EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

Sheet 11

Exercise 1. Prove that any three-dimensional semisimple Lie algebra \mathfrak{g} is isomorphic to $\mathfrak{sl}(2, K)$.

Exercise 2. Compute all the root strings and Cartan integers of $\mathfrak{sl}(n, K)$ with respect to the maximal toral subalgebra \mathfrak{h} of Exercise 1 on Sheet 10.

Exercise 3. Show that there do not exist semisimple Lie algebras of dimension four, five or seven.

Exercise 4. Let \mathfrak{g} be a semisimple algebra, \mathfrak{h} be a toral subalgebra and $h \in \mathfrak{h}$. Recall the Cartan decomposition $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$.

- (1) Show that $\mathfrak{h} \subset C_{\mathfrak{g}}(h) =: C$.
- (2) Set $\Phi_h = \{ \alpha \in \Phi \mid \alpha(h) = 0 \}$. Show that $C = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi_h} \mathfrak{g}_{\alpha}$. Note that $\beta \in \Phi_h$ if and only if $-\beta \in \Phi_h$.
- (3) Prove that $Z(C) = \{h' \in \mathfrak{h} \mid \alpha(h') = 0 \ \forall \alpha \in \Phi_h\}.$
- (4) Prove that $C_{\mathfrak{g}}(h)$ is a reductive Lie algebra.
- (5) Now let $\mathfrak{g} = \mathfrak{sl}(n, K)$. Recall that as a maximal toral subalgebra one can take $\mathfrak{d}(n, K) \cap \mathfrak{sl}(n, K) = \mathfrak{h}$. Give an example of an element $x \in \mathfrak{h}$ such that $\mathfrak{h} \subsetneq C_{\mathfrak{g}}(x)$.