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These are the lecture notes for a course about the representation theory of finite-
dimensional algebras held at at the University of Hamburg. The rough idea is to first
give an introduction to some basic concepts, such as radicals, semisimple modules and
path algebras, before showing that any basic connected algebra is the quotient of a path
algebra by an admissible ideal. A very useful observation is that representations of a
quiver are the same as modules over the associated path algebra. After establishing
these facts, we will look at Gabriel’s theorem which classifies the representation finite
hereditary algebras as those associated to Dynkin diagrams.

In Sections 1-4 we will, for the most part, closely follow [1]. When dealing with
Gabriel’s theorem our reference will be [5].

I would like to thank Ana Ros Camacho for pointing out some typos in the first version
of these notes.

1. Basic concepts

Let K be an algebraically closed field. Recall that a K-algebra is a ring A with
an identity element such that A has a vector space structure compatible with the ring
multiplication. The algebra is called commutative if it is commutative as a ring. We say
that A is a finite-dimensional K-algebra if its dimension as a K-vector space is finite. A
morphism of K-algebras is a ring homomorphism which is linear over K.

Unless otherwise stated, all algebras will be assumed to be finite-dimensional.
A right ideal of a K-algebra A is a K-vector subspace I such that xa ∈ I for all x ∈ I

and a ∈ A. A left ideal is defined dually and a two-sided ideal, or simply ideal, is a K-
vector subspace which is both a left and right ideal. A (right or left) ideal I is maximal
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if it not equal to A and if I ⊂ I ′ for an ideal I ′, then I = I ′. It is straightforward to
see that the K-vector space A/I is a K-algebra if I is an ideal and the quotient map is
a morphism of K-algebras. Given an ideal I and 1 ≤ m ∈ N, the ideal Im consists of
finite sums of elements of the form x1 · · · xm with xi ∈ I and I is called nilpotent if for
some m we have Im = 0. This also makes sense for right (or left) ideals.

Example 1.1. • The set Mn(K) of all (n × n)-matrices with K-coefficients is a
K-algebra with respect to the usual matrix addition and multiplication. Its
dimension is n2. The subset of Mn(K) consisting of all lower triangular matrices

is a K-subalgebra of dimension n(n+1)
2

. To be even more specific, consider the

n = 2 case. The subspace

(
K 0
0 0

)
is easily seen to be a right but not a left ideal.

On the other hand

(
K 0
K 0

)
and

(
0 0
K K

)
are both maximal ideals. The case of

upper triangular matrices is left to the reader.
• For an infinite-dimensional example consider the ringsK[t] orK[t1, . . . , tn]. These

algebras are commutative.
• Given two K-algebras A1 and A2, their product is the space A = A1 × A2 with

componentwise addition and multiplication.

Definition. The radical radA of a K-algebra A is the intersection of all maximal right
ideals of A.

We can describe elements in the radical as follows.

Lemma 1.2. For an element a ∈ A the following conditions are equivalent.

(1) a ∈ radA,
(2) a is in the intersection of all maximal left ideals of A,
(3) for any b ∈ A, the element 1− ab has a two-sided inverse,
(4) for any b ∈ A, the element 1− ab has a right inverse,
(5) for any b ∈ A, the element 1− ba has a two-sided inverse,
(6) for any b ∈ A, the element 1− ba has a left inverse.

Proof. It is clear that (3) implies (4) and that (5) implies (6). To prove that (1) implies
(4) assume that x = 1− ab has no right inverse. Then there exists a maximal right ideal
I such that x ∈ I. But ab ∈ I and hence x+ ab = 1 ∈ I, a contradiction.

To see that (4) implies (1), assume that a /∈ radA, so there exists a maximal right
ideal I with a /∈ I. It follows that A = I + aA, hence 1 = x + ab for some x ∈ I and
b ∈ A. Thus x = 1 − ab ∈ I has no right inverse. The equivalence between (2) and (6)
is proved similarly and the equivalence of (3) and (5) follows from the following easily
checked statements:

(1− cd)x = 1 =⇒ (1− dc)(1 + dxc) = 1,

y(1− cd) = 1 =⇒ (1 + dyc)(1− dc) = 1.
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Finally, let us see that (4) implies (3). For any b ∈ A there exists c ∈ A such that
(1 − ab)c = 1, hence c = 1 − a(−bc) := 1 − ab′. Applying (4) to c, gives an element d
such that 1 = cd = d + abcd = d + ab. Hence, d = 1 − ab and c is its left inverse. The
proof that (6) implies (5) is similar. �

Example 1.3. Consider again the lower triangular (2× 2)-matrices. It is easily checked

that the intersection

(
0 0
K 0

)
of the ideals

(
K 0
K 0

)
and

(
0 0
K K

)
is the radical of this

algebra.

Corollary 1.4. If radA is the radical of an algebra A, then the following hold:

(1) radA is the intersection of all maximal left ideals of A.
(2) radA is a two-sided ideal and rad(A/ radA) = 0.
(3) If I is a two-sided nilpotent ideal of A, then I ⊆ radA. If, in addition, A/I '

K × . . .×K, then I = radA.

Proof. (1) is clear. To see that (2) holds, assume a′ ∈ rad(A/ radA). Using the lemma,
we see that for a representative a of a′ and any b ∈ A there exists c ∈ A such that
(1− ab)c = 1− x for some x ∈ radA. Applying the lemma to 1− x, we get an element
d ∈ A such that (1− x)d = 1, hence a ∈ radA and so a′ = 0 ∈ A/ radA.

To see that (3) holds, let m > 0 be such that Im = 0. If x ∈ I and a ∈ A, then ax ∈ I,
hence there exists an r > 0 such that (ax)r = 0. Now

(1 + ax+ (ax)2 + . . .+ (ax)r−1)(1− ax) = 1,

so x ∈ radA and, therefore, I ⊆ radA. Note that the proof also works if I is only a
right (or left) ideal.

Assume now that A/I ' K× . . .×K. In particular, rad(A/I) = 0. Now note that any
surjective algebra homomorphism f : B //B′ induces a map radB // radB′. Indeed, if
b ∈ radB, then 1− bc is invertible for all c ∈ B and hence f(1− bc) is invertible in B′.
Applying this to the canonical map A //A/I gives radA ⊆ I. �

Example 1.5. Let A = K[t1, . . . , tn]/(ts11 , . . . , t
sn
n ) for some positive integers si. The

ideal I = (t1, . . . , tn) of A generated by the cosets of the indeterminates ti is clearly
nilpotent, hence I ⊆ radA. On the other hand, A/I ' K, hence I = radA.

Recall that a right module over an algebra A is a K-vector space admitting a scalar
multiplication by A from the right satisfying the usual properties. A left module is defined
dually. Note that A can be considered as a right or a left module over itself. Write AA
for the former and AA for the latter. We will usually consider right modules from here
on. A module is finite-dimensional if its dimension as a K-vector space is finite. All
well-known notions such as submodules, module homomorphisms, finite generation, etc.,
are the same as for modules over commutative rings. In particular, the category Mod(A)
of all right modules is an abelian category. Given an algebra A, the opposite algebra
Aop is defined by reversing the order of the multiplication. It follows that Mod(Aop)
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is equivalent to the category of left modules over A and vice versa. The subcategory
mod(A) of Mod(A) has as objects the finite-dimensional modules.

Note that a module M over A is finitely generated if and only if it is finite-dimensional.

Lemma 1.6 (Nakayama). Let A be a K-algebra, M a finitely generated A-module and
I ⊆ radA a two-sided ideal. If MI = M , then M = 0.

Proof. Let M be generated by m1, . . . ,ms. We use induction on s. If s = 1, then
M = m1A = m1I implies m1 = m1x1 for some x1 ∈ I. Thus m1(1 − x1) = 0, hence
m1 = 0, because 1− x1 is invertible. Assume now that s ≥ 2. Since MI = M , we have
m1 =

∑s
i=1mixi for some xi ∈ I. It follows that m1 can be generated by m2, . . . ,ms,

since (1 − x1) is invertible, and, therefore, M can be generated by m2, . . . ,ms. By
induction, M = 0. �

Corollary 1.7. The radical of any (finite-dimensional, as usual) algebra A is nilpotent.

Proof. The chain
A ⊃ radA ⊃ (radA)2 ⊃ (radA)3 ⊃ . . .

has to become stationary, since A is finite-dimensional. Therefore, there exists n such
that (radA)n = (radA)n+1 = (radA)n radA. By Nakayama, (radA)n = 0. �

Example 1.8. If A = A1 ×A2 is the product of two K-algebras, we have 1A = (1, 1) =
(1, 0) + (0, 1) =: e1 + e2. Furthermore, e1e2 = e2e1 = 0. Given any A-module M , it
is easily checked that Mei is an Ai-module for i = 1, 2. This eventually leads to an
equivalence Mod(A) ' Mod(A1)×Mod(A2).

If A is an algebra and M ∈ mod(A), consider the dual space M∗ = Hom(M,K).
This becomes a left A-module by setting (aϕ)(m) := ϕ(ma) for a ∈ A, m ∈ M and
ϕ ∈ M∗. Given a module homomorphism M //N , the map on dual spaces is again a
homomorphism of (now left) modules. This leads to the duality functor

D : mod(A) // mod(Aop).

This functor is an equivalence with quasi-inverse defined in the same way, that is, for a
left module Y , we consider the dual vector space Y ∗ and endow it with a right module
structure given by ϕa(y) := ϕ(ay).

Definition. Let A and B be two K-algebras. An A-B-bimodule is a triple AMB =
(M, ∗, ·) such that AM = (M, ∗) is a left A-module, MB = (M, ·) is a right B-module,
and (a ∗m) · b = a ∗ (m · b) for all m ∈ M , a ∈ A and b ∈ B. One usually suppresses ∗
and · in the notation.

Example 1.9. Any right module M can be considered as an End(M)-A-bimodule by
noting that the left End(M)-module structure is defined by ϕm := ϕ(m).

Note that if AMB is an A-B-bimodule and NB is a right B-module, the vector space
HomB(AMB, NB) is a right A-module by setting fa(m) := f(am) for all a ∈ A, m ∈ M
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and f ∈ HomB(AMB, NB). Using this observation, we have a covariant functor

HomB(AMB,−) : Mod(B) // Mod(A).

Similarly, we have a contravariant functor

HomB(−, AMB) : Mod(B) // Mod(Aop).

Furthermore, given AMB as above there are the tensor product functors

(−)⊗AMB : Mod(A) // Mod(B), AM ⊗B (−) : Mod(Bop) // Mod(Aop)

and an adjunction isomorphism

HomB(X ⊗AMB, ZB) ' HomA(XA,HomB(AMB, ZB))

defined for a ϕ in the left hand space by sending it to the map ψ given by ψ(x)(m) = ϕ(x⊗
m). The inverse map sends ψ in the right hand space to the map ϕ : x⊗m � //ψ(x)(m). To
quote Atiyah-Macdonald, “in the language of abstract nonsense” the functor (−)⊗AMB

is left adjoint to HomB(−, AMB) and HomB(−, AMB) is right adjoint to (−)⊗AMB.

Definition. An A-module S is called simple if it is nonzero and the only submodules
of S are 0 and S. A module M is semisimple if it is a direct sum of simple modules. A
module is called indecomposable if in a decomposition M = M1 ⊕M2 either M1 = 0 or
M2 = 0.

Clearly, any simple module is indecomposable. The next result describes some restric-
tions on maps between simple modules.

Lemma 1.10 (Schur). Let S and S ′ be A-modules and f : S //S ′ be a non-trivial ho-
momorphism. If S is simple, then f is a monomorphism and if S ′ is simple, then f is
an epimorphism. If both are simple, then f is an isomorphism.

Proof. Just note that im(f) ⊆ S ′ and ker(f) ⊆ S are submodules of S ′ and S, respec-
tively. �

Corollary 1.11. If S is a simple A-module, then End(S) ' K.

Proof. By Schur’s lemma, End(S) is a skew field. Since A is simple, any map A //S
is an epimorphism, hence dimK S < ∞. Therefore, also dimK End(S) < ∞. Hence, for
any 0 6= ϕ ∈ End(S) there exists an irreducible polynomial f ∈ K[t] such that f(ϕ) = 0.
Since K is algebraically closed, f is of degree 1, hence ϕ corresponds to a scalar λϕ ∈ K∗,
which gives the desired isomorphism. �

Lemma 1.12. A finite-dimensional module M is semisimple iff for any submodule N of
M there exists a submodule L of M such that L ⊕ N ' M . In particular, a submodule
of a semisimple module is semisimple.

Proof. Assume that M = S1⊕. . .⊕Sm where the Si are simple modules. Let 0 6= N ⊆M
be a submodule and consider the maximal family {Sj1 , . . . , Sjk} of the Si such that
N ∩ L = 0, where L = Sj1 ⊕ . . .⊕ Sjk . Then N ∩ (L+ St) 6= 0, for any t /∈ {j1, . . . , jk}.
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From this it follows that (L + N) ∩ St 6= 0 for all t /∈ {j1, . . . , jk}, hence St ⊆ L + N
for all t /∈ {j1, . . . , jk}. Therefore, M = L + N and hence M = L ⊕ N . The reverse
implication follows by induction on dimKM . �

Definition. Let M be a right A-module. The (Jacobson) radical radM of M is the
intersection of all maximal submodules of M .

Let us study some basic properties of the radical:

Proposition 1.13. Let L,M and N be finite-dimensional A-modules.

(1) m ∈ radM iff f(m) = 0 for all f ∈ HomA(M,S) and all simple modules S.
(2) rad(M ⊕N) = radM ⊕ radN .
(3) If f ∈ HomA(M,N), then f(radM) ⊆ radN .
(4) M radA = radM .
(5) If L and M are submodules of a finite-dimensional module N with L ⊆ radN

and L+M = N , then M = N .

Proof. To see (1), note that L ⊆ M is a maximal submodule iff M/L is simple. (2)
follows immediately from (1). To prove (3), consider any map g ∈ HomA(N,S) and use
that gf(m) = 0.

Now, take any m ∈ M and define a homomorphism fm : A //M of A-modules by
fm(a) = ma for a ∈ A. Part (3) gives that fm(radA) ⊆ radM for all m, hence M radA ⊆
radM . To see the reverse inclusion, note that M/M radA is a module over A/ radA.
The Wedderburn–Artin theorem tells us, in particular, that an algebra B has trivial
radical if and only if any right module is semisimple if and only if BB is semisimple. We
apply this to A/ radA and conclude that M/M radA is a direct sum of simple modules.
Clearly, the radical of a simple module is trivial, hence rad(M/M radA) = 0. Now (3)
gives us that radM ⊆M radA.

