EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

BONUS SHEET

The goal of this sheet is to thoroughly investigate the symplectic algebra $\mathfrak{sp}(2n, \mathbb{C})$.

Exercise 1. Let $K = \mathbb{R}$ or $K = \mathbb{C}$. Given an $n \times n$ -matrix $M \in Mat(n, K)$, denote by M^{\dagger} the transpose if $K = \mathbb{R}$ and the hermitian conjugate (that is, $M^{\dagger} = \overline{M}^{t}$) if $K = \mathbb{C}$.

Let $\mathfrak{g} \subset Mat(n, K)$ be a Lie subalgebra with the property that whenever $M \in \mathfrak{g}$, then also $M^{\dagger} \in \mathfrak{g}$.

- (1) Define (-,-): $\mathfrak{g} \times \mathfrak{g} \longrightarrow K$ as $(M,N) = \operatorname{tr}(MN^{\dagger})$. Show that this is a scalar product on \mathfrak{g} .
- (2) Given a subset S in \mathfrak{g} , define $S' = \{x \in \mathfrak{g} \mid (x, s) = 0 \forall s \in S\}$. Show that if I is an ideal, so is I'.
- (3) Show that if $I \subset \mathfrak{g}$ is an ideal, then $\mathfrak{g} = I \oplus I'$. Conclude that $\mathfrak{g} = \bigoplus_i \mathfrak{g}_i$ where each \mathfrak{g}_i has no proper ideals.

Remark: \mathfrak{g}_i is not necessarily simple as it may still be abelian.

- (4) Show that if \mathfrak{g} has trivial centre, then \mathfrak{g} is semisimple.
- (5) Let K be any field of characteristic 0. Show that $\mathfrak{sp}(2n, K)$ has trivial centre. In particular, $\mathfrak{sp}(2n, \mathbb{C})$ is semisimple.

Exercise 2. Consider the semisimple Lie algebra $\mathfrak{sl}(2n, \mathbb{C})$. Define, for $1 \leq i, j \leq n$, the $(2n \times 2n)$ -matrices

$$X_{i,j} = E_{i,j} - E_{n+j,n+i}$$
, $Y_{i,j} = E_{i,n+j} + E_{j,n+i}$, $Z_{i,j} = E_{n+i,j} + E_{n+j,i}$.

Let

$$\mathfrak{h} = \operatorname{span}_{\mathbb{C}} \{ X_{i,i} \mid i = 1, \dots, n \}.$$

- (1) Define the sets $X = \{X_{i,j} \mid i, j = 1, ..., n\}, Y = \{Y_{i,j} \mid 1 \le i \le j \le n\}, Z = \{Z_{i,j} \mid 1 \le i \le j \le n\}.$ Show that $X \cup Y \cup Z$ is a basis of $\mathfrak{sp}(2n, \mathbb{C}).$
- (2) Give the adjoint action of

$$h = \sum_{i=1}^{n} h_i X_{i,i} \in \mathfrak{h}$$

 $(h_i \in \mathbb{C})$ on each of the $X_{i,j}$, $Y_{i,j}$, $Z_{i,j}$. Conclude that \mathfrak{h} is a toral subalgebra of $\mathfrak{sp}(2n, \mathbb{C})$.

(3) Show that \mathfrak{h} is a maximal toral subalgebra (also called Cartan algebra) of $\mathfrak{sp}(2n, \mathbb{C})$.

P. SOSNA

(4) Define the basis {χ_i}_{i=1,...,n} of the dual space β* via χ_i(X_{j,j}) = δ_{i,j}. Give the roots of sp(2n, C) in terms of the χ_i. *Hint:* You should find 2n² roots.

Exercise 3. Recall the Cartan subalgebra \mathfrak{h} of $\mathfrak{sp}(2n, \mathbb{C})$ defined in the previous exercise, as well as the matrices $X_{i,i}$.

(1) Let $h, k \in \mathfrak{h}$ be given by $h = \sum_{i=1}^{n} h_i X_{i,i}$ and $k = \sum_{i=1}^{n} k_i X_{i,i}$ (with $h_i, k_i \in \mathbb{C}$). Show that $\kappa_{\mathfrak{sp}(2n,\mathbb{C})}(h,k) = 4(n+1) \sum_{i=1}^{n} h_i k_i$. *Hint:* In the previous exercise you found that the roots of $\mathfrak{sp}(2n,\mathbb{C})$ are

$$\{\pm \chi_i \pm \chi_j \mid 1 \le i < j \le n\} \cup \{\pm 2\chi_i \mid i = 1, \dots, n\}$$
.

(here $\pm \chi_i \pm \chi_j$ stands for four distinct terms).

- (2) Show that $E = \{\sum_{i=1}^{n} l_i \chi_i \mid l_i \in \mathbb{R}\}$ and that $(\chi_i, \chi_j) = \frac{1}{4(n+1)}\delta_{i,j}$.
- (3) In the case of $\mathfrak{sp}(4,\mathbb{C})$ (so n=2), verify that there is an isometry $E \longrightarrow \mathbb{R}^2$ such that the image of the root system is:

Exercise 4. Using the roots of $\mathfrak{sp}(2n, \mathbb{C})$ found in Exercise 2 and recalled in Exercise 3, show that a possible choice of base Δ for Φ is $\{\alpha_1, \ldots, \alpha_n\}$ with

$$\alpha_i = \chi_i - \chi_{i+1}$$
 (for $i = 1, \dots, n-1$) and $\alpha_n = 2\chi_n$.

 $\mathbf{2}$