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These are the lecture notes for a course about the representation theory of finite-
dimensional algebras held at at the University of Hamburg. The rough idea is to first
give an introduction to some basic concepts, such as radicals, semisimple modules and
path algebras, before showing that any basic connected algebra is the quotient of a path
algebra by an admissible ideal. A very useful observation is that representations of a
quiver are the same as modules over the associated path algebra. After establishing
these facts, we will look at Gabriel’s theorem which classifies the representation finite
hereditary algebras as those associated to Dynkin diagrams.

In Sections 1-4 we will, for the most part, closely follow [1]. When dealing with
Gabriel’s theorem our reference will be [5].

I would like to thank Ana Ros Camacho for pointing out some typos in the first version
of these notes.

1. BASIC CONCEPTS

Let K be an algebraically closed field. Recall that a K-algebra is a ring A with
an identity element such that A has a vector space structure compatible with the ring
multiplication. The algebra is called commutative if it is commutative as a ring. We say
that A is a finite-dimensional K -algebra if its dimension as a K-vector space is finite. A
morphism of K-algebras is a ring homomorphism which is linear over K.

Unless otherwise stated, all algebras will be assumed to be finite-dimensional.

A right ideal of a K-algebra A is a K-vector subspace I such that xa € I for all x €
and a € A. A left ideal is defined dually and a two-sided ideal, or simply ideal, is a K-

vector subspace which is both a left and right ideal. A (right or left) ideal I is maximal
1



2 P. SOSNA

if it not equal to A and if I C I’ for an ideal I’, then I = I'. It is straightforward to
see that the K-vector space A/ is a K-algebra if I is an ideal and the quotient map is
a morphism of K-algebras. Given an ideal [ and 1 < m € N, the ideal I™ consists of
finite sums of elements of the form ;- --x,, with x; € I and I is called nilpotent if for
some m we have I"™ = (. This also makes sense for right (or left) ideals.

Example 1.1. e The set M, (K) of all (n x n)-matrices with K-coefficients is a
K-algebra with respect to the usual matrix addition and multiplication. Its
dimension is n?. The subset of M, (K) consisting of all lower triangular matrices

is a K-subalgebra of dimension @ To be even more specific, consider the

n = 2 case. The subspace }(f 8 is easily seen to be a right but not a left ideal.

On the other hand {2 0} and (2 %) are both maximal ideals. Th f

n the other hand { ;. ] and { ;. | are both maximal ideals. The case o
upper triangular matrices is left to the reader.

e For an infinite-dimensional example consider the rings K[t] or K[ty,...,t,]. These

algebras are commutative.
e Given two K-algebras A; and A,, their product is the space A = A; x Ay with
componentwise addition and multiplication.

Definition. The radical rad A of a K-algebra A is the intersection of all maximal right
ideals of A.

We can describe elements in the radical as follows.

Lemma 1.2. For an element a € A the following conditions are equivalent.

(1) a erad A,

(2) a is in the intersection of all mazximal left ideals of A,

(3) for any b € A, the element 1 — ab has a two-sided inverse,
(4) for any b € A, the element 1 — ab has a right inverse,

(5) for any b € A, the element 1 — ba has a two-sided inverse,
(6)

for any b € A, the element 1 — ba has a left inverse.
Proof. Tt is clear that (3) implies (4) and that (5) implies (6). To prove that (1) implies
(4) assume that © = 1 — ab has no right inverse. Then there exists a maximal right ideal
I such that x € I. But ab € I and hence x +ab =1 € I, a contradiction.
To see that (4) implies (1), assume that a ¢ rad A, so there exists a maximal right
ideal I with a ¢ I. It follows that A = I + aA, hence 1 = x + ab for some x € [ and
b€ A. Thus x =1 — ab € I has no right inverse. The equivalence between (2) and (6)

is proved similarly and the equivalence of (3) and (5) follows from the following easily
checked statements:

(1—cd)r =1= (1 —dc)(1+dxc) =1,
y(1 —cd) =1= (1+dyc)(1 —dc) = 1.
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Finally, let us see that (4) implies (3). For any b € A there exists ¢ € A such that
(1 —ab)e =1, hence ¢ = 1 — a(—bc) := 1 — ab'. Applying (4) to ¢, gives an element d
such that 1 = ¢d = d + abed = d + ab. Hence, d = 1 — ab and c is its left inverse. The
proof that (6) implies (5) is similar. O

Example 1.3. Consider again the lower triangular (2 x 2)-matrices. It is easily checked

. : 0 0 . K 0 0 0. : .
that the intersection ( K 0) of the ideals ( K 0) and < K K) is the radical of this
algebra.