Finally, assume L and M are as in (5), but M 6= N . Since dimK N < ∞, M is
contained in a maximal submodule P ⊆ N . Therefore, L ⊆ radN ⊆ P , so N =
L+M ⊆ P +M = P , a contradiction. �

Note that any homomorphism f : M //N induces a map M/ radM //N/ radN , by
part (3) of Proposition 1.13.

Corollary 1.14. For any finite-dimensional module M , the module M/ radM , called the
top of M and sometimes denoted by top(M), is semisimple and a module over A/ radA.
Furthermore, if L ⊆M such that M/L is semisimple, then radM ⊆ L.

Proof. The statement about semisimplicity follows from the Wedderburn–Artin theorem
mentioned above. Considering the homomorphism M //M/L and using part (3) of the
lemma, gives the second statement. �

Corollary 1.15. A homomorphism f : M //N is surjective if and only if the morphism
top(M) // top(N) is surjective. If S is a simple module, then S radA = 0 and S is a
simple A/ radA-module. Finally, an A-module M is semisimple if and only if radM = 0.
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Proof. The second statement is clear, by Nakayama’s lemma and since S radA is a sub-
module of the simple module S. This also immediately implies the “only if” direction
in the third statement. The “if” direction follows from the previous corollary. Finally,
assume that M/ radM //N/ radN is surjective. Then im f + radN = N , hence, by (5)
of Proposition 1.13 applied to L = radN and M = im f , im f = N . The other direction
is trivial. �

A composition series of a finite-dimensional module M is a chain 0 = M0 ⊆ M1 ⊆
. . . ⊆Mn = M such that Mj+1/Mj is simple for j = 0, . . . , n−1. The modules Mj+1/Mj

are called the composition factors of M .
The Jordan–Hölder theorem tells us that any two composition series (Mi)

n
i=1 and

(Nj)
l
j=1 have the property that n = l and that there exists a permutation σ of {1, . . . , n}

such that Mj+1/Mj ' Nσ(j+1)/Nσ(j) for j ∈ {0, . . . , n− 1}. In particular, the number n
of modules in a composition series is well-defined and called the length of M , denoted by
l(M). It is easily checked that for a submodule N of M , we have l(N) + l(M/N) = l(M)
and for any two submodules L and N of M , we have l(L+N) + l(L∩N) = l(L) + l(N).

Definition. An element e ∈ A is called an idempotent if e2 = e. The idempotent e is
called central if ea = ae for all a ∈ A. Two idempotents e1, e2 ∈ A are called orthogonal
if e1e2 = e2e1 = 0. Finally, an idempotent e is called primitive if it cannot be written as
a sum of nonzero orthogonal idempotents.

Note that any algebra has two trivial idempotents, namely 0 and 1. If e is a non-trivial
idempotent, then so is 1−e, and the idempotents e and 1−e are orthogonal. Furthermore,
there exists a decomposition AA = eA ⊕ (1 − e)A of right A-modules. Conversely, if
AA = M1 ⊕ M2, then mi ∈ Mi with 1 = m1 + m2 are orthogonal idempotents and
Mi = eiA is an indecomposable module if and only if ei is primitive.

Given a central idempotent e, the modules eA and (1− e)A are in fact algebras (with
identity e resp. (1 − e)) and the above decomposition of A as a module exhibits A
as a product of the algebras eA and (1 − e)A. An algebra A is called connected (or
indecomposable) if 0 and 1 are the only central idempotents of A or, equivalently, the
algebra A is a not a product of two algebras.

Since A is finite-dimensional, the right module AA admits a decomposition AA =
P1⊕ . . .⊕Pn, where the Pi are indecomposable right ideals. It is clear that Pi = eiA for
primitive pairwise orthogonal idempotents ei such that 1 =

∑n
i=1 ei. Conversely, every

set of idempotents with these properties determines a decomposition of AA as above.
Such a decomposition is called an indecomposable decomposition of A and the ei are
called a complete set of primitive orthogonal idempotents of A.

Consider a right A-module M and an idempotent e ∈ A. Note that the K-vector
subspace eAe of A is a K-algebra with identity e. Of course, it is a subalgebra of A iff
e = 1. We can define an eAe-module structure on the subspace Me of M by setting
me(eae) := meae for all m ∈M and a ∈ A. In particular, Ae is a right eAe-module and
eA is a left eAe-module. This implies that HomA(eA,M) is a right eAe-module with
respect to the action (ϕ · eae)(x) = ϕ(eaex) for x ∈ eA, a ∈ A and ϕ ∈ HomA(eA,M).
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The following easy lemma will turn out to be very useful.

Lemma 1.16. Let A be a K-algebra, M a right A-module and e ∈ A an idempo-
tent. Define a K-linear map θM : HomA(eA,M) //Me by ϕ � //ϕ(e) = ϕ(e)e. Then
θM is an isomorphism of right eAe-modules and it is functorial in M . The isomorphism
θeA : End(eA) ' eAe of right eAe-modules induces an isomorphism of K-algebras.

Proof. First note that the second statement follows easily from the first. On the other
hand, it is straightforward to see that θM is functorial in M and a homomorphism of
right eAe-modules. To see that it is an isomorphism, we will define an inverse map ψM
as follows. Given me ∈ Me and ea ∈ eA, set ψM(me)(ea) := mea. The details are left
to the reader. �

The next result states, roughly speaking, that under the canonical quotient map
A //A/ radA idempotents can be lifted.

Lemma 1.17. Given an idempotent η = g+radA (g ∈ A) of B = A/ radA, there exists
an idempotent e of A such that g − e ∈ radA.

Proof. By Corollary 1.7, radA is nilpotent. Since η2−η = 0 in B, we have g−g2 ∈ radA,
so (g − g2)m = 0 for some m > 0. By Newton’s binomial formula, 0 = (g − g2)m =
gm − gm+1t with t =

∑m
j=1(−1)j−1

(
m
j

)
gj−1. Hence, gm = gm+1t and gt = tg. The

first equation immediately implies that e = (gt)m is an idempotent. Next note that
g − gm ∈ radA, since

g − gm = g(1− gm−1) = g(1− g)(1 + g + . . .+ gm−2) = (g − g2)(1 + g + . . .+ gm−2).

Furthermore, g − gt ∈ radA, because modulo radA we have the equalities g = gm =
gm+1t = ggmt = g2t = gt. This then implies that

e+ radA = (gt)m + radA = (gt+ radA)m = (g + radA)m = gm + radA = g + radA.

Hence, e is as desired. �

Proposition 1.18. Consider the algebra B = A/ radA.

(1) Every right ideal I of B is a direct sum of simple right ideals of the form eB,
where e is a primitive idempotent of B. In particular, the right B-module BB is
semisimple.

(2) Any finite-dimensional B-module is isomorphic to a direct sum of simple right
ideals as in (1).

(3) If e ∈ A is a primitive idempotent, then the B-module eA/ rad eA is simple and
rad eA = e radA ⊆ eA is the unique proper submodule of eA.

Proof. (1) Let S be a nonzero right ideal of B contained in I which is of minimal dimen-
sion. The minimality implies that S is a simple B-module and, furthermore, S2 6= 0,
since if S2 = 0, then, by Lemma 1.4, 0 6= S ⊆ radB = 0, so we get a contradiction.
Therefore, S2 = S and there exists x ∈ S such that xS 6= 0, S = xS and x = xe for
some 0 6= e ∈ S. Now, Schur’s lemma implies that the homomorphism ϕ : S //S given
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by y � //xy is an isomorphism. Since ϕ(e2 − e) = x(e2 − e) = 0, e2 − e = 0, e is an
idempotent and S = eB, hence B = eB ⊕ (1− e)B and similarly I = eI ⊕ (1− e)I. By
induction on dimK I, (1) follows.

(2) Note that any M ∈ modB is a quotient of the free module Bk for some k. By
(1), Bk is a direct sum of simple right ideals, hence semisimple. By Lemma 1.12, Bk '
ker p⊕ L, where p : Bk //M is the quotient map. Therefore, M can be considered as a
submodule of Bk, and (2) follows from Lemma 1.12.

(3) Given e, the element e = e + radA is an idempotent of B and eA/ rad eA = eB.
If eB is not simple, there exist, by (1), primitive orthogonal idempotents e1 and e2 of
B such that eB ' e1B ⊕ e2B. Now compute that e1 = e21 = ee1, so e1 = g1 + radA
for some g1 ∈ eA. Since idempotents lift, e1 = (g1t)

m and e1 = e1 + radA, for some
t ∈ A and m ≥ 0. Since g1 ∈ eA, also e1 ∈ eA, so e1A ⊆ eA. The decomposition
AA = e1A ⊕ (1 − e1)A, gives a decomposition of eA = e1A ⊕ ((1 − e1A) ∩ eA). Since
e is primitive, eA = e1A. Thus, eB = e1B. Consequently, eA/ rad eA is simple, so
rad eA = e radA is a maximal proper submodule of eA. Any other proper submodule N
is contained in rad eA, by (5) of Proposition 1.13 applied to L = rad eA. �

Definition. An algebra is called local is it has a unique maximal right ideal.

We will now give several equivalent characterisations of a local algebra.

Proposition 1.19. Let A be a K-algebra. The following are equivalent.

(1) A is local.
(2) A has a unique maximal left ideal.
(3) The set of all noninvertible elements of A is a two-sided ideal.
(4) For any a ∈ A, either a or 1− a is invertible.
(5) A has only two idempotents, namely 0 and 1.
(6) The algebra A/ radA is isomorphic to K.

Proof. If A is local, then radA is the unique maximal right ideal of A. Hence, x ∈ radA
iff x has no right inverse. Now, if x is right invertible, so xy = 1 for some y, then
(1− yx)y = 0. The element y has to have a right inverse, because otherwise y ∈ radA,
so 1 − yx is invertible by Lemma 1.2, hence y = 0, a contradiction. But if y has a
right inverse, 1 − yx = 0, so x is invertible. Summarising, x ∈ radA iff x has no right
inverse iff x is not invertible. Therefore, (1) implies (2). Similar arguments show that
(2) implies (3). It is obvious that (3) implies (4). Next, if e is an idempotent, so is
1 − e and e(1 − e) = 0, so if (4) holds, then so does (5). If (5) holds, then the algebra
B = A/ radA has only two idempotents. By Proposition 1.18, the module BB is simple
and, by Corollary 1.11, End(BB) = K. Therefore, B ' End(BB) ' K, hence (5) implies
(6). Finally, if (6) holds, then clearly so does (1) (or (2)). �

Remark 1.20. Note that the algebra K[t] has only two idempotents but is not local.
Hence, the proposition does not hold for infinite-dimensional algebras.

Corollary 1.21. An idempotent e ∈ A is primitive iff the algebra eAe ' End(eA) has
only 0 and e as idempotents. �
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Corollary 1.22. Let A be an algebra and M a right A-module. If End(M) is local, then
M is indecomposable. If M is finite-dimensional and indecomposable, then End(M) is
local and any element in End(M) is either nilpotent or an isomorphism.

Proof. If M decomposes as M = M1⊕M2, then e1 +e2 = p1i1 +p2i2 = idM , where the pj
are the canonical projections, the ij are the canonical injections and the ej are nonzero
idempotents. Therefore, End(M) is not local.

Now assume that M ∈ modA is indecomposable. If End(M) is not local, there exists
a non-trivial idempotent e, hence M ' im e1 ⊕ im e2, where e1 = e and e2 = 1 − e.
This is a contradiction, hence End(M) is local. The last statement is clear, since any
non-invertible element in a local finite-dimensional algebra, which we know End(M) to
be, belongs to the radical and is therefore nilpotent by Corollary 1.7. �

The following result reduces the study of finite-dimensional modules to the study of
indecomposable ones.

Theorem 1.23. Every finite-dimensional module M over A has a decomposition M '
M1 ⊕ . . . ⊕Mn, where the Mi are indecomposable modules, and hence have local endo-
morphism algebras. Furthermore, if M ' M1 ⊕ . . . ⊕Mn and M ' N1 ⊕ . . . ⊕ Nk with
Mi and Nj indecomposable, then m = n and there exists a permutation σ of {1, . . . , n}
such that Mi ' Nσ(i) for all i.

Proof. The first statement is clear, because dimKM is finite. To see the second, we
proceed by induction. If n = 1, then there is nothing to show. So assume that
n > 1 and consider M ′ := ⊕i>1Mi. We have the decomposition M = M1 ⊕M ′ with
the corresponding projections and injections p, p′ and ι, ι′, respectively. Denote the
projections and injections corresponding to M = ⊕Nj by pj and ιj. We know that
1M1 = pι = p(

∑
j ιjpj)ι =

∑
j pιjpjι. Since End(M1) is local, there exists an index j,

which without loss of generality can be assumed to be 1, such that v := pι1p1ι is in-
vertible. Now set w := v−1pι1 : N1

//M1 and note that wp1ι = 1M1 . Hence, p1ιw is an
idempotent in End(N1). The latter is a local algebra, so p1ιw is 0 or 1. It cannot be
equal to 0, because then p1ι = 0, since w is an epimorphism, but v := pι1p1ι is invertible.
Therefore, p1ιw = 1N1 and hence p1ι gives M1 ' N1. Writing M 'M1⊕M ′ = N1⊕N ′,
where N ′ = ⊕j>1Nj, we are done by induction if we can show that M ′ ' N ′. But this is
clear, since N ′ is the kernel of p1 : M //N1 and M ′ is the kernel of p : M //M1 and it
is obvious that they coincide via the above isomorphism p1ι : M1 ' N1. �

Corollary 1.24. If AA = P1⊕. . .⊕Pn is an indecomposable decomposition, it is unique.�

Definition. A finite-dimensional algebra A is representation finite or an algebra of finite
representation type if the number of the isomorphism classes of indecomposable finite-
dimensional right modules is finite.

One of the goals of the course is to classify the representation finite hereditary algebras.
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Recall that a module P is projective if and only if it is a direct summand of a free
module. So a consequence of Theorem 1.23 is

Corollary 1.25. Assume AA = e1A ⊕ . . . enA is a decomposition with respect to a
complete set of primitive orthogonal idempotents. Then the indecomposable projective
modules are precisely the modules P (i) = eiA. �

Note that the proof of part (3) of Proposition 1.18 shows that {π(e1), . . . , π(en)} is a
complete set of primitive orthogonal idempotents of B = A/ radA, where π : A //B is
the canonical quotient map. Consider the corresponding decomposition BB = ⊕iπ(ei)B
and note that the modules π(ei)B ' top eiA are simple by Proposition 1.18, part (3).
Furthermore, the epimorphism πi : eiA // top eiA induced by π is a so-called projective
cover of top eiA, which, by definition, means that eiA is a projective module and πi has
the property that for any submodule N of eiA the equality kerπi + N = eiA implies
that N = eiA. This property is satisfied, since rad eiA = ker πi is the unique maximal
submodule of eiA.

