EXERCISES, LIE ALGEBRAS, UNIVERSITY OF HAMBURG, SUMMER SEMESTER 2016

P. SOSNA

Sheet 1

Exercise 1.

- (1) Let (A, \cdot) be an associative algebra. Verify the claim made in the lecture that setting $[x, y] = x \cdot y y \cdot x$ defines a Lie algebra structure on A.
- (2) Let $E_{i,j}$ be the matrix with a 1 in (i, j)-position and 0 everywhere else. Prove the following equation:

$$E_{i,j}E_{k,l} = \delta_{jk}E_{i,l}.$$

(3) Prove the following claim made in the lecture: the space of all derivations on an algebra A is a Lie subalgebra of $\mathfrak{gl}(A)$.

Exercise 2. Let K be a field of characteristic 0 (that is, $m \cdot 1 \neq 0$ for all $m \in \mathbb{Z}$). Let $n \geq 2$. Show that

$$|\mathfrak{sl}(n,K),\mathfrak{sl}(n,K)| = \mathfrak{sl}(n,K).$$

Furthermore, show that the statement is false when n = 2 and char(K) = 2.

Exercise 3. Let $\mathfrak{s}(n, K) = \{\lambda \cdot \mathrm{Id}_n \mid \lambda \in K\}$. Show that if $\mathrm{char}(K) = 0$, then $\mathfrak{gl}(n, K) \simeq \mathfrak{sl}(n, K) \oplus \mathfrak{s}(n, K)$ as vector spaces. Furthermore, show that

$$[\mathfrak{s}(n,K),\mathfrak{gl}(n,K)] = 0.$$

Exercise 4. Recall the following vector spaces: $\mathfrak{t}(n, K)$, the set of all upper triangular $n \times n$ -matrices; $\mathfrak{n}(n, K)$, the set of all strictly upper triangular matrices; and $\mathfrak{d}(n, K)$, the set of all diagonal matrices.

- (1) Check the following claim from the lecture: all the above spaces are Lie subalgebras of $\mathfrak{gl}(n, K)$.
- (2) Compute the dimensions of the above Lie algebras.
- (3) Show that $\mathfrak{t}(n, K) = \mathfrak{d}(n, K) \oplus \mathfrak{n}(n, K)$ as vector spaces.
- (4) Prove that $[\mathfrak{d}(n, K), \mathfrak{n}(n, K)] = \mathfrak{n}(n, K).$

Exercise 5. Show that the Lie algebras $\mathfrak{so}(3,\mathbb{C})$, $\mathfrak{sp}(2,\mathbb{C})$ and $\mathfrak{sl}(2,\mathbb{C})$ are isomorphic.