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Exercise 1. Prove the following proposition stated in the lecture.
Let A and B be algebras.

(1) If ϕ : A //B is a homomorphism, then ker(ϕ) is an ideal in A.
(2) If I ⊂ A is an ideal, then there exists a unique algebra structure on the quotient

vector space A/I such that the canonical projection π : A //A/I is an algebra
homomorphism.

(3) If ϕ : A //B is an algebra homomorphism and I ⊂ A is an ideal contained in the
kernel of ϕ, then there exists a unique algebra homomorphism ϕ̃ : A/I //B such
that ϕ̃ ◦ π = ϕ. In particular, A/ ker(ϕ) ' im(ϕ).

(4) If ϕ : A //B is an algebra homomorphism and J ⊂ B is an ideal, then ϕ−1(J) is
an ideal in A.

(5) If ϕ : A //B is a surjective algebra homomorphism and I ⊂ A is an ideal, then
ϕ(I) is an ideal in B.

Exercise 2. Let I be an ideal in a Lie algebra g. Show that I(k) and Ik is an ideal in
g for all k.

Exercise 3. Let g be a three-dimensional Lie algebra with the property [g, g] = g.
Prove that g is simple.

Exercise 4. Let K be a field and g be a Lie algebra over K. Show that the following
are equivalent.

(1) g is solvable.
(2) There is a finite collection of subalgebras gk ⊂ g such that (i) g = g0 ⊃ g1 ⊃
· · · ⊃ gn−1 ⊃ gn = {0}, (ii) gk+1 is an ideal in gk, and (iii) gk/gk+1 is abelian.

Exercise 5.

(1) Show that the Lie algebra

g2 =
{(

a b
0 0

)
| a, b ∈ K

}
from Exercise 2 on Sheet 2 is solvable but not nilpotent.

(2) Let K be a field of characteristic two. Show that the Lie algebra g = sl(2, K) is
nilpotent. In particular, it is solvable and therefore not simple.
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Remark. The following is meant as a brief recollection of some facts from abstract
algebra which might come useful in the course of the lecture. If you are not familiar with
a statement and do not understand it completely, work out the details for yourself, ask
in the next exercise session or write an email.

A ring is a set R together with maps +: R×R //R and · : R×R //R called addition
and multiplication, respectively, such that the following conditions are satisfied 1) (R,+)
is an abelian group, 2) (R, ·) is a semigroup and 3) the distributive laws are satisfied (for
instance (x+ y) · z = x · z+ y · z). A ring is called unital if there exists an element 1 ∈ R
such that x · 1 = 1 · x = x for all x ∈ R. A ring is called commutative if x · y = y · x for
all x, y ∈ R. Note that any field is in particular a commutative unital ring where every
nonzero element has a multiplicative inverse. In general, one defines the units in a ring
as the set R∗ = {x ∈ R | ∃y : xy = yx = 1}.

A homomorphism of rings is a map f : R //S such that f(x + y) = f(x) + f(y) and
f(xy) = f(x)f(y) for all x, y ∈ R. If R and S are unital, one requires the condition
f(1R) = 1S.

Recall that we defined an associative unital K-algebra to be a K-vector space A
together with a bilinear associative operation which admits a unit. In particular, A is a
unital ring. Now define a map of K-vector spaces K //A by sending 1 // 1A. This map
is easily seen to be a unital ring homomorphism. Note that this map is injective because
its kernel is an ideal in K and K has no non-trivial ideals. It follows that the image
is contained in the center of A, namely the subring (this can be defined for any ring)
Z(A) = {x ∈ A | xy = yx ∀y ∈ A}. A ring R is commutative if and only if Z(R) = R.

Note that Z is a commutative unital ring. Also note that there exists exactly one ring
homomorphism from Z to an arbitrary unital ring R, namely the morphism which sends
1 to 1R.

Now recall that a vector space over a field is an abelian group endowed with a scalar
multiplication by the field. Substituting the field by a commutative unital ring leads
to the concept of a module. So, if R is a commutative unital ring, then a module over
R is an abelian group M with a scalar multiplication R ×M //M satisfying the same
properties as are required in the definition of a vector space. In particular, R itself is a
module over R and so is the group Rn for any n. If R is not commutative, one can still
talk about modules but now there are right modules and left modules corresponding to
the cases M × R //M and R ×M //M . As in the case of vector spaces, one defines
linear maps between (left/right) modules.

So, a module over a field is just a vector space. On the other hand, a module over Z
is actually just an abelian group. Conversely, any abelian group is a Z-module.

A module M over R is called free if it is isomorphic to a module of the form Rn for
some n. In this case, there is a basis for M . Note that there are modules which are
not free and hence do not have a basis. An example is the abelian group Z/2Z. It is a
Z-module, but it cannot be free, because it is finite.

As in the case of fields we can define matrices over a ring. If the ring is commutative
and unital, one defines the determinant of a square matrix as in the case of matrices over
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a field. A square matrix turns out to be invertible if and only if its determinant is a unit.
In particular, an injective map Rn //Rn need not be surjective. For instance, Z //Z,
1 � // 2 is an injective homomorphism of Z-modules (equivalently, an injective group ho-
momorphism), but it is not surjective which is to be expected since the determinant of
this map is 2 /∈ Z∗ = {±1}.

Given a (left/right) module M over a ring R, a (left/right) submodule is a subgroup
N ⊂M such that the restriction of the scalar multiplication makes N into a (left/right)
module over R. In particular, a (left/right) submodule of the module R is called a
(left/right sided) ideal in R. The reader can check that this is exactly the definition
given in the lecture.
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