Since topM is a semisimple B-module for any A-module M by Corollary 1.14, it is a
direct sum of (copies of) the modules π(ei)B, say

topM '
n⊕
i=1

((π(ei))B)⊕si

for some si ≥ 0. Set

P (M) :=
n⊕
i=1

(eiA)⊕si .

The module P (M) is, of course, projective. Note that topP (M) ' topM and by the
projectivity of P (M) we get a map P (M) //M such that the diagram

P (M)

t
��

// M

t′

��
topP (M)

' // topM

is commutative. Since the lower map is an isomorphism, the upper one is an epimorphism
by Corollary 1.15. Furthermore, its kernel is contained in radP (M) = ker t, hence the
map is in fact a projective cover. Summarising, for any module M in modA there exists
a projective cover P (M) and P (M)/ radP (M) 'M/ radM .

The next step is to show that the projective cover is unique, i.e., if P ′
p′ // M // 0

is a projective cover, then P ′ ' P (M). The projectivity of P ′ gives us a morphism
g : P ′ //P (M) such that pg = p′. Since p′ is surjective, im g + ker p = P (M). Since
ker p = radM , this implies the surjectivity of g. Therefore, l(P ′) ≥ l(P (M)). Re-
versing the situation, we get l(P (M)) ≥ l(P ′), hence an equality. Thus, P ′ ' P (M).
Summarising
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Proposition 1.26. Any module M in modA has a unique projective cover P (M) sat-
isfying P (M)/ radP (M) 'M/ radM . �

Corollary 1.27. If P is a projective module in modA, then P // topP is a projective
cover. In particular, eiA // top eiA is a projective cover for any primitive idempotent
ei of A. By the uniqueness of projective covers, eiA ' ejA if and only if top eiA '
top ejA. �

Corollary 1.28. The simple modules in modA are precisely the modules S(i) = top eiA =
top(P (i)).

Proof. Take a simple module S. It has a projective cover P (S) which is a direct sum of
copies of the P (i). Since P (S)/ radP (S) ' S, the left hand side is a direct sum of the
S(i). But S is simple, so the assertion follows. �

Definition. LetA be an algebra with a complete set of primitive idempotents {e1, . . . , en}.
The algebra is called basic if eiA � ejA for all i 6= j.

Clearly, a local algebra is basic. Basicness of an algebra A can be detected by the
algebra A/ radA:

Proposition 1.29. A finite-dimensional K-algebra A is basic iff B = A/ radA ' K ×
. . .×K.

Proof. Let AA = ⊕ni=1eiA for a complete set of primitive orthogonal idempotents and
BB = ⊕ni=1π(ei)B the corresponding decomposition. Since eiA ' ejA if and only if
π(ei)B ' top eiA ' top ejA ' π(ej)B, we conclude that B is basic if A is. Schur’s
lemma gives that Hom(π(ei)B, π(ej)B) = 0 for i 6= j and, since these modules are
simple, End(π(ei)B) ' K for all i. Using this, we get

B ' EndB(BB) ' ⊕ni=1End(π(ei)B) ' K × . . .×K.
For the converse, assume that B is isomorphic to a product of n copies of K. Then B is

a commutative algebra and admits n central primitive pairwise orthogonal idempotents
ei. Hence, eiB � ejB for i 6= j and therefore P (eiB) ' eiA � P (ejB) ' ejA for
i 6= j. �

Corollary 1.30. Any simple module S over a basic algebra is one-dimensional.

Proof. First note that a simple module S ′ over any algebra A satisfies S ′ radA = 0 and,
consequently, S ′ is a simple A/ radA-module. Indeed, Nakayama’s lemma gives that
S ′ 6= S ′ radA, hence the latter has to be zero since S ′ is simple.

Using this and the proposition we see that S is a simple module over the algebra
A/ radA ' K × . . .×K and the corollary follows at once. �

Definition. LetA be an algebra with a complete set of primitive idempotents {e1, . . . , en}.
A basic algebra associated to A is the algebra Ab = eAAeA, where eA = ej1 + . . . + eja
and ejk are chosen such that ejiA � ejtA for i 6= t and each module esA is isomorphic to
one of the modules ej1A, . . . , ejkA.
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In other words, we consider all modules ekA and if ekA ' elA, only ek or el will be
part of eA. Hence, a priori, Ab is not unique, since it depends on which idempotents we
keep.

Lemma 1.31. Let Ab be a basic algebra associated to A. The element eA ∈ Ab is the
identity of Ab and Ab ' End(ej1A ⊕ . . . ⊕ ejaA). Furthermore, the algebra Ab does not
depend on the choice of the sets (ei)i and ej1 , . . . , eja.

Proof. The first statement is clear. To see the second, apply Lemma 1.16 to eAA and
use that eAA ' ej1A ⊕ . . . ⊕ ejaA. Theorem 1.23 tells us that eAA does not depend on
the choices, so the third statement follows from the second. �

For an idempotent e ∈ A, consider the algebra B := eAe ' End(eA) with identity e.
Given an A-module M , note that Me is a B-module. If f : M //M ′ is a homomorphism
of A-modules, we get a homomorphism between the B-modules Me and M ′e by setting
me � // f(m)e. This defines a restriction functor

rese : modA // modB.

We now define two functors from modB to modA as follows. We have seen before that
eA is a left B = eAe-module. It is, of course, also a right A-module. Therefore, we have
the functor Te(−) := − ⊗B eA. On the other hand, Ae is a left A-module and a right
eAe-module, hence we have the functor Le(−) = HomB(Ae,−).

The next result collects some properties of these functors.

Proposition 1.32. Let A be an algebra, let e be an idempotent of A and B = eAe. Then
the following holds.

(1) Te and Le are fully faithful K-linear functors such that reseTe ' idmodB ' reseLe,
the functor Le is right adjoint to rese and Te is left adjoint to rese.

(2) Te is right exact, Le is left exact and rese is exact.
(3) Te and Le preserve indecomposability, Te respects projectives and Le respects in-

jectives.
(4) A right A-module M is in the image of Te iff there exists an exact sequence

P1
//P0

//M // 0, where P1 and P0 are direct sums of summands of eA.

Proof. (1) Recall from Lemma 1.16 that we have a functorial B-module isomorphism

HomA(eA,M) 'Me

for any right A-module M . Using the adjointness properties of the tensor and Hom
functors we have, for a B-module N ,

HomA(Te(N),M) ' HomA(N ⊗B eA,M) ' HomB(N,HomA(eA,M))

' HomB(N,Me) ' HomB(N, rese(M))

Hence, Te is left adjoint to rese. Also note that

reseTe(N) = (N ⊗B eA)e ' N ⊗B B ' N,
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consequently, HomB(N,N ′) ' HomA(Te(N), Te(N
′)). Hence, Te is fully faithful. The

proof that Le satisfies the stated properties is completely analogous.
(2) is obvious.
(3) Since Te and Le are fully faithful, End(N) ' End(Te(N)) ' End(Le(N)). So if

N is indecomposable, then its endomorphism algebra is local, hence the same holds for
Te(N) and Le(N) and these modules are indecomposable by Corollary 1.22.

Now consider a projective B-module P and an epimorphism h : M //M ′ in modA.
We have the commutative diagram

HomA(Te(P ),M) //

'
��

HomA(Te(P ),M ′)

'
��

HomB(P, rese(M)) // HomB(P, rese(M
′)).

Since P is projective, the lower map is an epimorphism, hence so is the upper map.
Therefore, Te(P ) is a projective A-module if P is a projective B-module. Dually, we can
show the statement for Le.

(4) Assume that e = ejs + . . .+ejs and the ejk are primitive idempotents. This implies
that B = ej1B ⊕ . . . ⊕ ejsB and the modules ejkB are indecomposable, because the ejk
are primitive.

Consider the map

mji : ejiB ⊗B eA // ejiA, ejix⊗ ea
� // ejixea.

Note that this map is the restriction of the A-module isomorphism B⊗B eA // eA to the
direct summand ejiB⊗B eA, hence it is a well defined homomorphism of A-modules and
injective and ejiA is clearly the image of the restriction. Therefore, mji is an isomorphism.

Now assume that Q1
//Q0

//N // 0 is an exact sequence in modB and the Qi are
projective. Applying the right exact functor Te to this sequence, we note that the modules
Te(Qi) are projective. Recalling that a module is projective if and only if it is a direct
summand of a free module, that B decomposes into the modules ejkB and using the
maps mji , shows that Te(Qi) satisfy the properties required in (4).

Conversely, assume a sequence as in (4) is given. Note that Pie = rese(Pi) are projec-
tive B-modules, since resee is exact. Applying Te gives back the Pi. Denote by N the
cokernel of P1e //P0e. We derive the existence of a commutative diagram

P1
//

'
��

P0
//

'
��

M // 0

Te(P1) // Te(P0) // Te(N) // 0.

Therefore, M ' Te(N). �

We will use the above to prove the following
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Theorem 1.33. Let Ab = eAAeA be a basic algebra associated with A. The algebra Ab

is basic and the functor TeA gives an equivalence modAb ' modA, with quasi-inverse
rese.

Proof. We know that Ab = eAA
b = ej1A

b⊕ . . .⊕ ejaAb and, clearly, ejtA
bejt = ejtAejt for

all t. Since ejtA is indecomposable in modA, the algebra End(ejtA
b) ' ejtA

bejt is local.
Therefore, ejt is a primitive idempotent of Ab. Now assume that ejtA

b ' ejrA
b. Using

the isomorphisms mji from the proof of the previous proposition, we see that

ejtA ' ejtA
b ⊗Ab eAA ' ejrA

b ⊗Ab eAA ' ejrA,

so t = r by the choice of ej1 , . . . , eja .
We already know that Te is fully faithful. Now any module M ∈ modA has a resolution

P ′ //P //M // 0, with P ′, P projective. It remains to note that P and P ′ are direct
sums of summands of eAA. By part (4) of Proposition 1.32, Te is essentially surjective,
and hence an equivalence. �

If we are only interested in finite-dimensional modules, the theorem tells us that we
can restrict our attention to basic algebras.

Example 1.34. Let B = Mn(A) be the algebra of (n× n)-matrices over an algebra A.
Clearly, the matrices Mij having 1 on the positions (i, j) and 0 everywhere else are a
complete set of idempotents. Furthermore, MijB does not depend on (i, j) and hence
the associated basic algebra is M11BM11 ' A. Thus, modA ' modMn(A).

2. Quivers and path algebras

Definition. A quiver Q = (Q0, Q1, s, t) is given by a set of vertices Q0, a set of arrows
Q1 and two maps s, t : Q1

//Q0 associating to any arrow α its source s(α) and its target
t(α). One frequently just writes Q. A quiver is called finite if Q0 and Q1 are finite sets.

A subquiver is a quadruple Q′ = (Q′0, Q
′
1, s
′, t′) such that Q′0 ⊆ Q0, Q

′
1 ⊆ Q1 and s′, t′

are the restrictions of s, t to Q′1. A subquiver is called full if any arrow with source and
target in Q′0 belongs to Q′1.

If a and b are elements in Q0, a path from a to b of length l is a sequence of arrows
α1, . . . , αl such that s(α1) = a, t(αk) = s(αk+1) for all 1 ≤ k < l and t(αl) = b. We will
write this as α1 . . . αl. Note that with this convention the composition is not like that
of functions. Of course, one could define it the other way around which is the same as
considering the opposite algebra.

A cycle is a path such that source and target coincide. A cycle is a loop if it is of
length 1. A quiver is called acyclic if it contains no cycles.

For any vertex a we have the trivial path εa of length 0.

Definition. Let Q be a quiver. The path algebra KQ of Q is the K-algebra whose
underlying K-vector space has as basis all paths in Q and where the composition of two
paths α1 . . . αk and β1 . . . βl is defined by

(α1 . . . αk)(β1 . . . βl) = δbcα1 . . . αkβ1 . . . βl,



16 P. SOSNA

where b = t(αk) and c = s(β1).

Note that KQ is an associative graded algebra since the composition of a path of
length k and one of length l is a path of length k + l (or 0). In symbols, KQ =
KQ0 ⊕KQ1 ⊕KQ2 ⊕ . . ., where KQi is the subspace generated by paths of length i.

Example 2.1. (1) The path algebra of the quiver with one vertex and one loop is
isomorphic to K[t], with t corresponding to the loop.

(2) If Q has one vertex and two loops, then KQ is the free associative algebra in two
noncommuting indeterminates.

(3) Consider the quiver Q given by 1
ρ // 2 which is 3-dimensional as a k-vector

space and the multiplication rules are, for example, e1ρ = ρ, ρe2 = ρ etc. It is
easily checked that KQ corresponds to the algebra of lower triangular (2 × 2)-
matrices.

Lemma 2.2. Let Q be a quiver and KQ its path algebra. The algebra KQ has an identity
element if and only if Q0 is finite. KQ is finite-dimensional if and only if Q is finite
and acyclic.

Proof. If Q is finite, say Q0 = {1, . . . , n}, then it is easily checked that
∑n

i=1 εi is the
identity of KQ. To see the converse of the first statement, assume that Q0 is not finite
and let 1 =

∑
i λiωi, where λi ∈ K and ωi are paths, be the identity element. The paths

ωi have only finitely many sources, so take a vertex a not in this set. Then εa1 = 0, a
contradiction.

If Q is finite and acyclic, there are only finitely many paths, hence KQ is finite-
dimensional. Conversely, if Q0 is infinite, then so is KQ. If Q is not acyclic, then take
a cycle ω. Considering all its powers gives that KQ is infinite-dimensional. �

Corollary 2.3. Let Q be a finite quiver. The set of all stationary paths εa, a ∈ Q0, is a
complete set of primitive orthogonal idempotents of KQ.

Proof. It is clear that the εa are orthogonal idempotents. To check that they are primi-
tive, it is enough to show that the algebra B = εaKQεa is local, see Corollary 1.21. Note
that this algebra is clearly K if Q has no cycles. In any case, an idempotent ε of B can
be written as ε = λεa + ω, where λ ∈ K and ω is a linear combination of cycles through
a of length at least 1. Then

0 = ε2 − ε = (λ2 − λ)εa + (2λ− 1)ω + ω2

shows that ω = 0 and λ2 = λ, hence λ = 0 or λ = 1. Hence, ε = εa or ε = 0. �

Remark 2.4. The set of primitive idempotents exhibited above is, in general, not unique,
consider, for instance, the lower triangular matrices.

