i by adding and subtracting
elements of ∆i. In other words, Φi ⊂ span(∆i) =: Vi ⊂ V . In particular, (Φ1,Φ2) = 0,
hence the union is disjoint. Therefore, Φ1 = ∅ or Φ2 = ∅, whence ∆1 = ∅ or ∆2 = ∅. �

When l = 2, this gives an easy way of checking whether a root system is irreducible
or not.

Recall that a root is called positive if all its coefficients are nonnegative. This actually
defines a partial order on Φ: Say that α < β if β − α is a sum of positive roots or if
α = β.

{l:IrrRootA}
Lemma 14.2. Let Φ be an irreducible root system. There exists a unique maximal root
β, that is, for all α 6= β we have ht(α) < ht(β) and (β, α) ≥ 0 for all α ∈ ∆. If
β =

∑
α∈∆ kαα, then kα > 0 for all α.

Proof. Let β =
∑

α∈∆ kαα be a maximal element with respect to the ordering <. Of
course, β is positive. Let ∆1 = {α ∈ ∆ | kα > 0} and ∆2 = {α ∈ ∆ | kα = 0}. Clearly,
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∆ = ∆1 ∪∆2 is a partition. Assume that ∆2 6= ∅. Then

(α0, β) = (α0,
∑
α

kαα) ≤ 0 ∀α0 ∈ ∆2

by Lemma 13.6. Now Φ is irreducible, so (α0, α
′) < 0 for some α′ ∈ ∆1. Therefore,

(α0, β) < 0. By Lemma 13.5, this implies that α0 + β is a root. This is a contradiction
to the maximality of β, hence ∆2 = ∅ and kα > 0 for all α.

Note that we have also showed that (α, β) ≥ 0 for all α ∈ ∆. Of course, since ∆ spans
V , at least one scalar product is positive.

Now assume that β′ is another maximal root. We already know that it is written as
a sum with strictly positive coefficients and (α, β′) ≥ 0 for all α ∈ ∆ (and at least one
scalar product is strictly positive). The previous argument shows the existence of an
α0 ∈ ∆ with (α0, β) > 0. Therefore, (β, β′) > 0 and β − β′ is a root by Lemma 13.5
unless β = β′. But if β − β′ is a root, then either β < β′ or β′ < β, a contradiction. �

To formulate the next result, recall that if a group G acts on a topological space X,
then the orbit of an element x ∈ X under G is the set {gx | g ∈ G}.

{l:IrrRootB}
Lemma 14.3. Let Φ be an irreducible root system. Then any non-empty W -invariant
subset of V spans V or, in other words, every non-trivial W -invariant subspace is V . In
particular, the W -orbit of a root spans V .

Proof. Let U be a subspace of V invariant under the Weyl group. Consider U ′ = {v ∈
V | (v, U) = 0}. This subspace is also invariant under W , since W acts by isometries.
Therefore, we can write V = U ⊕ U ′. If α ∈ Φ, then sα(U) = U , so either α ∈ U or
U ⊂ Pα by Exercise 1 on Sheet 12. If α /∈ U , then U ⊂ Pα, hence α ∈ U ′ (otherwise
write α = u + u′, then (u, u) + (u′, u′) = (α, α) = (α, u + u′) = (α, u′) = (u′, u′), hence
(u, u) = 0, thus u = 0). This argument applies to every root, so we can partition Φ
into orthogonal subsets, hence one of them is empty. Since Φ spans V , we conclude that
U = V . �

{l:IrrRootC}
Lemma 14.4. Let Φ be an irreducible root system. Then at most two root lengths (in
the sence of the norm on V ) occur in Φ, and all roots of a given length are conjugate
under W (that is, we can map any two roots of a given length to each other with an
element of W ).

Proof. Let α, β be arbitrary roots. By Lemma 14.3, the orbit of α under W spans V ,
hence there exists a τ ∈ W such that (τ(α), β) 6= 0. Looking at the last column of Table
1, we see that the possible ratios of squared lengths of τ(α) and β are 1, 2, 3, 1

2
and 1

3
. If

there were a root with a third length, then the ratio 3
2

would also appear, contradiction.

