EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

Sheet 4

Exercise 1. Let \mathfrak{g} be a Lie algebra and let $x \in \mathfrak{g}$. Prove that the vector subspace of \mathfrak{g} spanned by the eigenvectors of ad x is a Lie subalgebra.

Exercise 2. Show that $\operatorname{ad} \mathfrak{g}$ is an ideal in $\operatorname{Der}(\mathfrak{g})$.

Exercise 3. Prove that a Lie algebra is solvable (resp. nilpotent) if and only if ad \mathfrak{g} is solvable (resp. nilpotent).

Exercise 4. Let \mathfrak{g} be a finite dimensional Lie algebra and let $I \subset \mathfrak{g}$ be an ideal of \mathfrak{g} such that the quotient algebra \mathfrak{g}/I is nilpotent and such that the restriction of ad x to I is nilpotent for all $x \in \mathfrak{g}$. Show that \mathfrak{g} is a nilpotent Lie algebra.

Exercise 5. Prove that $\mathfrak{g} = \mathfrak{sl}(3, K)$ is simple if char $(K) \neq 3$.

Hint: Recall that $\mathfrak{sl}(3, K)$ has as basis the following matrices: $E_{i,j}$ for $1 \leq i, j \leq 3$ and $i \neq j$, and the matrices $H_1 = E_{1,1} - E_{2,2}$, $H_2 = E_{2,2} - E_{3,3}$. Assume $0 \neq I$ is an ideal in \mathfrak{g} and consider the action of ad H_1 and ad H_2 on it. You may use without proof that ad H_1 and ad H_2 are diagonalisable endomorphisms of the eight-dimensional vector space \mathfrak{g} .