Lemma 2.5. Let A be an algebra and assume that {e1 . . . , en} is a complete set of
primitive orthogonal idempotents. Then A is connected if and only if there does not exist
a nontrivial partition I q J of the set {1, . . . , n} such that for any i ∈ I and j ∈ J
eiAej = 0 = ejAei.
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Proof. Assume that such a partition does exist and let c =
∑

j∈J ej. By assumption,
c is non-trivial. Furthermore, it is an idempotent, cei = eic = 0 for each i ∈ I and
cej = ejc = ej for each j ∈ J . By our hypothesis, eiaej = 0 = ejaei for any a ∈ A.
Therefore,

ca =
∑
j∈J

eja = (
∑
j

eja) · 1 = (
∑
j

eja)(
∑
i∈I

ei +
∑
k∈J

ek)

=
∑
j,k

ejaek = (
∑
j

ej +
∑
i

ei)a(
∑
k∈J

ek) = ac.

Hence, c is a non-trivial central idempotent and so A is not connected.
Conversely, if A is not connected, there exists a central non-trivial idempotent c.

Since c is central, we have c =
∑n

i=1 eicei. Let ci = eicei. Then c2i = ci, so ci ∈ eiAei
is an idempotent. Since ei is primitive, ci = 0 or ci = ei. Set I = {i | ci = 0} and
J = {j | cj = ej}. This clearly is a partition of {1, . . . , n} and, since cej = ej = ejc and
cei = 0 = eic, we have eiAej = 0 = ejAei. �

Using this we can now prove the

Lemma 2.6. Let Q be a finite quiver. The path algebra KQ is connected if any only if
Q is a connected quiver, which, by definition, means that the graph obtained by forgetting
the orientation of the arrows is connected.

Proof. If Q is not connected, let Q′ be a connected component and let Q′′ be the full
subquiver of Q having as vertices Q0 \Q′0. Take a in Q′0 and b ∈ Q′′0. Any path ω in Q
is either contained in Q′ or (in a connected component) of Q′′. Therefore, either ωεb = 0
or εaω = 0. In any case, εaωεb = 0. By Lemma 2.5, KQ is not connected.

Conversely, let Q be connected but not KQ. Thus we have a partition Q0 = Q′0 qQ′′0
as in the lemma. Since Q is connected, there exist a ∈ Q′0 and b ∈ Q′′0 with an arrow α
from a to b. Then α = εaαεb = 0, a contradiction. �

We record the following obvious

Proposition 2.7. Let Q be a finite connected quiver and A an associative algebra with
identity. For any pair of maps ϕ0 : Q0

//A and ϕ1 : Q1
//A satisfying (1)

∑
a∈Q0

ϕ0(a) =

1, (2) ϕ0(a)2 = ϕ0(a), (3) ϕ0(a) 6= ϕ0(b) for a 6= b and (4) if α : a // b, then ϕ1(a) =
ϕ0(a)ϕ1(α)ϕ0(b), there exists a unique K-algebra homomorhpism ϕ : KQ //A such that
ϕ(εa) = ϕ0(a) for any a ∈ Q0 and ϕ(α) = ϕ1(α) for any α ∈ Q1. �

Definition. LetQ be a finite and connected quiver. The two-sided ideal ofKQ generated
by the arrows of Q is called the arrow ideal and denote by RQ or simply R.

Clearly, RQ = KQ1 ⊕ KQ2 ⊕ . . . as a K-vector space. This implies that Rl
Q =

⊕m≥lKQm.

Proposition 2.8. Let Q be a finite connected quiver, R the arrow ideal of KQ and εa the
trivial paths associated to the vertices of Q. Consider the canonical algebra homomor-
phism π : KQ //KQ/R and the set of the images ea := π(εa). Then this is a complete
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set of primitive orthogonal idempotents for KQ/R and the latter algebra is isomorphic
to K × . . .×K. If Q is acyclic, then radKQ = R and KQ is a finite-dimensional basic
algebra.

Proof. As a K-vector space we have

KQ/R = ⊕a,b∈Q0ea(KQ/R)eb = ⊕a∈Q0ea(KQ/R)ea,

where the second equality stems from the fact that R contains all paths of length at least
1. Hence, KQ/R is a Q0-dimensional vector space. The elements ea give a compete set of
primitive orthogonal idempotents of KQ/R and every piece ea(KQ/R)ea is isomorphic
to K. Therefore, the first statement holds.

If Q is acyclic, then KQ is finite-dimensional and the length of paths in Q is bounded
by some integer l. Hence, Rl+1 = 0, so R ⊆ radKQ, by Corollary 1.4. Since KQ/R '
K × . . .×K, Corollary 1.4 gives that R = radKQ and it follows from Proposition 1.29
that KQ is basic. �

Remark 2.9. If Q is not acyclic, then radKQ need not be equal to RQ. As an example
consider the quiver with one vertex and one loop. Then the radical is trivial, but RQ is
not.

Definition. Let Q be a finite quiver and R be the arrow ideal of the path algebra
KQ. A two-sided ideal I of KQ is called admissible if there exists an m ≥ 2 such that
Rm ⊆ I ⊆ R2.

If I is an admissible ideal of KQ, we call the pair (KQ, I) a bound quiver. The quotient
algebra KQ/I is said to be a bound quiver algebra.

It is clear that an ideal I ⊆ R2 is admissible if and only if it contains all paths whose
length is large enough. In fact, this is the case if and only if for each cycle σ there exists
an s ≥ 1 such that σs ∈ I. In particular, if Q is acyclic, any ideal I ⊆ R2 is admissible.

Example 2.10. (1) The ideal Rm is admissible for any m ≥ 2.
(2) The zero ideal is admissible if and only if Q is acyclic.
(3) Let Q be the quiver

2
β

��
1 4

λoo

α
^^

γ
��

3
δ

^^

The ideal I = 〈αβ−γδ〉 is admissible but I ′ = 〈αβ−λ〉 is not, since αβ−λ /∈ R2.

Definition. Let Q be a quiver. A relation ρ in Q with coefficients in K is a K-linear
combination of paths ωi of length at least two having the same source and target. In
symbols, ρ =

∑n
i=1 λiωi. If (ρj)j∈J is a set of relations such that the ideal they generate

is admissible, then we say that the quiver Q is bound by the relations ρj = 0 for all j ∈ J .
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Lemma 2.11. Let Q be a finite quiver and I be an admissible ideal of KQ. The set
ea = π(εa), where π : KQ //KQ/I, is a complete set of primitive orthogonal idempotents
of KQ/I.

Proof. It is clear that the given set is a complete set of orthogonal idempotents. It
therefore remains to check that each ea is primitive or, equivalently, that the algebra
Ba = ea(KQ/I)ea has only the trivial idempotents 0 and 1 for any a ∈ Q0. Note that
any idempotent e in Ba can be written in the form e = λεa + ω + I, where ω is a linear
combination of cycles through a of length ≥ 1 and λ ∈ K. Since e2 = e, we get

(λ2 − λ)εa + (2λ− 1)ω + ω2 ∈ I.
Since I ⊆ R2, λ2 − λ = 0, hence λ = 1 or λ = 0. If λ = 0, then e = ω + I, so ω is
idempotent modulo I. Since Rm ⊆ I for some m ≥ 2, ωm ∈ I, so ω ∈ I and hence e = 0.
If λ = 1, then ea − e = −ω + I is an idempotent in Ba, so ω is idempotent modulo I,
thus nilpotent as before, so is an element in I. Thus ea = e. �

Lemma 2.12. Let Q be a finite quiver and I be an admissible ideal of KQ. The bound
quiver algebra KQ/I is connected if and only if Q is a connected quiver.

Proof. If Q is not connected, neither is KQ, so there exists a central non-trivial idem-
potent γ which is a sum of paths of length 0. Then its image is a central non-trivial
idempotent in KQ/I, since if π(γ) = 1, then 1−γ ∈ I, which is impossible, since I ⊆ R2.
The reverse implication is proved as in Lemma 2.6. �

Proposition 2.13. Let Q be a finite quiver and I an admissible ideal. Then KQ/I is a
finite-dimensional algebra.

Proof. We have a surjective homomorphism KQ/Rm // //KQ/I. The former algebra is
finite-dimensional, since the finitely many paths of length at most m form a basis of
KQ/Rm as a K-vector space. �

Example 2.14. Consider the quiver Q having one vertex and two loops α and β, and
the ideal I = 〈βα, β2〉. Then I is not admissible, since αm /∈ I for any m ≥ 1. Consider
A = KQ/I and the subspace J of A generated by elements of the form π(αn)π(β), n ≥ 1,
where as usual π : KQ //KQ/I. Clearly, J is a right ideal of A, since Jπ(α) ⊆ J and
similarly for π(β). Hence J is a submodule of AA, but it is not finitely generated. Indeed,
assume J has a finite set of generators and take m to be the largest exponent of π(α)
among this set of generators. Then π(α)m+1β cannot be a K-linear combination of the
generators. Hence, A is not only not finitely generated, but not even right Noetherian.

Lemma 2.15. Let Q be a finite quiver. Every admissible ideal I of KQ is finitely
generated.

Proof. Consider the short exact sequence of KQ-modules

0 // Rm // I // I/Rm // 0.

Clearly, Rm is finitely generated and so is I/Rm, being an ideal in KQ/Rm. Hence, I is
a finitely generated KQ-module. �
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Corollary 2.16. If I is an admissible ideal of a finite quiver Q, then it is generated by
a finite set of relations.

Proof. We know that I is generated by {σ1, . . . , σn}, but the σi need not have the same
source and target. However, the set {εaσiεb | 1 ≤ i ≤ n, a, b ∈ Q0} is as desired. �

Lemma 2.17. Let Q be a finite quiver and I an admissible ideal of KQ. Then R/I =
rad(KQ/I). Furthermore, the algebra KQ/I is basic.

Proof. We know that Rm ⊆ I for some m ≥ 2. Hence, (R/I)m = 0 and R/I ⊆
rad(KQ/I). Since (KQ/I)/(R/I) ' KQ/R ' K × . . . × K, the assertions follow by
Corollary 1.4 and Proposition 1.29. �

Remark 2.18. For each l ≥ 1, radl(KQ/I) = (R/I)l. Therefore,

rad(KQ/I)/ rad2(KQ/I) ' R/R2.

Example 2.19. It can be checked that if Q is the quiver 1
α // 2

β // 3 , its path
algebra is isomorphic to the lower triangular (3 × 3)-matrices. The ideal I = 〈αβ〉 is
easily seen to be equal to R2, which is the set of matrices generated by the matrix M31.

Our next goal is to show that any basic and connected finite-dimensional algebra can
be described as the bound quiver algebra of a finite connected quiver. We begin with
the

Definition. Let A be a basic and connected finite-dimensional algebra and {e1, . . . , en}
be a complete set of primitive orthogonal idempotents. The (ordinary) quiver of A,
denoted by QA, is defined as follows:

(1) The vertices of QA are the numbers {1, . . . , n}.
(2) Given two points a, b ∈ (QA)0 the arrows α : a // b are in bijective correspondence

with the vectors in a basis of ea(radA/ rad2A)eb.

Note that QA is finite, since A is finite-dimensional and, therefore, the vector spaces
ea(radA/ rad2A)eb are also finite-dimensional.

Lemma 2.20. Let A be as in the definition. Then

(1) The quiver QA does not depend on the choice of a complete set of primitive
orthogonal idempotents of A.

(2) For any pair ea, eb of primitive orthogonal idempotents of A the K-linear map

ψ : ea(radA)eb/ea(rad2A)eb // ea(radA/ rad2A)eb

defined by

eaxeb + ea rad2Aeb
� // ea(x+ rad2A)eb

is an isomorphism ∀x ∈ radA.
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Proof. By Theorem 1.23, the number of points of QA is uniquely determined, since
it equals the number of indecomposable direct summands of AA. The same theorem
also gives that for distinct complete sets of primitive orthogonal idempotents, say ea
and e′a, there is a bijection eaA ' e′aA for all a. Define an A-module homomorphism
ϕ : ea(radA) // ea(radA/ rad2A) by eax

� // ea(x+rad2A). It is easy to see that its kernel
is ea(rad2A). Hence, using that (rad(eA)/ rad2(eA))eb ' HomA(ebA, rad(eA)/ rad2(eA)),
we conclude that

ea(radA/ rad2A)eb ' e′a(radA/ rad2A)e′b.

This proves part (1) and (2) is trivial. �

Lemma 2.21. For each arrow α : i // j in (QA)1, let xα ∈ ei(radA)ej be such that the
set
{
xα + rad2A | α : i // j

}
is a basis of ei(radA/ rad2A)ej. Then

(1) for any two points a, b ∈ (QA)0, every element x ∈ ea(radA)eb can be written in
the form x =

∑
xα1 . . . xαlλα1...αl, where λα1...αl ∈ K and the sum is taken over

all paths α1 . . . αl in QA from a to b.
(2) for each arrow α : i // j, the element xα uniquely determines a nonzero noniso-

morphism x̃α ∈ HomA(ejA, eiA) such that x̃α(ej) = xα, im x̃α ⊆ ei(radA) and
im x̃α * ei(rad2A).

Proof. Recall that radA is nilpotent and, as a K-vector space, radA ' (radA/ rad2A)⊕
rad2A. Since the xα are a basis of the first vector space, we get

x−
∑

α : a // b

xαλα =: x′ ∈ ea(rad2A)eb,

for λα ∈ K. Using that ea(rad2A)eb =
∑

c∈(QA)0(ea(radA)ec)(ec(radA)eb), we get x′ =∑
c∈(QA)0 x

′
cy
′
c, where x′c ∈ ea(radA)ec and y′c ∈ ec(radA)eb. We now apply the previous

consideration to x′c and y′c and get

x =
∑

α : a // b

xαλα +
∑

β : a // c

∑
γ : c // b

xβxγλβλγ modulo ea(rad3A)eb.

Induction and the nilpotency of radA give (1). To prove (2), use the isomorphism
ei(radA)ej ' HomA(ejA, ei(radA)). �

Corollary 2.22. If A is a basic connected algebra, then QA is connected.

Proof. Assume the converse and write (QA)0 as a disjoint set Q′ q Q′′. We will show
that for i ∈ Q′ and j ∈ Q′′ we have eiAej = 0 = ejAei, which means that A is
not connected, a contradiction. We have already seen that M radA = radM for any
right module M , so rad(eiA) = ei radA. Furthermore, eiAej ' Hom(ejA, eiA) and
Hom(ejA, rad eiA) ' ei(radA)ej. The latter space is zero by our assumption and the
lemma. Hence, we are done, if we can show that

Hom(ejA, eiA) ' Hom(ejA, rad eiA).
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Recall that, given an idempotent e ∈ A, rad(eA) is the unique maximal submodule of
eA (Proposition 1.18). This implies that eA/ rad(eA) ' eA/e radA is simple.

