EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

SHEET 8

Exercise 1.

- (1) Let \mathfrak{g} be a Lie algebra over a field K and let β be an associative bilinear form on \mathfrak{g} . Show that the map $\tilde{\beta} \colon \mathfrak{g} \longrightarrow \mathfrak{g}^*$, $x \longmapsto \beta(x, -)$ is an intertwiner of \mathfrak{g} -modules.
- (2) Let \mathfrak{g} be a finite-dimensional complex simple Lie algebra and let β be an associative bilinear form on \mathfrak{g} . Show that there is a $\lambda \in \mathbb{C}$ such that $\beta = \lambda \cdot \kappa_{\mathfrak{g}}$. Remark: In particular, β is automatically symmetric, and if β is non-zero, it is already non-degenerate.
- **Exercise 2.** What is the smallest dimension of a \mathbb{C} -vector space on which $\mathfrak{sl}(n,\mathbb{C})$ (with $n \geq 2$) can act nontrivially? Prove your answer.
- **Exercise 3.** Let \mathfrak{g} act on $(\mathfrak{g} \otimes \mathfrak{g})^*$ via the adjoint representation. Recall that if V is any vector space, then $(V \otimes V)^*$ can be identified with the space of bilinear forms on V. Prove that β is an associative bilinear form if any only if $\mathfrak{g} \cdot \beta = 0$.

Exercise 4. Prove the following statements.

- (1) If \mathfrak{g} is a reductive Lie algebra, then \mathfrak{g} is a completely reducible ad \mathfrak{g} -module.
- (2) If \mathfrak{g} is a reductive Lie algebra, then $\mathfrak{g} = Z(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$ with $[\mathfrak{g}, \mathfrak{g}]$ semisimple.
- (3) If \mathfrak{g} is a completely reducible ad \mathfrak{g} -module, then \mathfrak{g} is reductive.
- (4) If V is a finite dimensional representation of a reductive Lie algebra \mathfrak{g} on which $Z(\mathfrak{g})$ acts by semisimple endomorphisms, then V is completely reducible.