Corollary 1.4. If rad A is the radical of an algebra A, then the following hold:

(1) rad A is the intersection of all maximal left ideals of A.

(2) rad A is a two-sided ideal and rad(A/rad A) = 0.

(3) If I is a two-sided nilpotent ideal of A, then I C rad A. If, in addition, A/I ~
K x...x K, then I =rad A.

Proof. (1) is clear. To see that (2) holds, assume o’ € rad(A/rad A). Using the lemma,
we see that for a representative a of o’ and any b € A there exists ¢ € A such that
(1 —ab)e =1 — x for some x € rad A. Applying the lemma to 1 — z, we get an element
d € A such that (1 —x)d =1, hence a € rad A and so o' =0 € A/rad A.

To see that (3) holds, let m > 0 be such that I = 0. If x € [ and a € A, then az € [,
hence there exists an r > 0 such that (ax)” = 0. Now

(1+ax+ (ax)*+ ...+ (ax)" 1) (1 — az) = 1,

so x € rad A and, therefore, I C rad A. Note that the proof also works if [ is only a
right (or left) ideal.

Assume now that A/I ~ K x...x K. In particular, rad(A/I) = 0. Now note that any
surjective algebra homomorphism f: B— B’ induces a map rad B— rad B’. Indeed, if
b € rad B, then 1 — bc is invertible for all ¢ € B and hence f(1 — bc) is invertible in B’.
Applying this to the canonical map A— A/I gives rad A C I. 0

Example 1.5. Let A = Klty,...,t,|/(t]",...,t3») for some positive integers s;. The
ideal I = (¢1,...,t,) of A generated by the cosets of the indeterminates t; is clearly
nilpotent, hence I C rad A. On the other hand, A/I ~ K, hence I = rad A.

Recall that a right module over an algebra A is a K-vector space admitting a scalar
multiplication by A from the right satisfying the usual properties. A left module is defined
dually. Note that A can be considered as a right or a left module over itself. Write Ay
for the former and 4A for the latter. We will usually consider right modules from here
on. A module is finite-dimensional if its dimension as a K-vector space is finite. All
well-known notions such as submodules, module homomorphisms, finite generation, etc.,
are the same as for modules over commutative rings. In particular, the category Mod(A)
of all right modules is an abelian category. Given an algebra A, the opposite algebra
A°P is defined by reversing the order of the multiplication. It follows that Mod(A°P)
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is equivalent to the category of left modules over A and vice versa. The subcategory
mod(A) of Mod(A) has as objects the finite-dimensional modules.
Note that a module M over A is finitely generated if and only if it is finite-dimensional.

Lemma 1.6 (Nakayama). Let A be a K-algebra, M a finitely generated A-module and
I Crad A a two-sided ideal. If MI = M, then M = 0.

Proof. Let M be generated by my,...,ms. We use induction on s. If s = 1, then
M = myA = mqI implies m; = mqx; for some x; € I. Thus my(1 — z1) = 0, hence
my = 0, because 1 — x is invertible. Assume now that s > 2. Since M1 = M, we have

my = Zle m;x; for some xz; € I. It follows that m; can be generated by ms, ..., m,
since (1 — z7) is invertible, and, therefore, M can be generated by ms,...,ms. By
induction, M = 0. U

Corollary 1.7. The radical of any (finite-dimensional, as usual) algebra A is nilpotent.

Proof. The chain
ADradAD (rad A)? D (rad A)®* O ...

has to become stationary, since A is finite-dimensional. Therefore, there exists n such
that (rad A)" = (rad A)"*! = (rad A)"rad A. By Nakayama, (rad A)" = 0. O

Example 1.8. If A = A; x A, is the product of two K-algebras, we have 14 = (1,1) =
(1,0) + (0,1) =: e; + e5. Furthermore, eje; = ese; = 0. Given any A-module M, it
is easily checked that Me; is an A;-module for ¢ = 1,2. This eventually leads to an
equivalence Mod(A) ~ Mod(A;) x Mod(As2).

If Ais an algebra and M € mod(A), consider the dual space M* = Hom(M, K).
This becomes a left A-module by setting (agp)(m) := ¢(ma) for a € A, m € M and
@ € M*. Given a module homomorphism M — N, the map on dual spaces is again a
homomorphism of (now left) modules. This leads to the duality functor

D: mod(A) — mod(AP).
This functor is an equivalence with quasi-inverse defined in the same way, that is, for a

left module Y, we consider the dual vector space Y* and endow it with a right module
structure given by pa(y) := p(ay).