Now take any map ϕ : ejA // eiA. If it is not surjective, we are done, since the image
has to be in rad eiA. If ϕ is surjective, then ejA/ ker(ϕ) ' eiA. Since ker(ϕ) ⊂ rad(ejA),
this gives a map ejA //S(i) := eiA/ rad(eiA) which is surjective. Factoring out its
kernel, we get a non-trivial map S(j) //S(i), a contradiction by Schur’s lemma, since
S(j) cannot be isomorphic to S(i) by the assumption that A is basic and Corollary
1.27. �

Example 2.23. If A = K[t]/(tm) for m ≥ 1, then QA has only one point since the
only nonzero idempotent of A is the identity. The radical of A is the image of the ideal
generated by (t), by Corollary 1.4. Therefore, a basis of radA/ rad2A is given by one
element and QA is the quiver with one vertex and one loop.

Lemma 2.24. Let Q be a finite connected quiver, I an admissible ideal and A = KQ/I.
Then QA = Q.

Proof. By Lemma 2.11, {ea = εa + I | a ∈ Q0} is a complete set of primitive orthogonal
idempotents of A = KQ/I, so the sets of vertices of Q and QA are the same. On the other
hand, Remark 2.18 gives that the arrows from a to b in Q are in bijective correspondence
with the vectors in a basis of ea(radA/ rad2A)eb, that is, with the arrows from a to b in
QA. �

Theorem 2.25. Let A be a basic and connected finite-dimensional K-algebra. There
exists an admissible ideal I of KQA such that A ' KQA/I.

Proof. Let α : i // j in (QA)1 and choose xα ∈ radA such that
{
xα + rad2A | α : i // j

}
forms a basis in ei(radA/ rad2A)ej. Consider

ϕ0 : (QA)0 //A, a � // ea

and

ϕ1 : (QA)1 //A, α � //xα.

It is clear that the conditions of Proposition 2.7 are satisfied and hence we get an algebra
homomorphism ϕ : KQA

//A. It remains to check that ϕ is surjective and that its kernel
is an admissible ideal of KQA.

The Wedderburn–Malcev theorem tells us that A ' A/ radA ⊕ radA. The former
space is generated by the ea, while any element of radA is in the image by Lemma 2.21.
Hence, ϕ is surjective. By definition, ϕ(R) ⊆ radA, hence ϕ(Rl) ⊆ radlA for any l ≥ 1.
Since radA is nilpotent, there exists an m ≥ 1 such that Rm ⊆ ker(ϕ) =: I. It remains
to check that I ⊆ R2. Any x ∈ I can be written as

x =
∑

a∈(QA)0

εaλa +
∑

α∈(QA)1

αµα + y,
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where λa, µα ∈ K and y ∈ R2. If ϕ(x) = 0, then∑
a∈(QA)0

eaλa = −
∑

α∈(QA)1

xαµα − ϕ(y) ∈ radA.

Since radA is nilpotent, this implies that λa = 0 for all a. A similar reasoning shows
that

∑
α∈(QA)1 xαµα = −ϕ(y) ∈ rad2A, so∑

α∈(QA)1

(xα + rad2A)µα = 0 in radA/ rad2A.

By assumption on the xα, all the µα have to be zero, hence x = y ∈ R2.
�

Remark 2.26. We say that two algebras A and A′ are Morita equivalent if modA '
modA′. Since any algebra A is Morita equivalent to a basic algebra by Theorem 1.33,
Theorem 2.25 implies, in particular, that any connected algebra is Morita equivalent to
a bound quiver algebra. Furthermore, we could deal with non-connected algebras as well
by considering their connected factors.

3. Representations of quivers

Definition. Let Q be a finite quiver. A K-linear representation M of Q consists of the
following data. For each point a ∈ Q0 a vector-space Ma and for every arrow α : a // b
a K-linear map ϕα : Ma

//Mb. A representation is called finite-dimensional if every Ma

is a finite-dimensional vector space.
A morphism between representations M and M ′ consists of linear maps fa : Ma

//M ′
a

for every a ∈ Q0 such that

Ma

fa
��

ϕα // Mb

fb
��

M ′
a

ϕ′α // M ′
b

commutes for all a, b and α.

It is clear that maps of representations can be composed and that there exist identity
maps, so there is a category Rep(Q) of representations of Q. We can define direct sums,
kernels and images componentwise and it is easily checked that this makes Rep(Q) into
an abelian category. The full abelian subcategory of finite-dimensional representations
will be denoted by rep(Q).

Example 3.1. Let Q be the quiver 1 // 2 // 3 . A representation of Q is, for

example M = [ K
id // K // 0 ]. Another representation is N = [ 0 // K // 0 ].

It is easily checked that Hom(M,N) = 0, while Hom(N,M) ' K.
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Definition. If ω = α1 . . . αl is a non-trivial path from a to b in a finite quiver Q, the
evaluation of ω is the K-linear map

ϕω = ϕαl . . . ϕα1 : Ma
//Mb.

This extends to K-linear combinations of paths with the same source and target. If I is
an admissible ideal of KQ, a representation M of Q is said to satisfy the relations in I
or to be bound by I if ϕρ = 0 for all relations ρ in I.

The full subcategory of Rep(Q) consisting of representations satisfying the relations
in I will be denoted by Rep(Q, I), and similarly for rep(Q).

Example 3.2. Consider the quiver Q

2
β

��
1 4

α
��

γ
^^

3
δ

^^

with the relation γβ = αδ and the representations M and N of Q given by

K
i1

}}
K2 0

��

__

K
i2

aa

and

K
id

~~
K K

id~~

id
``

K
id

``

Both are bound by I. On the other hand, changing one of the maps in the second
representation to 0 gives a representation not bound by I.

Theorem 3.3. Let Q be a finite connected quiver, I an admissible ideal of KQ and
A = KQ/I. There exists a K-linear equivalence

F : ModA ' Rep(Q, I)

that restricts to an equivalence F : modA ' rep(Q, I).
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Proof. We start with the construction of F on objects. Let M ∈ ModA and a ∈ Q0.
Set Ma to be Mea, where ea is the image of the stationary path εa under the canonical
projection KQ //KQ/I. Next, if α : a // b is an arrow and x ∈Ma = Mea, let ϕα(x) :=
xα, where α is the class of α modulo I. If ρ =

∑
i λiωi is a relation in I, then

ϕρ(x) =
∑
i

λiϕωi(x) = xρ = 0.

Hence, F (M) is indeed a representation bound by I.
Let f : M //M ′ be a homomorphism of A-modules. For any a ∈ Q0 and x = xea ∈Ma

we have
f(xea) = f(xe2a) = f(xea)ea ∈M ′ea = M ′

a.

Thus, we get a K-linear map fa : Ma
//M ′

a for any a ∈ Q0 which is just the restriction
of f . Given an arrow α : a // b and x ∈Ma, we now compute

fbϕα(x) = f(xα) = f(x)α = ϕ′αfa(x).

It is obvious that F is a K-linear functor. Furthermore, it restricts to a functor
modA // rep(Q, I).

We will now define a functor G : Rep(Q, I) // ModA. So, let M be a representation
bound by I. We set G(M) = ⊕a∈Q0Ma. We will define an A-module structure on G(M)
in two steps, first by specifying a KQ-module structure and then checking that it is
annihilated by I. To define a KQ-module structure on G(M), we have to say what an
arbitrary path ω does. Let x ∈ G(M). If ω = εa, then set xω := xa. If ω is a non-
trivial path from a to b, we define xω to be the component of ϕω(x) in Mb. This endows
G(M) with a KQ-module structure. If ρ ∈ I, by definition xρ = 0, hence G(M) is an
A-module.

Next, given a morphism (fa)a∈Q0 from M = (Ma, fa) to M ′ = (M ′
a, f

′
a), we clearly

have a K-linear map

f : G(M) = ⊕aMa
//G(M ′) = ⊕aM ′

a.

It remains to check that this map is A-linear. Without loss of generality we will do this
for xa ∈Ma ⊂ G(M) and ω ∈ KQ/I, where ω is a path from a to b in Q. Then

f(xaω) = fbϕω(xa) = ϕ′ωfa(xa) = f(x)ω.

The functor G is obviously K-linear and restricts to a functor rep(Q, I) // modA.
It is left to the reader to check that F and G are quasi-inverse to each other. Finally,
note that a representation M of a finite quiver is finite-dimensional if and only if Ma is
finite-dimensional for all a ∈ Q0, which proves that F and G restrict to equivalences of
the smaller categories. �

Recall that Corollaries 1.25 and 1.28 classify the indecomposable projective and simple
modules in modA, where A is any finite-dimensional algebra.

We now consider the following situation. Let Q be a finite connected quiver with n
vertices, I an admissible ideal of KQ and let KQ/I be the associated path algebra,
which we know to be basic and connected, to have R/I as radical and π(εa) = ea, for
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a ∈ Q0 as a complete set of primitive orthogonal idempotents. We want to understand
the indecomposable projective/injective and the simple modules in modA ' rep(Q, I).
We will not distinguish between these two categories in what follows.

Let a ∈ Q0 and consider the representation S(a) defined by S(a)b = δabK, where δab
is the Kronecker delta and b ∈ Q0. In other words, S(a) only has the vector space K
over the vertex a. Hence, all the linear maps in S(a) are zero.

Lemma 3.4. Let A = KQ/I be the bound quiver algebra of (Q, I). The A-module S(a)
is isomorphic to top eaA. In particular, the set {S(a) | a ∈ Q0} contains precisely the
simple A-modules.

Proof. The vector space S(a) is one-dimensional for all a, hence defines a simple A-
module. We also have HomA(eaA, S(a)) ' S(a)ea ' S(a)a 6= 0, so there exists a nonzero
map eaA //S(a). The map is surjective by Schur’s lemma and its kernel is a maximal
submodule of eaA, hence isomorphic to rad eaA. This proves the first statement. Since
obviously Hom(S(a), S(b)) = 0 for a 6= b, the S(a) are pairwise non-isomorphic which
proves the second statement. �

Remark 3.5. A path algebra of a finite quiver with a cycle can have infinitely many
pairwise non-isomorphic simple finite-dimensional modules. For example, take Q to be

1 // 2oo

We have the simple modules S(1) = K // 0oo and S(2) = 0 // Koo . But also

Sλ = K
id // K
λ
oo for λ ∈ K∗ are simple pairwise non-isomorphic modules.

Before stating the next result, define the socle of a module M , denoted by socM , to
be the submodule of M generated by all simple submodules of M . Furthermore, we say
that a vertex of a quiver is a sink resp. a source if no arrow starts resp. ends in this
vertex.

Lemma 3.6. Let M = (Ma, ϕα) be a bound representation of (Q, I). Then

(1) M is semisimple if and only if ϕα = 0 for all α ∈ Q1.
(2) socM = N where N = (Na, ψα) is the representation where Na = Ma when a is

a sink, whereas

Na =
⋂

α : a // b

ker(ϕα : Ma
//Mb)

if a is not a sink, and ψα = 0 for every arrow α.
(3) radM = J , where J = (Ja, γα) with

Ja =
∑

α′ : b // a

im(ϕα′ : Mb
//Ma)

and γα = (ϕα)|Ja for every arrow α of source a.
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(4) topM = L, where L = (La, ψα) with La = Ma if a is a source, while

La =
∑

α′ : b // a

coker(ϕα′ : Mb
//Ma)

if a is not a source, and ψα = 0 for any arrow α.

Proof. (1) M is semisimple if any only if it a direct sum of copies of the S(a), whence
(1) holds.

(2) Clearly, N is a semisimple submodule of M . Let S be a simple submodule of
M , which has to be isomorphic to some S(a). So given any arrow α : a // b, we have a
commutative diagram

K ' S(a)a

��

// S(a)b = 0

��
Ma

ϕα // Mb.

It follows that S(a)a ⊆ ker(ϕα) for all arrows α : a // b, hence S(a)a ⊆ Na. Therefore,
S(a) ⊆ N , hence N = socM .

(3) Start with the equation J = radM = M radA = M(R/I) =
∑

α∈Q1
Mα,

where α = α + I and R is, as usual, the arrow ideal of KQ. This implies that
Ja =

∑
α : b // aMα. Given an arrow with target a,

Mα = Mebα = Mbα = ϕα(Mb) = imϕα.

Hence, Ja for all a is as claimed and the assertion follows.
(4) follows from (3), since topM = M/ radM . �

Example 3.7. Let Q be the Kronecker quiver 1 2
α
oo
βoo . Note that 1 is a sink and 2 is

a source.
We know that the simple modules are S(1) and S(2) where the former has K over

vertex 1 and 0 over 2 and vice versa for S(2). We consider the representation M given by

Km−1 Km

πα
oo
πβoo , where m ≥ 2 and the maps are given by the following ((m− 1)×m)-

matrices:

πα =


1 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1

 ,

πβ =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1

 .
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Clearly, both maps are surjective, ker(πα) has as basis e2 and ker(πβ) has as basis e1.
Hence, socM = radM = S(1)m−1 and topM = S(2)m.

Lemma 3.8. Let (Q, I) be a bound quiver, A = KQ/I and P (a) = eaA, where ea = εa+I
and a ∈ Q0. We have the decomposition AA = ⊕a∈Q0eaA corresponding to the complete
set of primitive orthogonal idempotents {ea | a ∈ Q0}.

(1) If P (a) = (P (a)b, ϕβ), then P (a)b is the vector space with basis the set of all
ω = ω + I with ω a path from a to b, and for an arrow β : b // c the map
ϕβ : P (a)b //P (a)c is given by the right multiplication with β = β + I.

(2) Let radP (a) = (P ′(a)b, ϕ
′
β). Then P ′(a)b = P (a)b for b 6= a, P ′(a)a is the vector

space with basis set of all ω = ω+I with ω a non-trivial path from a to a, ϕ′β = ϕβ
for any arrow of source b 6= a and ϕ′α is the restriction of ϕα to P ′(a)a for any
arrow α with source a.

Proof. It suffices to prove (1), since (2) follows from it and part (3) of the previous
lemma. We have

P (a)b = P (a)eb = eaAeB = ea(KQ/I)eb = (εaKQεb)/(εaIεb).

This proves the first statement. It follows immediately from the construction of the func-
tor F that for an arrow β : b // c, the K-linear map ϕβ is given by the right multiplication

with β, proving the second statement. �

Remark 3.9. If I = 0 and Q is acyclic, the space P (a)b has as basis the set of all paths
from a to b.

Example 3.10. Let Q be the quiver

1

2

@@

3

^^

The representation P (1) is then

K

0

??

0

__

while P (2) is

K

K

id
>>

0

__
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and P (3) is

K

0

??

K.

id
``

The path algebra of a finite quiver Q has the following useful property.