To prove the second claim, let α, β have the same length, so ‖β‖2
‖α‖2 = 1. As above,

we can assume, after possibly replacing one by a W -conjugate, that these roots are
not orthogonal. If they are the same, we are done. Otherwise, Table 1 shows that
〈α, β〉 = 〈β, α〉 = ±1. If necessary we can replace β by sβ(β) = −β to achieve 〈α, β〉 = 1.
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It follows that
sαsβsα(β) = sαsβ(β − α) = sα(−β − α + β) = α.

�

Definition. If Φ is an irreducible root system, then one calls the roots with the smaller
length short and the ones with the bigger length long. If all roots have the same length,
we call them all long. {l:IrrRootD}
Lemma 14.5. Let Φ be an irreducible root system with base ∆ and with two distinct root
lengths. Then the maximal root β whose existence is ensured by Lemma 14.2 is long.

Proof. Let α be an arbitrary root. We only need to show that (β, β) ≥ (α, α). By
Theorem 13.19 we can map α to an element of ∆ and by Proposition 13.10 we can then
assume that α lies in the closure of the fundamental Weyl chamber C(∆). By Lemma

14.2, β − α > 0, so (γ, β − α) ≥ 0 for all γ ∈ C(∆) (recall that C(∆) is the set of all
vectors having positive scalar product with all simple roots; now use that β − α is a
positive combination of the latter). Now by Lemma 14.2 again, β ∈ C(∆), so setting
γ = β gives (β, β) ≥ (β, α). Setting γ = α gives (α, β) ≥ (α, α), and hence the claim. �

Definition. Let Φ be a root system with base ∆ and fix an ordering (α1, . . . , αn) of the
simple roots. The matrix (〈αi, αj〉)i,j is called the Cartan matrix of Φ. Its entries are
called the Cartan integers. {r:CartanInte}
Remark 14.6. Recall that if α, β ∈ ∆ and α 6= β, then, by Lemma 13.6, (α, β) ≤ 0. In
particular, the non-diagonal entries of a Cartan matrix are smaller or equal to 0, since

〈β, α〉 = 2(β,α)
(α,α)

.
{e:CartanEx}

Example 14.7. Recall the root systems from Example 13.4. For the following matrices
use Table 1.

For A1×A1 we get the matrix

(
2 0
0 2

)
(the base elements are orthogonal and of length

1), for A2 the matrix

(
2 −1
−1 2

)
, for B2 the matrix

(
2 −2
−1 2

)
and for G2 the matrix(

2 −1
−3 2

)
.

{p:CartanMatr}
Proposition 14.8. Let Φ′ ⊂ V ′ be a second root system with base ∆′ = (α′1, . . . , α

′
l).

If 〈αi, αj〉 = 〈α′i, α′j〉 for all i, j, then the bijection αi //α′i extends to an isomorphism
f : V //V ′ mapping Φ onto Φ′ and satisfying 〈f(α), f(β)〉 = 〈α, β〉 for all α, β ∈ Φ. In
particular, the Cartan matrix of Φ determines Φ up to isomorphism.

Proof. Since ∆ and ∆′ are bases of the respective vector spaces, there exists a unique
isomorphism f : V //V ′ mapping αi //α′i. If α and β are in ∆, then

sf(α)(f(β)) = sα′(β
′) = β′ − 〈β′, α′〉α′

= f(β)− 〈β, α〉f(α) = f(β − 〈β, α〉α)

= f(sα(β)).
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Hence, for every α ∈ ∆ we have the equality sf(α) ◦ f = f ◦ sα ∈ Hom(V, V ′).
Recall that by Theorem 13.19(4), W is generated by the reflections sα for α ∈ ∆ and

W ′ is generated by the reflections sα′ for α′ ∈ ∆′. The map W //W ′, τ � // f ◦ τ ◦ f−1 is
an isomorphism, since any τ is a product of simple reflections and the above argument
shows that this map sends sα to sf(α).

Now let β ∈ Φ be an arbitrary root. There exists τ ∈ W such that β = τ(α) for some
α ∈ ∆ (Theorem 13.19(3)). Therefore, f(β) = (f ◦ τ ◦ f−1)(f(β)) ∈ Φ′. Hence, f maps
Φ into Φ′. Lastly, we have already seen that f preserves the Cartan integers. �

Definition. The Coxeter graph of a root system Φ with respect to an ordered base ∆ is
a graph having n vertices the ith joined to the jth (for i 6= j) by 〈αi, αj〉〈αj, αi〉 edges.

