EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

Sheet 10

Exercise 1. Let $\mathfrak{g} = \mathfrak{sl}(n, K)$.

- (1) Show that the set \mathfrak{h} of diagonal matrices with trace zero is a maximal toral subalgebra of \mathfrak{g} .
- (2) Compute the roots of \mathfrak{g} with respect to \mathfrak{h} .

Exercise 2.

(1) Let \mathfrak{g} be a semisimple Lie algebra and let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . Show that for all $h, k \in \mathfrak{h}$ we have

$$\kappa_{\mathfrak{g}}(h,k) = \sum_{\alpha \in \Phi} \alpha(h) \, \alpha(k),$$

where Φ is the set of roots of the corresponding Cartan decomposition.

Hint: Use that a basis of \mathfrak{g} can be obtained as the union of a basis of \mathfrak{h} and the bases of the spaces \mathfrak{g}_{α} (which we know to be one-dimensional).

(2) Recall from Exercise 1 that set of all diagonal matrices with trace zero is a maximal toral subalgebra of $\mathfrak{sl}(n, K)$. Let $h = \sum_{i=1}^{n} h_i E_{i,i}$ and $k = \sum_{i=1}^{n} k_i E_{i,i}$ with $h_i, k_i \in K$ such that $\operatorname{tr}(h) = 0 = \operatorname{tr}(k)$. Show that

$$\kappa_{\mathfrak{sl}(n,K)}(h,k) = 2n(\sum_{i=1}^{n} h_i k_i).$$

Exercise 3. Let $\mathfrak{g} = \mathfrak{sl}(2, K)$. Show that each maximal toral subalgebra of \mathfrak{g} is one-dimensional.

Exercise 4. Let \mathfrak{g} be a semisimple Lie algebra and let \mathfrak{h} be a maximal toral subalgebra of \mathfrak{g} . Show that $\mathfrak{h} = N_{\mathfrak{g}}(\mathfrak{h})$, that is, \mathfrak{h} is self-normalising.