EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

Sheet 2

Exercise 1.

(1) Show that, for any $\lambda \in \mathbb{C}$, the following equation holds:

$$\exp\begin{pmatrix}\lambda & 1\\ 0 & \lambda\end{pmatrix} = e^{\lambda} \cdot \begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}.$$

(2) Let $A \in Mat(n, \mathbb{C})$. Show that for any $U \in GL(n, \mathbb{C})$ we have

$$U^{-1}\exp(A)U = \exp(U^{-1}AU).$$

(3) Compute $\exp\begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix}$ for $\lambda \in \mathbb{C}$.

Exercise 2. Let K be a field. Consider the following two subsets of Mat(2, K):

$$\mathfrak{g}_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in K \right\}, \quad \mathfrak{g}_2 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in K \right\}.$$

- (1) Show that \mathfrak{g}_1 and \mathfrak{g}_2 are Lie subalgebras of $\mathfrak{gl}(2, K)$.
- (2) Show that neither \mathfrak{g}_1 nor \mathfrak{g}_2 is simple.
- (3) Show that \mathfrak{g}_1 and \mathfrak{g}_2 are not isomorphic as Lie algebras.
- (4) Let \mathfrak{g} be a two-dimensional Lie algebra over K. Show that \mathfrak{g} is isomorphic to either \mathfrak{g}_1 or to \mathfrak{g}_2 .

Hint: Distinguish the two cases that \mathfrak{g} is abelian/not abelian.

Exercise 3. Let \mathfrak{g} be a Lie algebra. The *center* of \mathfrak{g} is defined to be the set

$$Z(\mathfrak{g}) := \{ z \in \mathfrak{g} \mid [x, z] = 0 \ \forall x \in \mathfrak{g} \}.$$

- (1) Show that $Z(\mathfrak{g})$ is an ideal in \mathfrak{g} .
- (2) Prove that the center of $\mathfrak{gl}(n, K)$ is $\mathfrak{s}(n, K)$, the set of all multiples of the identity matrix.
- (3) Show that the center of $\mathfrak{sl}(n, K)$ is trivial if $\operatorname{char}(K) = 0$.