If more than one root length occurs and a double or triple edge occurs in the Coxeter
graph, we add an arrow pointing to the shorter of the two roots. The resulting figure is
called a Dynkin diagram.

Example 14.9. These are the Coxeter graphs for the root systems in Example 13.4.

A1 × A1 A2

B2 G2

The Dynkin diagrams of A1×A1 and A2 are the same as the Coxeter graphs. For B2 one
adds an arrow pointing from left to right (this is a little confusing, since in the picture
the shorter root comes first, but this can be solved by putting α = e1 − e2 and β = e2),
while for G2 one adds an arrow pointing from right to left.

{p:RootCoxe}
Proposition 14.10. Any root system Φ in V decomposes, in a unique way, as the
union of irreducible root systems in subspaces Ui of V such that V = U1 ⊕ . . .⊕Ut is an
orthogonal direct sum.

Proof. Note that Φ is irreducible if and only if its Coxeter graph is connected, that is,
any vertex can be connected to any other vertex via a sequence of edges.

In general, the Coxeter graph of Φ will have some connected components. Write ∆i

for the subset of a base ∆ of Φ which corresponds to the ith connected component. This
gives a partition ∆ = ∆1 ∪ . . .∪∆t. Set Ui = span(∆i). Clearly, V = U1⊕ . . .⊕Ut is an
orthogonal direct sum.

Define Φi to be spanZ(∆i) ⊂ Ui. Of course, this is a root system in Ui. Also note that
the Weyl group of Φi is the restriction to Ui of the subgroup of the Weyl group generated
by the reflections sα for α ∈ ∆i.

If β /∈ ∆i, then sβ acts trivially on Ui, compare the proof of Lemma 14.3. Therefore,
each Ui is invariant under the Weyl group of Φ. By the proof of Lemma 14.3 again, if β
is any root, then either β ∈ Ui or Ui ⊂ Pβ. In the former case, β ∈ Φi, while the latter
cannot occur for all i, since Pβ has codimension one. Therefore, any root is contained in
some Φi, hence Φ = Φ1 ∪ . . . ∪ Φt. �

We now come to the classification result for irreducible root systems. We will omit
the proof and focus on the consequences instead.
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{t:CarKil}
Theorem 14.11 (Cartan, Killing). If Φ is an irreducible root system of rank n, then its
Dynkin diagram is one of the following:

An (n ≥ 1)

Bn (n ≥ 2)

Cn (n ≥ 3)

Dn (n ≥ 4)

E6

E7

E8

G2

F4

In the above diagrams the black edges are the shorter roots, and the numbering of the
edges starts on the left. �

Of course, in order to determine the Cartan matrices, one needs to number the edges.
For all diagrams except for E6, E7 and E8 we have already given the description. There
are different conventions for the remaining three cases, the main question being whether
the “upper” vertex should represent the second or the last root.

In the following we will construct the root systems An-Dn explicitly. In the following,
V = Rm with the usual scalar product. The standard basis vectors will be denoted by
e1, . . . , em. Their span over Z is of course Zm. Note that A = (Zm \ {0}) ∩ Br(0) is a
finite set for any 1 ≤ r <∞. In the following we will consider subsets of A which contain
vectors of one or two lengths. Obviously, any such subset will satisfy (R1). The choice
of lengths will make it obvious that (R2) is also satisfied. The other two axioms will also
be easy to check from the explicit description of the given subset.

{e:Al}
Example 14.12. Let V = Rn+1 (n ≥ 1) and E = {v ∈ V | v1 + . . .+ vn+1 = 0}. Define
Φ to be the set of all vectors α in Zn+1 ∩E satisfying (α, α) = 2. It is easy to check that
Φ = {ei − ej | i 6= j} and that Φ is a root system. Consider the vectors αi = ei − ei+1

for 1 ≤ i ≤ n. Is is clear that the set ∆ = {α1, . . . , αn} is linearly independent, hence
a basis of E. Furthermore, ei − ej = αi + . . . + αj−1 for all i < j. These last two
statements show that ∆ is a base of Φ. Note that (αi, αj) = 0 if |i − j| ≥ 2, while
(αi, αi+1) = −1. It follows that the Dynkin diagram of Φ is precisely An and the Cartan
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matrix is 2 · Idn +
∑n−1

i=1 (−Ei,i+1) +
∑n

i=2(−Ei,i−1). Exercise 1 on Sheet 10 tells us that
the root system of sl(n+ 1,C) is An.