Definition. Let A and B be two K-algebras. An A-B-bimodule is a triple 4Mp =
(M, *,-) such that 4M = (M, *) is a left A-module, Mg = (M,-) is a right B-module,
and (a*m)-b=ax(m-b) forallm € M, a € A and b € B. One usually suppresses *
and - in the notation.

Example 1.9. Any right module M can be considered as an End(M)-A-bimodule by
noting that the left End(AM)-module structure is defined by ¢m := p(m).

Note that if 4Mp is an A-B-bimodule and Np is a right B-module, the vector space
Hompg(4 Mg, Np) is a right A-module by setting fa(m) := f(am) for all a € A, m € M
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and f € Hompg(4Mp, Ng). Using this observation, we have a covariant functor
Homp(aMp,—): Mod(B)— Mod(A).

Similarly, we have a contravariant functor
Hompg(—, AMp): Mod(B)— Mod(A®).

Furthermore, given 4 Mp as above there are the tensor product functors
(=) ®a Mp: Mod(A)— Mod(B), aM ®p(—): Mod(B°®)— Mod(AP)
and an adjunction isomorphism
Hompg(X ®4 Mp, Zp) ~ Homa(X 4, Homp(4aMp, Zg))

defined for a  in the left hand space by sending it to the map v given by ¥ (x)(m) = p(z®
m). The inverse map sends % in the right hand space to the map ¢: x@m+—=(x)(m). To
quote Atiyah-Macdonald, “in the language of abstract nonsense” the functor (—) ®4 Mp
is left adjoint to Homp(—, 4Mp) and Homp(—, 4Mp) is right adjoint to (—) ®4 Mp.

Definition. An A-module S is called simple if it is nonzero and the only submodules
of S are 0 and S. A module M is semisimple if it is a direct sum of simple modules. A
module is called indecomposable if in a decomposition M = M; & M, either M; = 0 or
M2 == 0

Clearly, any simple module is indecomposable. The next result describes some restric-
tions on maps between simple modules.

Lemma 1.10 (Schur). Let S and S’ be A-modules and f: S—=S" be a non-trivial ho-
momorphism. If S is simple, then f is a monomorphism and if S’ is simple, then f is
an epimorphism. If both are simple, then f is an isomorphism.

Proof. Just note that im(f) C S" and ker(f) C S are submodules of S’ and S, respec-
tively. [

Corollary 1.11. If S is a simple A-module, then End(S) ~ K.

Proof. By Schur’s lemma, End(S) is a skew field. Since A is simple, any map A—S
is an epimorphism, hence dimg S < oo. Therefore, also dimg End(S) < co. Hence, for
any 0 # ¢ € End(S) there exists an irreducible polynomial f € K[t] such that f(¢) = 0.
Since K is algebraically closed, f is of degree 1, hence ¢ corresponds to a scalar A\, € K*,
which gives the desired isomorphism. 0

Lemma 1.12. A finite-dimensional module M s semisimple iff for any submodule N of
M there exists a submodule L of M such that L ® N ~ M. In particular, a submodule
of a semisimple module is semisimple.

Proof. Assume that M = S1@...8 S, where the S; are simple modules. Let 0 # N C M
be a submodule and consider the maximal family {S},,...,5;,} of the S; such that
NNL=0,where L=S; &...&S5;,. Then NN (L+S;) #0, for any t ¢ {j1,...,7k}-
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From this it follows that (L + N)NS; # 0 for all t ¢ {j1,...,jk}, hence S; C L+ N
for all ¢ ¢ {j1,...,jx}. Therefore, M = L + N and hence M = L & N. The reverse
implication follows by induction on dimg M. U

Definition. Let M be a right A-module. The (Jacobson) radical rad M of M is the
intersection of all maximal submodules of M.

Let us study some basic properties of the radical:

Proposition 1.13. Let L, M and N be finite-dimensional A-modules.

1) merad M iff f(m) =0 for all f € Homa(M,S) and all simple modules S.

2) rad M @& N) =rad M ®rad N.

3) If f € Homa(M, N), then f(rad M) C rad N.

4) Mrad A =rad M.

5) If L and M are submodules of a finite-dimensional module N with L C rad N
and L + M = N, then M = N.

Proof. To see (1), note that L C M is a maximal submodule iff M/L is simple. (2)
follows immediately from (1). To prove (3), consider any map g € Hom(XV,S) and use
that gf(m) = 0.

Now, take any m € M and define a homomorphism f,,: A— M of A-modules by
fm(a) = mafor a € A. Part (3) gives that f,,(rad A) C rad M for all m, hence M rad A C
rad M. To see the reverse inclusion, note that M /M rad A is a module over A/rad A.
The Wedderburn—Artin theorem tells us, in particular, that an algebra B has trivial
radical if and only if any right module is semisimple if and only if Bp is semisimple. We
apply this to A/rad A and conclude that M /M rad A is a direct sum of simple modules.
Clearly, the radical of a simple module is trivial, hence rad(M /M rad A) = 0. Now (3)
gives us that rad M C M rad A.