Proposition 3.11. Let Q be a finite quiver, and A = KQ. For any right A-module M
there exists a projective resolution of the form

0 //
⊕

α∈Q1
εt(α)A⊗K Mεs(α)

f //
⊕

i∈Q0
εiA⊗K Mεi

g // M // 0,

where f(a⊗m) = αa⊗m− a⊗mα and g(a′ ⊗m′) = m′a′.

Proof. First note that obviously g ◦ f = 0. To see that f is injective, consider a non-zero
element a ⊗ m =

∑
α aα ⊗ mα and look at the component where aα has the maximal

length with mα 6= 0. Then by definition of f , the image will not be zero, since we are
composing aα with α.

One way to see the surjectivity of g and the exactness in the middle, is the following.
Note that KQ⊗KQM can be written as a quotient of KQ⊗K M by the linear span of
elements of the form aεi⊗m−e⊗mεi and aα⊗m−a⊗mα, for i ∈ Q0 and α ∈ Q1, since
elements in Q0 and Q1 generate KQ as a vector space. Furthermore, since AA = ⊕ieiA,
we get KQ⊗KM = ⊕i,j∈Q0eiA⊗kMej. Clearly, the linear span of aα⊗m−a⊗mα is just
the image of f and the linear span of aεi⊗m−e⊗mεi can be seen to be ⊕i 6=jeiA⊗KMej.
This concludes the proof. �

Theorem 3.12. The path algebra KQ of a finite quiver Q is hereditary, that is, Exti(M,N) =
0 for all M,N ∈ modA and all i ≥ 2. In particular, the global dimension of KQ is at
most 1.

Proof. The Ext-groups are computed using projective resolutions. Since any module
admits a projective resolution of length one by the previous proposition, the claim follows.

�

Using the duality functor D it is in fact also possible to classify the indecomposable
injective modules. Since this is rather straightforward, we just note that a module in
modA, where A is any algebra, is injective/simple if and only if the dual module in
modAop is projective/simple. Dual to the notion of a projective cover is the injective
envelope which is a monomorphism with the property that every submodule in the target
space has nonzero intersection with the image. Any module has a unique injective
envelope, since projective covers correspond to injective envelopes via D. For future
reference we record the

Proposition 3.13. Every indecomposable injective module in modA is isomorphic to
I(j) = D(Aej) for some j. Dually to the case of projective modules, the module I(j) is
the injective envelope of the simple module S(j) for all j. �
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We now go back to our standard quiver situation. Note that, since Hom(eA,M) 'Me
for any idempotent e in an algebra A, we have Hom(Aea, A) = D(Aea) = I(a), because
the Aea are the projective modules in Aop. Hence,

Proposition 3.14. If A = KQ/I is a bound quiver algebra, the indecomposable injective
modules are precisely I(a) = D(Aea) for a ∈ Q0. �

We can easily prove the

Lemma 3.15. (1) Given a ∈ Q0, the simple module S(a) is isomorphic to the simple
socle of I(a).

(2) If I(a) = (I(a)b, ϕβ), then I(a)b is the dual of the K-vector space with basis the
set of all ω = ω + I with ω a path from b to a, and for an arrow β : b // c the
map ϕβ : I(a)b // I(a)c is given by the dual of the left multiplication by β.

(3) Let I(a)/S(a) = (Lb, ψβ). Then Lb is the quotient space of I(a)b spanned by the
residual classes of paths from b to a of length at least one, and ψβ is the induced
map.

Proof. (1) Since S(a) = top eaA, it is the socle of I(a) by duality. Alternatively, apply
Lemma 3.6, (2).

(2) We have I(a)b = I(a)eb = D(Aea)eb = D(ebAea) = D(εb(KQ)εa)/(εbIεa). Now
apply Lemma 3.8 to see the first statement and the second follows similarly.

(3) is a consequence of (2). �

Example 3.16. Let Q be the quiver from Example 3.10. Then I(2) = S(2), I(3) = S(3)
and the injective representation I(1) is

K

K

id
>>

K.

id
``

Note that I(2)/S(2) = 0 = I(3)/S(3), while I(1)/S(1) = S(2)⊕ S(3).

Definition. Let A be an algebra. The Nakayama functor of modA is defined to be the
endofunctor ν = DHomA(−, A).

Lemma 3.17. The Nakayama functor is right exact and isomorphic to the functor −⊗A
DA.

Proof. First note that ν is the composition of two contravariant left exact functors, hence
right exact and covariant. Define a functorial morphism φ : −⊗ADA // ν by

φM : M ⊗A DA //DHomA(M,A), x⊗ f � // (ψ � // f(ψ(x))).

If M = AA, then φM is an isomorphism. Hence, it is an isomorphism for any free
module. It is also an isomorphism if M is projective, because both functors are linear
and a projective module is a direct summand of a free module. Now recall that any



SOME TOPICS IN THE REPRESENTATION THEORY... 31

module has a projective cover. This implies that it has a projective presentation, that is,
there exists a sequence

P1
p1 // P0

p0 //// M // 0,

such that P0
//M and P1

// ker(p0) are projective covers. Now apply both functors to
a projective presentation of M to get

P1 ⊗A DA //

φP1
��

P0 ⊗A DA //

φP0
��

M ⊗A DA //

φM
��

0

νP1
// νP0

// νM // 0.

The two left vertical arrows are isomorphisms, hence the third is also one. �

Proposition 3.18. The Nakayama functor establishes an equivalence between the full
subcategory of projective modules and the full subcategory of injective modules. The
quasi-inverse is given by HomA(D(AA),−).

Proof. If a ∈ Q0, then νP (a) = DHom(eaA,A) = D(Aea) = I(a). On the other hand,

HomA(D(AA), I(a)) ' HomA(D(AA), D(Aea)) ' HomAop(Aea, A) ' eaA = P (a).

�

Lemma 3.19. Let A = KQ/I, M an A-module and a ∈ Q0. There are functorial
isomorphisms of K-vector spaces

HomA(P (a),M) 'Mea ' DHomA(M, I(a)).

Proof. Since P (a) = eaA, the first isomorphism is clear. As for the second one,

DHomA(M, I(a)) ' DHomA(M,D(Aea)) ' DHomAop(Aea, DM)

' D(eaDM) ' D(DM)ea 'Mea.

�

Proposition 3.20. Let A = KQ/I and a, b ∈ Q0. There exists an isomorphism of
K-vector spaces

Ext1A(S(a), S(b)) ' ea(radA/ rad2A)eb.

Since the number of arrows in A from a to b is equal to the dimension of the right-hand
side, it is equal to dimK Ext1A(S(a), S(b)).

Proof. Let S be a simple module. It admits a projective resolution P• //S and, in fact, a
minimal one, meaning that Pj // im(pj) is a projective cover for all j ≥ 1. By definition,
to compute Exti(S, S ′), we have to apply the functor Hom(−, S ′) to the complex P • and
compute the cohomology of the resulting complex

0 // Hom(P0, S
′) // Hom(P1, S

′) // Hom(P2, S
′) // . . .
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Let f ∈ Hom(Pi, S
′) be a nonzero homomorphism. Then f is surjective, since S ′

is simple. Since Pi is projective, we can consider its decomposition into indecom-
posable projective modules and conclude that there exists a direct summand P ′ such
that f is the composition Pi //P ′ //P ′/ radP ′ ' S ′. Since we assumed the resolu-
tion to be minimal, we have Pi/ rad(Pi) ' im pi/ rad(im pi), so there exists a surjec-
tion from im pi = Pi/ ker pi to Pi/ radPi, hence im pi+1 = ker pi ⊆ radPi. Since the
map Hom(pi+1, S

′) : Hom(Pi, S
′) //Hom(Pi+1, S

′) is given by precomposing with pi+1,
we have, for any i ≥ 0 and any x ∈ Pi,

Hom(pi+1, S
′)(f)(x) = fpi+1(x) ∈ f(im pi+1) ⊆ f(radPi) ⊆ rad(S ′) = 0.

Therefore, all the maps in the above complex are zero and correspondigly, Ext1(S, S ′) '
Hom(P1, S

′).
Assume that S = S(a). The semisimple module radP (a)/ rad2 P (a) is a direct sum of

simple modules, say

radP (a)/ rad2 P (a) ' ⊕c∈Q0S(c)⊕nc ,

for some integers nc. Let us recall how a minimal projective resolution of S(a) is con-
tructed. First, we take the projective cover of S(a) = topP (a) which is just P (a)
and the map P (a) //S(a) is the natural projection. Next, consider the kernel of this
map, namely radP (a) =: M1 and take its projective cover. The approach was to con-
sider the semisimple A/ radA = B-module M1/ radM1, take its decomposition and
then “lift” to A. Hence, in our case this gives that the next term in the resolution is
precisely ⊕c∈Q0P (c)⊕nc . Therefore, Ext1(S(a), S(b)) = Hom(⊕c∈Q0P (c)⊕nc , S(b)). Now
note that for a simple module S and an arbitrary module M we have Hom(M,S) '
Hom(M/ radM,S), since any non-trivial map from M to S sends radM to 0. Applying
this to M = ⊕c∈Q0P (c)⊕nc , we get Ext1(S(a), S(b)) = Hom(radP (a)/ rad2 P (a), S(b)).
Since radP (a)/ rad2 P (a) is semisimple, it is equal to its socle. On the other hand, S(b)
is the socle of I(b). Since any map between modules maps the socle into the socle, we
conclude that Hom(radP (a)/ rad2 P (a), S(b)) ' Hom(radP (a)/ rad2 P (a), I(b)). So,

Ext1(S(a), S(b)) ' Hom(radP (a)/ rad2 P (a), I(b)) ' DHomA(P (b), radP (a)/ rad2 P (a))

' DHomA(ebA, ea(radA/ rad2A)) ' D(ea(radA/ rad2A)eb)

' ea(radA/ rad2A)eb,

where the second isomorphism is Lemma 3.19, the third applies the equality M radA =
radM to M = eaA and the forth is Lemma 1.16. �

Remark 3.21. The proposition allows us to give an alternative definition of the ordinary
quiver of a basic and connected K-algebra. Namely, the vertices are in bijective corre-
spondence to the simple modules in modA and the number arrows between two vertices
is equal to the dimension of the Ext1 between the corresponding simple modules.
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4. Dimension vectors and the Euler form

Let A be a basic and connected finite-dimensional K-algebra which will we write as
A = KQ/I for a finite and connected quiver Q and an admissible ideal I in KQ. In
this section we will assume that the vertices of Q are given by the set {1, . . . , n}. Recall
that for any j ∈ Q0, ej is the corresponding primitive idempotent, P (j) = ejA are
precisely the indecomposable projective modules, I(j) = D(Aej) the indecomposable
injective modules and S(j) = topP (j) the simple modules. Furthermore, recall that for
any representation M we have

Mj = Mej ' HomA(P (j),M) ' DHomA(M, I(j)).

Definition. Let M be a finite-dimensional KQ/I-module. The dimension vector of M
is

dimM = (dimKMe1, . . . , dimKMen)t ∈ Zn.

Remark 4.1. As seen before, the dimension vector of S(i) is precisely the i-th basis
vector in Zn. Note that the definition of the dimension vector does not depend on the
choice of a complete set of primitive orthogonal idempotents, up to permutation of the
coordinates. Furthermore, since Mej ' HomA(P (j),M) by Lemma 3.19, we can express
the dimension vector in terms of projectives (or injectives).

Example 4.2. Consider the quiver from Example 3.10. Then dimP (1) = (1, 0, 0)t,
dimP (2) = (1, 1, 0)t and dimP (3) = (1, 0, 1)t.

Lemma 4.3. If 0 // L // M // N // 0 is an exact sequence of A-modules,
then dimM = dimL+ dimN .

Proof. Apply the exact functor Hom(P (j),−) to the sequence to get dimKMej =
dimK Lej + dimK Nej for all j = 1, . . . , n and the claim follows. �

Recall that the Grothendieck group of a small abelian category A is defined to be
the free abelian group K0(A) generated by the isomorphism classes of objects where we
factor out the subgroup generated by relations: [F ] = [F ′] + [F ′′], whenever there is an
exact sequence

0 // F ′ // F // F ′′ // 0 .

This group has the following universal property. Any map α from the set of isomor-
phism classes of A to an abelian group which is additive, that is, α(F ) = α(F ′) + α(F ′′)
for an exact sequence as above, factorizes over K0(A).

In particular, this applies to A = modA. Denote the image of a module M in
K0(modA) = K0(A) =: K0(A) by [M ].

Proposition 4.4. The Grothendieck group K0(A) is isomorphic to Zn.

Proof. Take any module M . It admits a composition series, hence its class can be written
as a sum of simple modules. This shows that this set generates K0(A). The previous
lemma shows that dim is an additive function, hence we get a group homomorphism
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K0(A) //Zn. Since the simple modules have the basis vectors as dimension vectors, the
claim follows. �

Corollary 4.5. For any module M ∈ modA the number cj(M) of simple composi-
tion factors that are isomorphic to S(j) is precisely dimKMej. Furthermore, l(M) =
dimKM .

Proof. Writing out the composition series for M explicitly gives [M ] =
∑n

i=1 ci(M)[S(i)],
hence dimM =

∑n
i=1 ci(M)dimS(i). Since the S(i) are basis vectors, the first claim

follows. The second follows from the first, since l(M) =
∑

i ci(M) =
∑

i dimKMei =
dimKM . �

Definition. The Cartan matrix of A is the (n × n)-matrix CA = (cij)1≤i,j≤n where
cij = dimk eiAej.

Note that if one were to choose a different complete set of primitive orthogonal idem-
potents, the corresponding matrix C ′A one gets is conjugate (over Z) to CA.

Proposition 4.6. The i-th column of CA is dimP (i) = CAdimS(i), while the i-th row
of CA is dimI(i) = Ct

AdimS(i).

Proof. Use eiAej = P (i)ej = Hom(P (j), P (i)) = Hom(I(j), I(i)). �

Example 4.7. The Cartan matrix of the quiver in Example 3.10 is1 1 1
0 1 0
0 0 1

 .

Proposition 4.8. If A is an algebra of finite global dimension, then the determinant of
the Cartan matrix is equal to +1 or −1. In particular, CA is invertible over Z.

Proof. Our assumption gives a finite projective resolution P• //S(i) for any S(i). Hence,
dimS(i) =

∑m
j=1(−1)jdimPj. Now the projective modules Pj can be decomposed into

the P (k). Hence, the i-th basis vector dimS(i) can be written as a Z-linear combination
of the dimension vectors dimP (k). Using the fact that these vectors are the columns of
CA, the claim follows. �

Definition. Let A be a basic connected algebra of finite global dimension. The Euler
form of A is the Z-bilinear form 〈−,−〉A : Zn × Zn //Z defined by 〈x, y〉 = xt(C−1A )ty.

The Euler quadratic form of A is the quadratic form qA : Zn //Z defined by qA(x) =
〈x, x〉.