One can check that the reflection sαi sends ei to ei+1 and vice versa and leaves
everything else invariant. Therefore, this reflection corresponds to the transposition
(i, i+ 1) ∈ Sn+1 and eventually one shows that the Weyl group of An is Sn+1.

{e:Bl}
Example 14.13. Let E = Rn, n ≥ 2 and Φ = {α ∈ Zn | (α, α) = 1 or 2}. One easily
checks that Φ consits of the vectors ±ei of length 1 and ±(ei ± ej) for i 6= j (squared
length 2). Define ∆ = {e1 − e2, . . . , en−1 − en, en}. Clearly, these are independent. Note
that ei = (ei−ei+1)+ . . .+(en−1−en)+en. As before, one checks that all the roots ei−ej
can be expressed by elements in ∆ as a linear combination with nonnegative coefficients.
Similarly, ei+ej = (ei−ei+1)+. . .+(ej−1−ej)+2(ej−ej+1)+. . .+2(en−1−en)+2en. Note
that (en−1− en, en) = −1, so 〈en−1− en, en〉 = −2 and 〈en, en−1− en〉 = −1. This means
that the resulting Dynkin diagram isBn and the Cartan matrix is 2·Idn+

∑n−2
i=1 (−Ei,i+1)+

(−2)En−1,n +
∑n

i=2(−Ei,i−1). The Weyl group turns out to be the semidirect product of
Sn and (Z/2Z)n, where the first factor corresponds to permutations (as in the An case)
and the second to sign changes of the set {e1, . . . , en}.

{e:Cl}
Example 14.14. Let n ≥ 3, E = Rn, Φ = {±2ei} ∪ {±(ei ± ej) | i 6= j}. A base of
Φ is ∆ = {e1 − e2, . . . , en−1 − en, 2en}. Note that the last element of the base is long.
The resulting Dynkin diagram is Cn and the Cartan matrix is 2 · Idn +

∑n−1
i=1 (−Ei,i+1) +

(−2)En,n−1 +
∑n−1

i=2 (−Ei,i−1). One can check that the Weyl group is isomorphic to that
of Bn. Exercises 2 and 3 on the bonus sheet show that sp(2n,C) has Cn as its root
system.

{e:Dl}
Example 14.15. Let n ≥ 4, E = Rn, Φ = {α ∈ Zn | (α, α) = 2} = {±(ei ± ej) | i 6= j}.
For a base take the n independent vectors e1−e2, . . . , en−1−en, en−1 +en. Note that, for
example, e1 + e2 = e1− e2 + 2(e2− e3) + . . .+ 2(en−2− en−1) + (en−1− en) + (en−1 + en),
so this is indeed a base. The resulting Dynkin diagram is of course Dn (note that the
last two base elements are orthogonal to each other). The resulting Cartan matrix is
2 · Idn +

∑n−2
i=1 (−Ei,i+1) + (−En−2,n) +

∑n−1
i=2 (−Ei,i−1) + (−En,n−2). The Weyl group is

the group of permutations and sign changes involving only even numbers of signs of the
set {e1, . . . , en} so it is isomorphic to the semidirect product of (Z/2Z)n−1 and Sn.

15. Sketch of the proof of Theorem 1.12

First we investigate the root system of a simple Lie algebra.
{p:irr-root}

Proposition 15.1. Let g be a simple Lie algebra, h a maximal toral subalgebra and Φ
the corresponding root system. Then Φ is an irreducible root system.

Proof. Suppose Φ = Φ1 ∪Φ2 such that (α, β) = 0 for all α ∈ Φ1 and all β ∈ Φ2. For two
such elements we have (α+β, α) 6= 0 (so α+β /∈ Φ2) and (α+β, β) 6= 0 (so α+β /∈ Φ1).
Thus, α + β /∈ Φ and [gα, gβ] ⊂ gα+β = 0. Setting T = ⊕α∈∈Φ1gα, we thus see that
⊕β∈Φ2gβ ⊂ Cg(T ). In particular, T 6= g, since Z(g) = 0. Of course, gα ⊂ Ng(T ) for all
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α ∈ Φ1, but by the above argument gβ ⊂ Ng(T ) for all β ∈ Φ2 as well. Since h ⊂ Ng(T )
in any case, we conclude that Ng(T ) = g. In other words, T is a proper ideal of g, a
contradiction. � {c:semisimpledec}
Corollary 15.2. Let g be a semisimple Lie algebra with maximal toral subalgebra h and
root system Φ. If g = g1 ⊕ . . . ⊕ gt is the decomposition of g into simple ideals, then
hi = h∩gi is a maximal toral subalgebra of gi for all i, and the corresponding root system
Φi can be regarded canonically as a subsystem of Φ in such a way that Φ = Φ1 ∪ . . .∪Φt.