Finally, assume L and M are as in (5), but M # N. Since dimg N < oo, M is
contained in a maximal submodule P C N. Therefore, L C rad N C P, so N =
L+ M C P+ M = P, a contradiction. O

Note that any homomorphism f: M — N induces a map M/rad M — N/rad N, by
part (3) of Proposition 1.13.

Corollary 1.14. For any finite-dimensional module M, the module M /rad M, called the
top of M and sometimes denoted by top(M), is semisimple and a module over A/ rad A.
Furthermore, if L C M such that M/L is semisimple, then rad M C L.

Proof. The statement about semisimplicity follows from the Wedderburn—Artin theorem
mentioned above. Considering the homomorphism M — M /L and using part (3) of the
lemma, gives the second statement. U

Corollary 1.15. A homomorphism f: M — N 1s surjective if and only if the morphism
top(M)— top(N) is surjective. If S is a simple module, then Stad A = 0 and S is a
simple A/ rad A-module. Finally, an A-module M is semisimple if and only if rad M = 0.



SOME TOPICS IN THE REPRESENTATION THEORY... 7

Proof. The second statement is clear, by Nakayama’s lemma and since Srad A is a sub-
module of the simple module S. This also immediately implies the “only if” direction
in the third statement. The “if” direction follows from the previous corollary. Finally,
assume that M/rad M — N/rad N is surjective. Then im f +rad N = N, hence, by (5)
of Proposition 1.13 applied to L = rad N and M = im f, im f = N. The other direction
is trivial. 0

A composition series of a finite-dimensional module M is a chain 0 = My, C M; C
... € M,, = M such that M;,/M; is simple for j =0,...,n—1. The modules M; /M,
are called the composition factors of M.

The Jordan-Hélder theorem tells us that any two composition series (M;)!, and
(Nj)éz1 have the property that n = [ and that there exists a permutation o of {1,...,n}
such that M1 /M; ~ Ny(ji1)/No) for j € {0,...,n —1}. In particular, the number n
of modules in a composition series is well-defined and called the length of M, denoted by
[(M). Tt is easily checked that for a submodule N of M, we have [(N)+{(M/N) = (M)
and for any two submodules L and N of M, we have [(L+ N)+ (LN N) =1(L) +1(N).

Definition. An element e € A is called an idempotent if e = e. The idempotent e is
called central if ea = ae for all a € A. Two idempotents e;,es € A are called orthogonal
if e;eg = egeq; = 0. Finally, an idempotent e is called primitive if it cannot be written as
a sum of nonzero orthogonal idempotents.

Note that any algebra has two trivial idempotents, namely 0 and 1. If e is a non-trivial
idempotent, then so is 1 —e, and the idempotents e and 1—e are orthogonal. Furthermore,
there exists a decomposition Ay = eA @ (1 — e)A of right A-modules. Conversely, if
Ax = My & M,y, then m; € M; with 1 = m; + my are orthogonal idempotents and
M; = e;A is an indecomposable module if and only if e; is primitive.

Given a central idempotent e, the modules eA and (1 — e)A are in fact algebras (with
identity e resp. (1 — e)) and the above decomposition of A as a module exhibits A
as a product of the algebras eA and (1 — e)A. An algebra A is called connected (or
indecomposable) if 0 and 1 are the only central idempotents of A or, equivalently, the
algebra A is a not a product of two algebras.

Since A is finite-dimensional, the right module A4 admits a decomposition Ay =
P, @®...® P,, where the P; are indecomposable right ideals. It is clear that P; = ¢; A for
primitive pairwise orthogonal idempotents e; such that 1 = Y "  e;. Conversely, every
set of idempotents with these properties determines a decomposition of A4 as above.
Such a decomposition is called an indecomposable decomposition of A and the e; are
called a complete set of primitive orthogonal idempotents of A.

Consider a right A-module M and an idempotent e € A. Note that the K-vector
subspace eAe of A is a K-algebra with identity e. Of course, it is a subalgebra of A iff
e = 1. We can define an eAe-module structure on the subspace Me of M by setting
me(eae) := meae for all m € M and a € A. In particular, Ae is a right eAe-module and
eA is a left eAe-module. This implies that Homa(eA, M) is a right eAe-module with
respect to the action (¢ - eae)(z) = p(eaex) for x € eA, a € A and ¢ € Homa(eA, M).
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The following easy lemma will turn out to be very useful.