Example 4.9. Let Q be the quiver from 3.10. Then (C−1A )t is the matrix 1 0 0
1 1 0
−1 0 1

 .
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Hence, the Euler form of A is

〈x, y〉A = x1y1 + x2y2 + x3y3 − x2y1 − x3y1
and the quadratic form is

qA(x) = x21 + x22 + x23 − x2x1 − x3x1.

Example 4.10. Let Q be the quiver 1
α // 2
β
oo with relations αβ = 0 = βα and consider

the algebra A = KQ/I. Then P (1) = ( K
id // K
0
oo ) = I(2) and P (2) = ( K

0 // K
id
oo ) =

I(1). The Cartan matrix is

(
1 1
1 1

)
, hence the algebra cannot be of finite global dimen-

sion. Another way to see this is to check that the minimal projective resolution of S(1)
has the form

. . . // P (1) // P (2) // P (1) // P (2) // P (1) // S(1) // 0.

Note that the module AA is injective, hence A is a so-called self-injective algebra.

Proposition 4.11. Let A be of finite global dimension and 〈−,−〉A be its Euler form.
For any two modules M,N ∈ modA we have

〈dimM, dimN〉A =
∞∑
j=0

(−1)j dimK Extj(M,N)

and

qA(dimM) =
∞∑
j=0

(−1)j dimK ExtjA(M,M).

Proof. Of course, it is enough to prove the first statement and we will do it by induction
on the projective dimension d of M . Without loss of generality we may assume that M
is indecomposable, since both sides are additive. Also note if A = KQ, then j in fact
only runs from 0 to 1.

Assume d = 0. Hence M is an indecomposable projective, so M = eiA for some i. We
now compute

〈dimM, dimN〉A = 〈dimP (i), dimN〉A = (dimP (i))t(C−1A )t(dimN)

= (C−1A dimP (i))t(dimN) = (dimS(i))tdimN

= dimK Nei = dimK HomA(P (i), N),

thus showing the statement for d = 0. So assume that d ≥ 1 and the result holds for all
modules with projective dimension at most d− 1. Consider a short exact sequence

0 // L // P // M // 0
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with P projective. Then the projective dimension of L is d−1 and applying Hom(−, N)
to this sequence, we get a long exact cohomology sequence from which the claim follows
by induction and using dimM = dimP − dimL. �

Definition. Let CA be the Cartan matrix of an algebra A of finite global dimension.
The Coxeter matrix of A is the matrix

ΦA = −Ct
AC
−1
A .

The Coxeter transformation is the group homomorphism ΦA : Zn //Zn defined by ΦA(x) =
ΦA · x for x = (x1, . . . , xn)t ∈ Zn.

Proposition 4.12. ΦA · dimP (i) = −dimI(i) for all i ∈ {1, . . . , n} and

〈x, y〉A = −〈y,ΦAx〉A = 〈ΦAx,ΦAy〉A.
Proof. We know that dimS(i) = C−1A dimP (i), hence dimI(i) = Ct

AdimS(i) = −ΦAdimP (i).
Furthermore,

〈x, y〉 = xt(C−1A )ty = ((ytC−1A )x)t = ytC−1A x

= yt(C−1A )tCt
AC
−1
A x = yt(C−1A )t(−ΦA)x = −〈y,ΦAx〉A

and the last equation follows by applying what we just proved. �

5. Gabriel’s theorem

The purpose of this section is to prove Gabriel’s theorem which classifies the quiver
having finitely many indecomposable representations. Given a quiver Q and the associ-
ated algebra A = KQ we will secretly change our convention from before and go to the
opposite algebra. This has minor effects: for instance, the projective modules will be
Aej now and not ejA as before.

Definition. Let Q be a finite quiver with vertex set {1, . . . , n}. If i is a vertex, the
quiver σiQ is obtained from Q by reversing all arrows which start or end at i.

Example 5.1. Let Q be 2

1

@@

3

^^ . Then σ1Q is 2

��
1 3

^^ .

Definition. An ordering i1 . . . , in of the vertices of Q is called admissible if for each p
the vertex ip is a sink for the quiver σip−1 . . . σi1Q.

It is easy to check that if i1, . . . , in is an admissible ordering, then σin . . . σi1Q = Q.

Lemma 5.2. An admissible ordering of the vertices of Q exists if and only if Q has no
oriented cycles.

Proof. We only sketch one implication by induction on n. Suppose Q has no oriented
cycles and let in be the starting vertex of a path of maximal length. This implies that in
is a source. The quiver obtained by deleting this vertex has an admissible ordering by
the induction hypothesis, hence so does Q. �
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Example 5.3. Let Q be the quiver from the previous example. Then 2, 1, 3 or 2, 3, 1
are admissible orderings.

Let Q be a finite quiver without loops with n vertices. The Euler form is the bilinear
form

〈−,−〉 : Zn × Zn //Z, 〈x, y〉 =
∑
i∈Q0

xiyi −
∑
α∈Q1

xs(α)yt(α).

It is an exercise to check that this coincides with the definition from the previous section
when A = KQ: It is enough to check the equality of the two forms on the basis vectors,
that is, on the simple representations. This can be done using Proposition 4.11 and
Remark 3.21.

We get a symmetric bilinear form by setting (x, y) = 〈x, y〉+ 〈y, x〉.
The reflection with respect to a vertex i is the map

σi : Zn //Zn, σi(x) = x− 2(x, ei)

(ei, ei)
ei.

Here ei as usual denotes the i-th coordinate vector. It is an exercise to check that σi is
an isometry with respect to (−,−) and is of order 2.

We are now close to the definition of reflection functors which will be indespensable
in proving Gabriel’s theorem. First note that, given two quivers Q and Q′, it of course
makes sense to talk about functors between the respective categories of representations.

Definition. Let i be a sink of a quiver Q and consider the quiver Q′ = σiQ. We define
the functor S+

i as follows.
Given a representation (Mk, ϕα) of Q, set S+

i (Mk, ϕα) = (Nk, ηα) to be the represen-
tation with Nj = Mj for j 6= i and with Ni the kernel of the map ξ in the following
sequence

Ni
ξ //
⊕

α∈Q1,t(α)=i
Ms(α)

ξ // Mi .

If α is an arrow and t(α) 6= i, we set ηα = ϕα. If t(α) = i, we set ηα to be the map ξ
followed by the projection onto Ms(α).

If f : M //M ′ is a morphism between representations, then S+
i (f) = g is defined as

follows. If j 6= i, then gj = fj. If j = i, then define gi : Ni
//N ′i to be the restriction of

the map

(fs(α))α :
⊕

α∈Q1,t(α)=i

Ms(α) //
⊕

α∈Q1,t(α)=i

M ′
s(α).

If i is a source of Q, we will dually construct S−i as follows. For j 6= i we again set
Nj = Mj. For j = i, Ni is the defined as the cokernel of the map ξt in the following
sequence

Mi
ξt //
⊕

α∈Q1,s(α)=i
Mt(α)

ξ̂ // Ni .
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For an arrow α, ηα = ϕα if s(α) 6= i, while ηα : Nt(α) = Mt(α)
//Ni is the restriction of

ξ̂ if s(α) = i. If f is a morphism of representations as above, then gj = fj for j 6= i and
gi : Ni

//N ′i is the map induced by

(ft(α))α :
⊕

α∈Q1,s(α)=i

Mt(α) //
⊕

α∈Q1,s(α)=i

M ′
t(α).

Note that if i is a sink and M is any representation, then S−i S
+
i M exists. In fact,

there exists a natural monomorphism

ιiM : S−i S
+
i M

//M

defined as the identity on the vector spaces over vertices not equal to i and where (ιiM)i
is the canonical map

(S−i S
+
i M)i = cokerξ = im ξ //Mi.

On the other hand, if i is a source, we have a natural epimorphism

πiM : M //S+
i S
−
i M

defined as the identity on the vector spaces over vertices not equal to i and where (πi)Mi

is the canonical map

Mi
// im ξt = ker ξ̂ = (S+

i S
−
i M)i.

The following result collects some properties. It is tacitly assumed that the expressions
make sense, that is, the vertices considered are sinks/sources at the correct moment.

Lemma 5.4. The functors S±i are additive. If M is any representation, then M =
(S−i S

+
i M)⊕coker(ιiM) and M = (S+

i S
−
i M)⊕kerπiM . If cokerιiM = 0, then dimS+

i M =
σi(dimM). If kerπiM = 0, then dimS−i M = σ(dimM).

Proof. The first statement is obvious. To see the second, note that the representations
(S−i S

+
i M) and M are the same over all vertices j 6= i. Now, at the i-th vertex we

have a monomorphism (ιiM)i : (S−i S
+
i M)i //Mi, hence Mi decomposes as the direct

sum of the cokernel of this map and (S−i S
+
i M)i. Since the representation cokerιiM is

concentrated at the i-th vertex, this proves the second statement and the proof of the
statement concerning πi is analogous.

Next, if coker(ιiM) = 0, then dim(S+
i M)j = dimMj for all j 6= i, while

dim(S+
i M)i =

∑
α∈Q1,t(α)=i

dimMs(α) − dimMi,

which follows immediately from the exact sequence we used to define (S+
i M)i. Since

(dimM, ei) = dimMi−
∑

α∈Q1,t(α)=i
dimMs(α), it follows easily that dim(S+

i M) = σi(dimM)
and the last statement is proved similarly. �

Remark 5.5. As noted in the proof, the representations cokerιiM and kerπiM are con-
centrated at the i-th vertex. Therefore, they are direct sums of copies of S(i).
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Before we formulate the next result, we recall that there is a partial order on Zn defined
by

x ≤ y ⇐⇒ xk ≤ yk ∀ k.

Lemma 5.6. Let i be a sink and M an indecomposable representation of Q. Then the
following conditions are equivalent:

(1) M � S(i).
(2) S+

i M is indecomposable.
(3) S+

i M 6= 0.
(4) S−i S

+
i M 'M .

(5) The map ξ :
⊕

α∈Q1,t(α)=i
Ms(α)

//Mi is an epimorphism.

(6) σi(dimM) > 0.
(7) dimS+

i M = σi(dimM).

If i is a source, corresponding statements hold for S−i .

Proof. This follows rather easily from Lemma 5.4. For example, assume that S+
i M is

decomposable, so S+
i M = N ⊕ N ′. Then S−i S

+
i M = S−i N ⊕ S−i N

′ which is a direct
summand of M , giving a contradiction. Hence (1) implies (2). �

We record the above discussion in the

Theorem 5.7. The functors S+
i and S−i induce mutually inverse bijections between the

isomorphism classes of indecomposable representations of Q and those of σiQ except
for the simple representation S(i) which is annihilated by these functors. Moreover,
dimS±i M = σi(dimM) for every indecomposable representation M � S(i). �

If Q is a finite quiver and we forget the orientations of the arrows, then the resulting
object is a finite graph Γ. For a graph Γ with n vertices, we get a symmetric bilinear
form on Zn by setting (ei, ei) = 2 − 2dii and (ei, ej) = −dij, where dij is the number of
edges joining the vertices i and j. Note that this is the same definition as we had before
(for us, dii = 0 since we usually do no have cycles). We of course also have a quadratic
form q defined by q(x) = 1

2
(x, x) and

q(x) =
n∑
i=1

x2i −
∑
i≤j

dijxixj.

On the other hand, q also determines (−,−), since (x, y) = q(x+ y)− q(x)− q(y).

Definition. The radical of the form q is the set

radq = {x ∈ Zn | (x,−) = 0} .

Definition. Let q : Zn //Z be an arbitrary quadratic form. It is called positive definite
if q(x) > 0 for x 6= 0 and positive semi-definite if q(x) ≥ 0 for all x.

We will use the following terminology in the next lemma and afterwards: A vector v
will be called sincere if vi 6= 0 for all i.
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Lemma 5.8. Let Γ be a connected graph, q the associated quadratic form defined above
and y ∈ Zn a positive vector contained in the radical. Then y is sincere and q is positive
semi-definite. For a vector x ∈ Zn we have

q(x) = 0⇐⇒ x ∈ Qy ⇐⇒ x ∈ radq.

Proof. Since y is contained in the radical and (−,−) is symmetric, we have, for any
1 ≤ i ≤ n,

(5.1) 0 = (ei, y) = (2− 2dii)yi −
∑
j 6=i

dijyj.

If yi = 0, then
∑

j 6=i dijyj = 0 and since every term is non-negative, yj = 0 whenever i
and j are joined by an edge. Therefore, y = 0, since Γ is connected, contradicting our
assumption. Hence, y is sincere.

To show the next statement, we first compute, for x ∈ Zn:

q(x) =
n∑
i=1

x2i −
∑
i≤j

dijxixj

=
∑
i

x2i −
∑
i<j

dijxixj −
∑
i

diix
2
i

=
∑
i

(1− dii)x2i −
∑
i<j

dijxixj

=
∑
i

(2− 2dii)yi
1

2yi
x2i −

∑
i<j

dijxixj

=
∑
i 6=j

dij
yj
2yi

x2i −
∑
i<j

dijxixj

=
∑
i<j

dij
yj
2yi

x2i +
∑
i<j

dij
yi

2yj
x2j −

∑
i<j

dijxixj

=
∑
i<j

dij
yiyj

2
(
xi
yi
− xj
yj

)2 ≥ 0,

where the fifth equality uses (5.1) and the last inequality is clear. Therefore, if q(x) = 0,
then xi

yi
=

xj
yj

whenever there is an edge joining i and j. Since Γ is connected, x ∈ Qy. If

x ∈ Qy, then x ∈ radq, since y ∈ radq. Lastly, x ∈ radq readily implies that q(x) = 0. �
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The following quivers will play a prominent role in Gabriel’s theorem. First, the simply
laced Dynkin diagrams with n vertices are:

An • • . . . • • E6 •

• • • • •
Dn •

• . . . • •

•

E7 •

• • • • • •

and

E8 •

• • • • • • •
The Euclidean diagrams with n = m+ 1 vertices are as follows. We mark each vertex

with the value δi of a vector δ ∈ Zn.

Ãm (m ≥ 0) 1 . . . 1

1 1

1 . . . 1

D̃m (m ≥ 4) 1 1

2 . . . 2

1 1

Ẽ6 1

2

1 2 3 2 1
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Ẽ7 2

1 2 3 4 3 2 1

Ẽ8 3

2 4 6 5 4 3 2 1

Theorem 5.9. Let Γ be a connected graph and q the corresponding quadratic form. Then
Γ is a Dynkin diagram if and only if q is positive definite. It is a Euclidean diagram if
and only if q is positive semi-definite and not positive definite. In this case there is a
unique positive vector δ ∈ Zn with radq = Zδ.