Proof. Of course, hi is toral in gi and h = h1 ⊕ . . . ⊕ ht (compare Exercise 1 on Sheet

9). In fact, hi is maximal toral in gi. Indeed, if hi ( h̃i with h̃i toral in gi, then h̃i is

toral in g and it centralises hj for any j 6= i. Thus, hj for j 6= i and h̃i generate a toral
subalgebra of g bigger than h, a contradiction.

Now consider the root system Φi of (gi, hi). If α ∈ Φi, then α can be considered as an
element in h∗ by setting α(hj) = 0 for all j 6= i. Clearly, α ∈ Φ and gα ⊂ gi.

Conversely, if α ∈ Φ, then there exists an index i such that [hi, gα] 6= 0 (otherwise α
would be trivial on h). Thus, gα ⊂ gi, and α|hi is a root of gi relative to hi. It follows
that Φ = Φ1 ∪ . . . ∪ Φt. �

The corollary reduces the study of semisimple Lie algebras by their root systems to
the study of simple Lie algebras and their irreducible root systems.

Next, we exhibit a smaller set of generators of a semisimple Lie algebra. {p:simplerootsgen}
Proposition 15.3. Let g be a semisimple Lie algebra, h, Φ be as usual. Fix a base ∆
of Φ. Then g is generated (as a Lie algebra) by the spaces gα, g−α for α ∈ ∆.

Proof. Recall that g is generated by the gγ for γ ∈ Φ. Let β be an arbitrary positive
root. Then β is a sum of elements in ∆ and each partial sum is a root. We know by
Proposition 12.10(4) that if γ1, γ2, γ1 + γ2 ∈ Φ, then [gγ1 , gγ2 ] = gγ1+γ2 . By induction, gβ
is contained in the subalgebra generated by gα for α ∈ ∆. Similarly, if β is negative, it
is contained in the subalgebra generated by g−α for α ∈ ∆. The claim follows. �

The next step of the proof of Theorem 1.12 is the following result whose proof we have
to omit. {t:Cartanconj}
Theorem 15.4. For any two maximal toral subalgebras h1, h2 in a semisimple Lie algebra
g there exists an automorphism ψ of g such that ψ(h1) = h2. �

Next, we need to understand how to construct a Lie algebra from a given root system.
For this we need the following construction.

Definition. Let V be a vector space. Set T 0(V ) = K, T 1(V ) = V ,..., Tm(V ) = V ⊗
. . .⊗ V (m times), . . .

Define an associative product on T (V ) =
⊕

i≥0 T
i(V ) by the rule

(v1 ⊗ . . .⊗ vk)(w1 ⊗ . . .⊗ wl) = v1 ⊗ . . .⊗ vk ⊗ w1 ⊗ . . .⊗ wl,
on generators of T k(V ) and T l(V ), respectively, and extend this linearly. This is the
tensor algebra. Note that there is a canonical inclusion i : V //T (V ).
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An important fact about the tensor algebra is the following statement. If A is an
associative unital algebra over K and φ : V //A is a K-linear map, then there exists a
unique unit-preserving algebra homomorphism ψ : T (V ) //A sich that ψ ◦ i = φ (ψ(v1⊗
. . .⊗ vk) := φ(v1) . . . φ(vk)).

Definition. The universal enveloping algebra of a Lie algebra g is a pair (U, j) where
U = U(g) is an associative unital K-algebra and j : g //U is a linear map satisfying the
following property

(∗) j([x, y]) = j(x)j(y)− j(y)j(x).

Furthermore, for any associative unital K-algebra A and any linear map φ : g //A sat-
isfying (∗), there exists a unique algebra homomorphism ψ : U //A such that ψ ◦ j = φ.