Lemma 1.16. Let A be a K-algebra, M a right A-module and e € A an idempo-
tent. Define a K-linear map 0pr: Homy(eA, M)—Me by pr—p(e) = @(e)e. Then
O is an isomorphism of right e Ae-modules and it is functorial in M. The isomorphism
O.4: End(eA) ~ eAe of right eAe-modules induces an isomorphism of K -algebras.

Proof. First note that the second statement follows easily from the first. On the other
hand, it is straightforward to see that ), is functorial in M and a homomorphism of
right eAe-modules. To see that it is an isomorphism, we will define an inverse map s
as follows. Given me € Me and ea € eA, set Y¥p(me)(ea) ;== mea. The details are left
to the reader. OJ

The next result states, roughly speaking, that under the canonical quotient map
A— A/rad A idempotents can be lifted.

Lemma 1.17. Given an idempotentn = g+rad A (g € A) of B = A/rad A, there ezists
an idempotent e of A such that g — e € rad A.

Proof. By Corollary 1.7, rad A is nilpotent. Since n?—n = 0 in B, we have g—g* € rad A,
so (g — ¢*)™ = 0 for some m > 0. By Newton’s binomial formula, 0 = (g — ¢*)™ =
g" — g™t with t = z;”:l(—l)j_l(’?)gj_l. Hence, g™ = ¢™*'t and gt = tg. The
first equation immediately implies that e = (gt)" is an idempotent. Next note that
g— g™ €rad A, since

g=g" =91 —g" ) =gl -g)(l+g+...+9" ) =(g-g)A+g+...+9g").
Furthermore, g — gt € rad A, because modulo rad A we have the equalities g = ¢™ =
g™t = gg™t = ¢g*t = gt. This then implies that

e+rad A= (gt)" +rad A = (gt +rad A)™ = (g +rad A)™ = ¢" + rad A = g + rad A.
Hence, e is as desired. O

Proposition 1.18. Consider the algebra B = A/rad A.

(1) Every right ideal I of B is a direct sum of simple right ideals of the form eB,
where e is a primitive idempotent of B. In particular, the right B-module Bg is
semisimple.

(2) Any finite-dimensional B-module is isomorphic to a direct sum of simple right
ideals as in (1).

(3) If e € A is a primitive idempotent, then the B-module eA/rad eA is simple and
radeA = erad A C eA is the unique proper submodule of eA.

Proof. (1) Let S be a nonzero right ideal of B contained in / which is of minimal dimen-
sion. The minimality implies that S is a simple B-module and, furthermore, S? # 0,
since if S? = 0, then, by Lemma 1.4, 0 # S C rad B = 0, so we get a contradiction.
Therefore, S? = S and there exists x € S such that 25 # 0, S = xS and v = wxe for
some 0 # e € S. Now, Schur’s lemma implies that the homomorphism ¢: S—S given
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by y+=zy is an isomorphism. Since p(e? —e) = z(e? —¢) = 0, e2 —e = 0, ¢ is an
idempotent and S = eB, hence B = eB @ (1 — ¢)B and similarly I = el & (1 —e)l. By
induction on dimg I, (1) follows.

(2) Note that any M € mod B is a quotient of the free module B* for some k. By
(1), B* is a direct sum of simple right ideals, hence semisimple. By Lemma 1.12, B¥ ~
ker p @ L, where p: B¥— M is the quotient map. Therefore, M can be considered as a
submodule of B*, and (2) follows from Lemma 1.12.

(3) Given e, the element € = e + rad A is an idempotent of B and eA/radeA = €B.
If €B is not simple, there exist, by (1), primitive orthogonal idempotents &, and €, of
B such that eB ~ &, B @ ¢;B. Now compute that e, = € = ee;, so ¢ = g; +rad A
for some g; € eA. Since idempotents lift, e; = (¢1¢t)™ and €; = e; + rad A, for some
t € Aand m > 0. Since g; € €A, also e; € eA, so egA C eA. The decomposition
Ap = A D (1 — e1)A, gives a decomposition of eA = e A @ ((1 — e A) NeA). Since
e is primitive, eA = e;A. Thus, eB = & B. Consequently, eA/radeA is simple, so
rad eA = erad A is a maximal proper submodule of eA. Any other proper submodule N
is contained in rad eA, by (5) of Proposition 1.13 applied to L = rad eA. 0

Definition. An algebra is called local is it has a unique maximal right ideal.
We will now give several equivalent characterisations of a local algebra.

Proposition 1.19. Let A be a K-algebra. The following are equivalent.

(1) A is local.

(2) A has a unique mazimal left ideal.