Proof. First we show that if Γ is Euclidean, then q is positive semi-definite and radq = Zδ.
For this, we want to use Lemma 5.8. Hence, we have to check that δ is a radical vector,
since it is positive by definition. This boils down to proving that

(ei, δ) = 2δi −
n∑

j=1,dij 6=0

δj

is zero for 1 ≤ i ≤ n. This is done by explicit computation which proves the first
statement. To see the second, note that δi = 1 for some i and therefore radq = Qδ∩Zn =
Zδ, since if λ ∈ Q \ Z, then λδ /∈ Zn, because λδi /∈ Z.

Next, note that if Γ is a Dynkin diagram then q is positive definite. Indeed, there

exists a Euclidean diagram Γ̃ such that Γ is obtained by deleting some vertex e. The

diagram Γ̃ satisfies q(x) > 0 for every x 6= 0 with xe = 0, proving the claim.
Finally, if Γ is neither Dynkin nor Euclidean, then there exists a vector x such that

q(x) < 0. One proves this statement by first checking that there exists a Euclidean
subgraph Γ′ (this is a purely combinatorial statement) with radical vector δ. If the
vertices of Γ and Γ′ coincide, then δ = x will satisfy q(x) < 0. Otherwise we take a
vertex i of Γ \ Γ′ which is connected with Γ′ by an edge and set x = 2δ + ei. �

Let Γ be a Dynkin or Euclidean diagram. We say that a non-zero vector is a root if it
is an element in

∆ = {x ∈ Zn | q(x) ≤ 1} .
The following result summarizes some properties of roots.

Proposition 5.10. If Γ is a Dynkin or Euclidean diagram, then the following holds.

(1) Each basis vector ei is a root.
(2) If x is a root and y ∈ radq, then −x, x+ y are roots.
(3) Every root is either positive or negative.
(4) If Γ is Euclidean, then ∆/ rad q is a finite set.
(5) If Γ is Dynkin, then ∆ is a finite set.
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Proof. (1) follows by inspection. Since q(y ± x) = q(y) + q(x) ± (y, x) = q(x), (2) is
clear. To see (3), let x be a root and write it as x = x+ − x−, where x+, x− both have
non-negative entries and have disjoint support. The condition on the support implies
that (x+, x−) ≤ 0, and in turn

1 ≥ q(x) = q(x+) + q(x−)− (x+, x−) ≥ q(x+) + q(x−) ≥ 0.

Therefore, either q(x+) = 0 or q(x−) = 0, since both numbers are integers. If both
vectors are non-zero, then one of them has to be sincere by Lemma 5.8, which gives a
contradiction.

Let us prove (4). Fix a vertex e. If x is a root whose component xe at e is 0, then
δ − x and δ + x are positive at e. Since δ ∈ radq, (2) implies that δ ± x are roots. By
(3), they are positive. Hence,

{x ∈ ∆ | xe = 0} ⊂ {x ∈ Zn | − δ ≤ x ≤ δ} ,

where for vectors v, w we write v ≤ w if vi ≤ wi for all i. The latter is a finite set. If
x ∈ ∆, then x− xeδ belongs to the finite set {x ∈ ∆ | xe = 0}.

Finally, a Dynkin diagram Γ can be obtained from a Euclidean diagram Γ̃ by deleting

some vertex e. Any root x of Γ can be viewed as a root for Γ̃ with xe = 0. Therefore,
(5) follows from (4). �

Lemma 5.11. Let Q be a quiver whose underlying graph is Dynkin or Euclidean. If x
is a positive root and σi(x) is not positive, then x = ei.

Proof. Since σi preserves (−,−), σi(x) is a root. It is not positive by assumption, hence
negative by (3) of the previous proposition. For each vertex j 6= i, we have σi(x)j = xj
(σi only changes the vector in the i-th coordinate), which has to be both positive and
negative. Hence xj = 0 and x = ei. �

Definition. Let Q be a quiver without oriented cycles and assume for simplicity that
1, . . . , n is an admissible ordering of the vertices. The Coxeter transformation is the
automorphism c of Zn defined by c(x) = σn . . . σ1(x).

Remark 5.12. This definition coincides with our previous one, that is, the Coxeter matrix
of the previous section is the matrix of the Coxeter transformation in the canonical basis
of Zn. For the proof see [1, Prop. VII.4.7].

Lemma 5.13. Using the previous remark, we can translate statements from Section 4.
For instance, c(dim(i)) = −dimI(i) for all i and 〈x, y〉 = −〈y, c(x)〉 = 〈c(x), c(y)〉, see
Proposition 4.12. �

Lemma 5.14. Let x ∈ Zn. Then c(x) = x if and only if x ∈ radq.

Proof.

c(x) = x⇐⇒ xi = c(x)i = σi(x)i ∀i⇐⇒ (x, ei) = 0 ∀i.
�
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If the underlying graph of the quiver Q is Dynkin or Euclidean, then c induces a
permutation of the finite set ∆/radq. In particular, for some h > 0, ch is the identity on
∆/radq. This already implies that ch is the identity on Zn/radq, since ei ∈ ∆ for all i.

Lemma 5.15. Let Q be of Dynkin type and x ∈ Zn. Then there exists an integer r ≥ 0
such that cr(x) is not positive.

Proof. Consider y =
∑h−1

r=0 c
r(x) and note that it is fixed by c. By the previous lemma,

y ∈ radq, hence y = 0 because Q is Dynkin. Therefore, cr(x) is not positive for some
r ≥ 0. �

Lemma 5.16. Let Q be of Euclidean type and x ∈ Zn. Then (1) cr(x) > 0 for all r ∈ Z
implies that ch(x) = x and (2) if ch(x) = x, then 〈δ, x〉 = 0.

Proof. Let us prove (1). Suppose that ch(x) = x+v for some 0 6= v ∈ radq. By induction,
clh(x) = x + lv for all l ∈ Z. Since v is sincere and either positive or negative, there
exists an r such that cr(x) is not positive.

To see (2), let y =
∑h−1

r=0 c
r(x). As before, y ∈ radq. But then

0 = 〈δ, y〉 =
h−1∑
r=0

〈δ, cr(x)〉 = h〈δ, x〉,

using that δ is radical, hence 〈δ, x〉 = −〈x, δ〉, and Lemma 5.13. �

We can now state the main result of this lecture.

Theorem 5.17. Let Q be a connected quiver. There are only finitely many isomor-
phism classes of indecomposable representations of Q if and only if the underlying graph
is of Dynkin type. More precisely, the assignment M � // dimM establishes a bijection
between the isomorphism classes of indecomposable representations and the positive roots
corresponding to Q.

Proof. Let Q be a Dynkin diagram and choose an admissible ordering i1, . . . , in of vertices
of Q. Let M be an indecomposable representation of Q with dimension vector x = dimM .
Lemma 5.15 gives the existence of an integer r such that τ ′(x) = (σin . . . σi1)

r(x) is not
positive. Consider τ = σis . . . σi1τ

′, the shortest expression such that τ(x) is still not
positive. Applying our reflection functors and using Lemma 5.6 we get that

S+
is−1

. . . S+
i1

(S+
in
. . . S+

i1
)rM ' S(is).

This implies
M ' (S−i1 . . . S

−
in

)rS−i1 . . . S
−
is−1

S(is),

since the functors S+
i and S−i are inverse bijections of the sets of indecomposable rep-

resentations apart from S(i). Therefore, dimM is a positive root. Similarly one shows
that if M ′ is indecomposable with dimM = dimM ′, then M 'M ′.

Conversely, let x be a positive root. Let

τ = σis . . . σi1(σin . . . σi1)
r
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be the shortest expression such that τ(x) is not positive. Lemma 5.11 implies that

σis−1 . . . σi1(σin . . . σi1)
r = eis .

Setting M = (S−i1 . . . S
−
in

)rS−i1 . . . S
−
is−1S(is), we can apply reflection functors to conclude

that M is indecomposable and

dimM = (σi1 . . . σin)rσi1 . . . σis−1(eis) = x.

Since a Dynkin diagram has only finitely many roots, we established the “if” direction.
To see the other direction, we infer from Propositions 5.18 and 5.25 below that a

Euclidean diagram has infinitely many indecomposable representations. So, let Q be a
diagram not of Dynkin type. We already know that it contains a Euclidean subquiver
Q′. Since any representation (N,ϕα) of Q′ can be extended to a representation of Q by
setting Ni = 0 for all i ∈ Q0 \ Q′0 and ϕα = 0 for all α ∈ Q1 \ Q′1, we conclude that Q
has infinitely many indecomposable representations. �

To complete the proof of the theorem, it remains to show that any Euclidean diagram
has infinitely many isomorphism classes of indecomposable representations. We will split
the proof of the statement into two parts, dealing with the case of a diagram with oriented
cycles first.

Proposition 5.18. Let Q be a quiver of Euclidean type Ãn with n ≥ 0. There exist
infinitely many isomorphism classes of indecomposable representations.

Proof. The orientation ot the graph is not important in the following. Fix an arrow α0.
Define, for any p ≥ 1, a representation (M(p), ϕα) as follows. For every vertex i we set
Mi = Kp and for every arrow α 6= α0 let ϕα = id, while for α0 the map ϕα0 is given as
the Jordan block of size p with eigenvalue 0. A straightforward computation shows that
End(M(p)) ' K[t]/tp, which is a local ring. Therefore, by Corollary 1.22, M(p) is an
indecomposable representation. Clearly, M(p) �M(p′) for p 6= p′. �

From now on we will consider quivers Q without oriented cycles.
Let i1, . . . , in be an admissible ordering of the vertices of our finite quiver Q. The

Coxeter functor with respect to this ordering is the functor

C+ = S+
in
. . . S+

i1
' Rep(Q, k) //Rep(Q, k).

Similarly,
C− = S−i1 . . . S

−
in
' Rep(Q, k) //Rep(Q, k).

If r ∈ Z>0, write Cr = (C+)r. If r = 0, set Cr = id, and if r ∈ Z<0 write Cr = (C−)−r.

Lemma 5.19. The functors C+ and C− do not depend on the choice of the admissible
ordering of the vertices of Q.

Proof. If i and j are sinks with respect to some orientation and they are not joined by
an arrow, then S+

i S
+
j = S+

j S
+
i as follows immediately from the definitions. Let i1, . . . , in

and i′1, . . . , i
′
n be two admissible orderings of Q and let i1 = i′m. In this case i′1, . . . , i

′
m

cannot be joined to i1 by an arrow (This can be seen by induction: for instance, let
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m = 2. So i′1 is a sink and i1 = i′2 is a sink for i′1Q, hence there cannot be an arrow from
i′1 to i′2 because that would contradict i′2 being a sink for i′1Q and there is no arrow from
i′2 to i′1 because i1 = i′2 is a sink.) Therefore,

S+
i′m
. . . S+

i′1
= S+

i′m−1
. . . S+

i′1
S+
i1
.

Applying the same argument to i2, i3, . . . gives the claim. �

Convention For simplicity, we will from now on assume that 1, . . . , n is an admissible
ordering of the vertices of Q.

Lemma 5.20. Let i be a vertex. Then

dimP (i) = σ1 . . . σi−1(ei) and dimI(i) = σn . . . σi+1(ei).

Furthermore,

P (i) ' S−1 . . . S
−
i−1S(i) and I(i) ' S+

n . . . S
+
i+1S(i).

Proof. Since the proofs for P (i) and I(i) are dual, we only consider the case of projectives.
Fix a vertex i. Firstly, one shows by induction that for any 0 ≤ l < i the following holds
(by definition σ0 = id):

σi−l . . . σi−1(ei) =
l∑

j=0

λi,i−jei−j,

where λi,i−j is the number of paths starting in i and ending in i − j. For l = i − 1,
we therefore get σ1 . . . σi−1(ei) = dimP (i), because, by admissibility, there are no paths
from i to j if j > i.

To see the second statement, one checks by induction that for any 0 ≤ l < i we have

dimS+
l . . . S

+
1 P (i) = σl+1 . . . σi−1(ei).

This implies that S+
i−1 . . . S

+
1 P (i) ' S(i), hence P (i) ' S−1 . . . S

−
i−1S(i). �

Lemma 5.21. Let M be an indecomposable representation of Q. If M ' P (i) for some
i, then C+M ' 0. Otherwise, C−C+M ' M . Similarly, if M ' I(i) for some i, then
C−M ' 0 and otherwise C+C−M 'M .

Proof. By the previous lemma, P (i) ' S−1 . . . S
−
i−1S(i), hence

C+P (i) ' S+
n . . . S

+
i S(i) ' 0.

If M � S−1 . . . S
−
i−1S(i) for all i, then

C−C+M ' S−1 . . . S
−
n S

+
n . . . S

+
1 M 'M,

using that, for all i, S−i S
+
i M ' M under our assumption. The proof of the second

statement is the same. �
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Corollary 5.22. Any indecomposable representation M satisfies one of the following
conditions: (1) M ' CrP (i) for some i and r ≤ 0 and this holds iff CrM ' 0 for some
r > 0, (2) M ' CrI(i) for some i and r ≥ 0 and this holds iff CrM ' 0 for some r < 0,
or (3) CrM � 0 for all r ∈ Z. An M satisfying (1) is called preprojective, if it satisfies
(2) it is called preinjective and regular if (3) holds. �

Lemma 5.23. If CrP (i) ' CsP (j) 6= 0, then i = j and r = s, and similarly for I(k).

Proof. If CrP (i) ' CsP (j) 6= 0, then P (i) ' Cs−rP (j), so s − r ≤ 0 by Lemma 5.21.
The same argument gives that r − s ≤ 0, hence r = s. Thus P (i) ' P (j), so i = j. �

Definition. Let Q be a quiver of Euclidean type. The defect of a vector x ∈ Zn is the
number ∂x = 〈δ, x〉 = −〈x, δ〉. The defect ∂M of a representation M is defined to be
∂dimM .

Lemma 5.24. Let M be an indecomposable representation. Then M is preprojective iff
∂M < 0, preinjective iff ∂M > 0 and regular if and only if ∂M = 0.

Proof. We know that dimCrN = crdimN for any representation N with CrN 6= 0. If
M ' CrP (i), then

∂M = −〈cr(dimP (i)), δ〉 = −〈dimP (i), δ〉 = −δi < 0.

The preinjective case is proved analogously. For the regular case use Lemma 5.16. �

Proposition 5.25. Let Q be a Euclidean diagram without oriented cycles and n vertices.
Then C−rP (i) and CrI(i), r ∈ N, i ∈ Q0, give 2n infinite families of pairwise non-
isomorphic representations.

Proof. We only need to show that C−rP (i) 6= 0 and CrI(i) 6= 0 for all r ≥ 0. If
C−rP (i) = 0, then P (i) is preinjective. Since preprojectives and preinjectives have
different defects by the previous lemma, the claim follows. �
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