EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

Sheet 5

Exercise 1. Let $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ be the standard basis of $\mathfrak{sl}(2,\mathbb{C})$. Let $\mathbb{C}[s,t] = \operatorname{span}_{\mathbb{C}}\{s^m t^n \mid m, n = 0, 1, 2, \dots\}$ be the complex vector space of polynomials in s and t. Define the map $\rho \colon \mathfrak{sl}(2,\mathbb{C}) \longrightarrow \mathfrak{gl}(\mathbb{C}[s,t])$ as

$$\rho(H) = s \tfrac{\partial}{\partial s} - t \tfrac{\partial}{\partial t} \ , \ \rho(X) = s \tfrac{\partial}{\partial t} \ , \ \rho(Y) = t \tfrac{\partial}{\partial s}.$$

Show that $(\mathbb{C}[s,t],\rho)$ is a representation of $\mathfrak{sl}(2,\mathbb{C})$. State whether or not this representation is irreducible and prove your answer.

Exercise 2. A representation U of a Lie algebra \mathfrak{g} is called *indecomposable* if it is not isomorphic to a direct sum of representations $V \oplus W$ such that both V and W are non-zero. Consider the one-dimensional complex Lie algebra $\mathfrak{g} = \mathbb{C}$. Give an indecomposable representation of \mathfrak{g} which is not irreducible and prove your answer.

Exercise 3. Let \mathfrak{h} be a Lie algebra over a field K and let V be an \mathfrak{h} -module. Suppose V is a direct sum of simultaneous eigenspaces for \mathfrak{h} , that is, there is a subset $S \subset \mathfrak{h}^*$ such that

$$V = \bigoplus_{\lambda \in S} V_{\lambda}$$

and where $h.v = \lambda(h) v$ for all $v \in V_{\lambda}$ and $h \in \mathfrak{h}$. Let $W \subset V$ be an \mathfrak{h} -submodule. Let $w \in W$ be an arbitrary non-zero element. By the direct sum decomposition above, we can write $w = \sum_{i=1}^{n} v_i$ with $v_i \in V_{\lambda_i}, v_i \neq 0$, and mutually distinct $\lambda_i \in S$. Show that $v_i \in W$ for all i.

Hint: One can proceed as follows. Assume that at least one v_i is not in W.

- (1) Let $T \subset \{1, \ldots, n\}$ be a minimal subset such that
 - (i) $v_i \notin W$ for all $i \in T$,

(ii) $\operatorname{span}_K\{v_i \mid i \in T\} \cap W \neq \{0\}$. Here, minimal means that one cannot omit any element from T such that (ii) remains true. Show that such a T exists and that it contains at least 2 elements.

- (2) Let $\alpha, \beta \in T$ be two distinct elements (which exist by (1)). Write $R = T \setminus \{\alpha, \beta\}$. By (ii) there is a nonzero $w' \in W$ such that $w' = a v_{\alpha} + b v_{\beta} + \sum_{i \in R} c_i v_i$ for some $a, b, c_i \in K$. Show that a, b and all c_i are non-zero.
- (3) Pick an $h \in \mathfrak{h}$ such that $\lambda_{\alpha}(h) \lambda_{\beta}(h) \neq 0$. Act with $h \lambda_{\beta}(h) \operatorname{id}_{V}$ on the two sides of the definition of w' in (2). Find a contradiction to the assumptions in (1) and conclude that all v_i are in W.

P. SOSNA

Exercise 4. Let $\mathfrak{g} = \mathfrak{gl}(n, K)$ for K a field with $\operatorname{char}(K) \neq 2$ and n > 1. Let $\mathfrak{h} \subset \mathfrak{g}$ be the diagonal matrices, that is, $\mathfrak{h} = \mathfrak{d}(n, K)$. For $1 \leq i, j \leq n$ define the element $\alpha_{i,j} \in \mathfrak{h}^*$ on the basis element $E_{m,m}$ as $\alpha_{i,j}(E_{m,m}) = \delta_{i,m} - \delta_{j,m}$.

- (1) Show that $\operatorname{ad}(h)(E_{i,j}) = \alpha_{i,j}(h) E_{i,j}$ for all $h \in \mathfrak{h}$.
- (2) The algebra \mathfrak{g} is an \mathfrak{h} -module via the adjoint action. Show that \mathfrak{g} has a decomposition $\mathfrak{g} = \bigoplus_{\lambda \in S} \mathfrak{g}_{\lambda}$ into simultaneous \mathfrak{h} -eigenspaces \mathfrak{g}_{λ} as in the previous exercise. Give the set $S \subset \mathfrak{h}^*$ and the \mathfrak{g}_{λ} for all $\lambda \in S$.
- (3) Let I be an ideal in \mathfrak{g} . Show that if $E_{i,j} \in I$ for some pair of indices (i, j) with $i \neq j$ implies $\mathfrak{sl}(n, K) \subset I$.
- (4) Let I be an ideal in \mathfrak{g} . Show that if I is contained in the diagonal matrices $\mathfrak{d}(n, K)$, then I is contained in the multiples of the identity, $I \subset \mathfrak{s}(n, K)$.
- (5) Show that the full list of ideals in $\mathfrak{gl}(n, K)$ is $\{0\}$, $\mathfrak{s}(n, K)$, $\mathfrak{sl}(n, K)$, $\mathfrak{gl}(n, K)$.
- (6) Show that $\mathfrak{sl}(n, K)$ is simple if $\operatorname{char}(K) = 0$.