(3) The set of all noninvertible elements of A is a two-sided ideal.
(4) For any a € A, either a or 1 — a is invertible.

(5) A has only two idempotents, namely 0 and 1.

6) The algebra A/rad A is isomorphic to K.

Proof. It A is local, then rad A is the unique maximal right ideal of A. Hence, z € rad A
iff x has no right inverse. Now, if z is right invertible, so zy = 1 for some y, then
(1 —yx)y = 0. The element y has to have a right inverse, because otherwise y € rad A,
so 1 — yx is invertible by Lemma 1.2, hence y = 0, a contradiction. But if y has a
right inverse, 1 — yz = 0, so x is invertible. Summarising, * € rad A iff x has no right
inverse iff « is not invertible. Therefore, (1) implies (2). Similar arguments show that
(2) implies (3). It is obvious that (3) implies (4). Next, if e is an idempotent, so is
1 —eand e(l —e) =0, so if (4) holds, then so does (5). If (5) holds, then the algebra
B = A/rad A has only two idempotents. By Proposition 1.18, the module Bg is simple
and, by Corollary 1.11, End(Bg) = K. Therefore, B ~ End(Bg) ~ K, hence (5) implies
(6). Finally, if (6) holds, then clearly so does (1) (or (2)). O

Remark 1.20. Note that the algebra K[t| has only two idempotents but is not local.
Hence, the proposition does not hold for infinite-dimensional algebras.

Corollary 1.21. An idempotent e € A is primitive iff the algebra eAe ~ End(eA) has
only 0 and e as idempotents. 0
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Corollary 1.22. Let A be an algebra and M a right A-module. If End(M) is local, then
M s indecomposable. If M is finite-dimensional and indecomposable, then End(M) is
local and any element in End(M) is either nilpotent or an isomorphism.

Proof. If M decomposes as M = M; @ M,, then e; + ey = p1i1 + paia = idpr, where the p;
are the canonical projections, the i; are the canonical injections and the e; are nonzero
idempotents. Therefore, End(M) is not local.

Now assume that M € mod A is indecomposable. If End(M) is not local, there exists
a non-trivial idempotent e, hence M ~ ime; @ imey, where ¢; = e and e; = 1 — e.
This is a contradiction, hence End(M) is local. The last statement is clear, since any
non-invertible element in a local finite-dimensional algebra, which we know End(M) to
be, belongs to the radical and is therefore nilpotent by Corollary 1.7. 0

The following result reduces the study of finite-dimensional modules to the study of
indecomposable ones.

Theorem 1.23. FEvery finite-dimensional module M over A has a decomposition M =~
M, & ... ® M,, where the M; are indecomposable modules, and hence have local endo-
morphism algebras. Furthermore, if M ~ M, @® ... & M, and M ~ N1 & ... D Ny with
M; and N; indecomposable, then m = n and there exists a permutation o of {1,...,n}
such that M; ~ Ny for all i.

Proof. The first statement is clear, because dimg M is finite. To see the second, we
proceed by induction. If n = 1, then there is nothing to show. So assume that
n > 1 and consider M’ := @®;-1M;. We have the decomposition M = M; & M’ with
the corresponding projections and injections p,p’ and ¢, :/, respectively. Denote the
projections and injections corresponding to M = @®N; by p; and ¢;. We know that
La, = po = p(3_;tpj)t = D2 ptjpt- Since End(M;) is local, there exists an index j,
which without loss of generality can be assumed to be 1, such that v := pi1pye is in-
vertible. Now set w := v=!pi;: N;— M, and note that wp;t = 1,;,. Hence, pjiw is an
idempotent in End(NV;). The latter is a local algebra, so pjtw is 0 or 1. It cannot be
equal to 0, because then p;¢ = 0, since w is an epimorphism, but v := ptyp;¢ is invertible.
Therefore, pjiw = 1y, and hence pye gives My ~ Ny. Writing M ~ M; & M' = N, & N,
where N’ = @;-1N;, we are done by induction if we can show that M’ ~ N’. But this is
clear, since N’ is the kernel of p;: M —=N; and M’ is the kernel of p: M — M; and it
is obvious that they coincide via the above isomorphism py¢: M7 ~ Nj. O

Corollary 1.24. If Ay = Pi&®...® P, is an indecomposable decomposition, it is unique.l]

Definition. A finite-dimensional algebra A is representation finite or an algebra of finite
representation type if the number of the isomorphism classes of indecomposable finite-
dimensional right modules is finite.