The uniqueness of U is proved in the usual manner. For the existence, let J be the
ideal in T (g) generated by all elements of the form x ⊗ y − y ⊗ x − [x, y] for x, y ∈ g.
Define U(g) = T (g)/J , let π : T (g) //U(g) be the canonical map and set j = π ◦ i.
Then j clearly satisfies (∗). If φ : g //A is given, we get an algebra homomorphism
ψ′ : T (g) //A such that ψ′ ◦ i = φ. Since φ satisfies (∗), J is in the kernel of ψ′, hence
we get a map ψ satisfying ψ ◦ π = ψ′. Therefore, ψ ◦ j = ψ ◦ π ◦ i = ψ′ ◦ i = φ.

Definition. Let g be a Lie algebra generated (as a Lie algebra) by a set X. We say that
g is free on X if, given any map φ from X into a Lie algebra g′, there exists a unique
Lie algebra homomorphism ψ : g // g′ extending φ.

Yet again, uniqueness of such an algebra is obvious. To construct it, take V to be the
vector space with basis X and form T (V ). This is an associative algebra, hence admits a
Lie algebra structure via the commutator. Let g be the Lie subalgebra of T (V ) generated
by X. Given φ : X // g′, extend φ to a map V // g′ ⊂ U(g′). By the universal property
of T (V ) we then get an algebra homomorphism T (V ) // g′ ⊂ U(g′). Restricting this
map to g gives the required ψ.

A variant of the above construction is as follows. If g is free on X and R is the ideal of
g generated by a finite number of elements f1, . . . , fk, then we call g/R the Lie algebra
with generators xi and relations fj = 0, where xi are the images of the elements of X in
g/R.

The next result is the penultimate ingredient we need.
{t:Serre}

Theorem 15.5. Let Φ be a root system with base ∆ = {α1, . . . , αl}. Let g be the Lie
algebra generated by 3l elements {xi, yi, hi | 1 ≤ i ≤ l} subject to the following relations:

(S1) [hi, hj] = 0 for all 1 ≤ i, j ≤ l.
(S2) [xi, yi] = hi, [xi, yj] = 0 if i 6= j.
(S3) [hi, xj] = 〈αj, αi〉xj, [hi, yj] = 〈−αj, αi〉yj.
(S4) (adxi)

−〈αj ,αi〉+1(xj) = 0 (if i 6= j).
(S5) (ad yi)

−〈αj ,αi〉+1(yj) = 0 (if i 6= j).

Then g is a finite-dimensional semisimple Lie algebra with maximal toral subalgebra
spanned by the hi and root system Φ. �
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The final ingredient is given by the following
{t:Isom}

Theorem 15.6. Let g, g′ be semisimple Lie algebras over K with maximal toral sub-
algebras h and h′ and root systems Φ, Φ′. Suppose there is an isomorphism ϕ : Φ //Φ′

inducing an isomorphism π : h // h′. Fix a base ∆ of Φ, so ∆′ = {ϕ(α) | α ∈ ∆} is
a base of Φ′. For each α ∈ ∆ and ϕ(α) =: α′ ∈ ∆′ choose nonzero vectors xα ∈ gα
and x′α′ ∈ g′α′. These vectors define an isomorphism πα : gα // g′α′. Then there exists a
unique isomorphism π̃ : g // g′ such that π̃|h = π and π̃|gα = πα. �

Proof of Theorem 1.12. Theorems 15.4, 15.5 and 15.6 show that the map from simple
Lie algebras to irreducible root systems is one-to-one.

Let g be a finite-dimensional simple complex Lie algebra. Its root system is irreducible
and these were classified in Theorem 14.11. One first checks that any root system
appearing in Theorem 14.11 can actually be constructed (we have done it for An-Dn).
Then, one needs to show that all the classical algebras appearing in Theorem 1.12 are
actually semisimple. This follows rather quickly from Proposition 8.8 for the algebras
so(2n,C) and so(2n + 1,C) (use Remark 1.14). The semisimplicity of the symplectic
algebra is proved in Exercise 1 on the bonus sheet. The simplicity of sl(n,C) was
established in Exercise 4, Sheet 5.

For the classical algebras, it is straightforward to check that their root systems are
precisely of type An, Bn, Cn or Dn. For the remaining cases one starts from a root
system and constructs the associated simple Lie algebra as in Theorem 15.5. �
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