One of the goals of the course is to classify the representation finite hereditary algebras.
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Recall that a module P is projective if and only if it is a direct summand of a free
module. So a consequence of Theorem 1.23 is

Corollary 1.25. Assume Ay = e1A @ ...e, A is a decomposition with respect to a
complete set of primitive orthogonal idempotents. Then the indecomposable projective
modules are precisely the modules P(i) = e;A. U

Note that the proof of part (3) of Proposition 1.18 shows that {m(e;),...,m(e,)} is a
complete set of primitive orthogonal idempotents of B = A/rad A, where 7: A—B is
the canonical quotient map. Consider the corresponding decomposition By = @&;7(e;)B
and note that the modules 7(e;) B ~ tope; A are simple by Proposition 1.18, part (3).
Furthermore, the epimorphism m;: ¢;A— top e; A induced by 7 is a so-called projective
cover of top e; A, which, by definition, means that e; A is a projective module and 7; has
the property that for any submodule N of e;A the equality kerm; + N = e; A implies
that N = e;A. This property is satisfied, since rad e;A = ker 7; is the unique maximal
submodule of ¢; A.

Since top M is a semisimple B-module for any A-module M by Corollary 1.14, it is a
direct sum of (copies of) the modules 7(e;) B, say

top M ~ @((W(ei))B)EBSi

for some s; > 0. Set

P(M) := @ (e; A)%.
i=1
The module P(M) is, of course, projective. Note that top P(M) ~ top M and by the
projectivity of P(M) we get a map P(M)—= M such that the diagram

P(M) M

| ]t’

top P(M) — top M

is commutative. Since the lower map is an isomorphism, the upper one is an epimorphism
by Corollary 1.15. Furthermore, its kernel is contained in rad P(M) = kert, hence the
map is in fact a projective cover. Summarising, for any module M in mod A there exists
a projective cover P(M) and P(M)/rad P(M) ~ M/rad M.

The next step is to show that the projective cover is unique, i.e., if P’ LM —=0
is a projective cover, then P’ ~ P(M). The projectivity of P’ gives us a morphism
g: P'—P(M) such that pg = p’. Since p’ is surjective, im g + kerp = P(M). Since
kerp = rad M, this implies the surjectivity of g. Therefore, [(P') > I(P(M)). Re-
versing the situation, we get [(P(M)) > I(P’), hence an equality. Thus, P’ ~ P(M).
Summarising
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Proposition 1.26. Any module M in mod A has a unique projective cover P(M) sat-
isfying P(M)/rad P(M) ~ M/rad M. O

Corollary 1.27. If P is a projective module in mod A, then P— top P is a projective
cover. In particular, e;A— tope; A is a projective cover for any primitive idempotent
e; of A. By the uniqueness of projective covers, e,;A ~ e;A if and only if tope;A ~
tope;A. O

Corollary 1.28. The simple modules in mod A are precisely the modules S(i) = top ;A =
top(P(i).

Proof. Take a simple module S. It has a projective cover P(S) which is a direct sum of
copies of the P(i). Since P(S)/rad P(S) ~ S, the left hand side is a direct sum of the
S(i). But S is simple, so the assertion follows. U

Definition. Let A be an algebra with a complete set of primitive idempotents {e, ..., e, }.
The algebra is called basic if e;A 2 e; A for all i # j.

Clearly, a local algebra is basic. Basicness of an algebra A can be detected by the
algebra A/rad A:

Proposition 1.29. A finite-dimensional K -algebra A is basic iff B = A/rad A ~ K X
LoxX KL

Proof. Let Ay = @} ,e;A for a complete set of primitive orthogonal idempotents and
Bp = @@ 7m(e;)B the corresponding decomposition. Since e;A ~ e;A if and only if
m(e;)B ~ tope;A ~ tope;A ~ m(e;)B, we conclude that B is basic if A is. Schur’s
lemma gives that Hom(7(e;)B,m(e;)B) = 0 for i # j and, since these modules are
simple, End(7(e;)B) ~ K for all i. Using this, we get

B ~ Endg(Bp) ~ &} End(n(e;)B) ~ K x ... x K.
For the converse, assume that B is isomorphic to a product of n copies of K. Then B is
a commutative algebra and admits n central primitive pairwise orthogonal idempotents
€;. Hence, ¢,B 2 e;B for i # j and therefore P(e;B) ~ e¢,A 2 P(e;B) ~ e;A for
i3] O
Corollary 1.30. Any simple module S over a basic algebra is one-dimensional.

Proof. First note that a simple module S’ over any algebra A satisfies S"rad A = 0 and,
consequently, S’ is a simple A/rad A-module. Indeed, Nakayama’s lemma gives that
S’ # S’'rad A, hence the latter has to be zero since S’ is simple.

Using this and the proposition we see that S is a simple module over the algebra
A/rad A~ K x ... x K and the corollary follows at once. O

Definition. Let A be an algebra with a complete set of primitive idempotents {e, ..., e, }.
A basic algebra associated to A is the algebra A® = e Aey, where ey = e, +...+ej,
and e;, are chosen such that e; A 2 e;, A for ¢ # t and each module e;A is isomorphic to

one of the modules ej A, ..., ¢e; A
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In other words, we consider all modules e, A and if e, A ~ €A, only e, or e¢; will be
part of e4. Hence, a priori, A® is not unique, since it depends on which idempotents we
keep.

Lemma 1.31. Let A® be a basic algebra associated to A. The element ey € A® is the
identity of A® and A’ ~ End(e;, A® ... @ e;, A). Furthermore, the algebra A® does not
depend on the choice of the sets (e;); and e;,, ..., €,

a”

Proof. The first statement is clear. To see the second, apply Lemma 1.16 to e4A and
use that eqA ~e;; A® ... Dej, A. Theorem 1.23 tells us that eqA does not depend on
the choices, so the third statement follows from the second. O

For an idempotent e € A, consider the algebra B := eAe ~ End(eA) with identity e.
Given an A-module M, note that Me is a B-module. If f: M — M’ is a homomorphism
of A-modules, we get a homomorphism between the B-modules Me and M'e by setting
mer— f(m)e. This defines a restriction functor

res.: mod A— mod B.

We now define two functors from mod B to mod A as follows. We have seen before that
eA is a left B = eAe-module. It is, of course, also a right A-module. Therefore, we have
the functor T,(—) := — ®p eA. On the other hand, Ae is a left A-module and a right
eAe-module, hence we have the functor L.(—) = Hompg(Ae, —).

The next result collects some properties of these functors.

Proposition 1.32. Let A be an algebra, let e be an idempotent of A and B = eAe. Then
the following holds.

(1) T. and L. are fully faithful K-linear functors such that res.T, =~ idyoq B > r€se Le,
the functor L. is right adjoint to res. and T, is left adjoint to res..

(2) T, is right exact, L. is left exact and res, is exact.

(3) T. and L. preserve indecomposability, T, respects projectives and L. respects in-
jectives.

(4) A right A-module M is in the image of T, iff there exists an exact sequence
P,— Py— M —0, where P, and Py are direct sums of summands of eA.

Proof. (1) Recall from Lemma 1.16 that we have a functorial B-module isomorphism
Homu(eA, M) ~ Me

for any right A-module M. Using the adjointness properties of the tensor and Hom
functors we have, for a B-module N,

Homa(T.(N), M) ~ Homa(N ®p eA, M) ~ Homp(N,Homa(eA, M))
~ Homp(N, Me) ~ Hompg(N,res.(M))
Hence, T, is left adjoint to res.. Also note that
res,T.(N) = (N ®peA)e ~ N ®p B~ N,
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consequently, Hompg(N, N') ~ Homu(7.(N),T.(N')). Hence, T, is fully faithful. The
proof that L, satisfies the stated properties is completely analogous.

(2) is obvious.

(3) Since T, and L. are fully faithful, End(N) ~ End(7.(N)) ~ End(L.(N)). So if
N is indecomposable, then its endomorphism algebra is local, hence the same holds for
T.(N) and L.(N) and these modules are indecomposable by Corollary 1.22.

Now consider a projective B-module P and an epimorphism hA: M — M’ in mod A.
We have the commutative diagram

Homu(T.(P), M) —— Homu (T.(P), M")

:l j:

Homp (P, res.(M)) — Homp(P,res.(M")).

Since P is projective, the lower map is an epimorphism, hence so is the upper map.
Therefore, T,(P) is a projective A-module if P is a projective B-module. Dually, we can
show the statement for L..

(4) Assume that e = e;, +...+e¢;, and the e;, are primitive idempotents. This implies
that B = e;, B® ... ® ¢;, B and the modules e; B are indecomposable, because the e,
are primitive.

Consider the map

mj,: e;,;B®peA—e; A, e;,x® ear—ej;xea.

Note that this map is the restriction of the A-module isomorphism B®peA—eA to the
direct summand e;, B ®p eA, hence it is a well defined homomorphism of A-modules and
injective and e;, A is clearly the image of the restriction. Therefore, m;, is an isomorphism.

Now assume that ()1 —Qy— N —0 is an exact sequence in mod B and the @), are
projective. Applying the right exact functor 7T, to this sequence, we note that the modules
T.(Q;) are projective. Recalling that a module is projective if and only if it is a direct
summand of a free module, that B decomposes into the modules e; B and using the
maps m;,, shows that T, (Q);) satisfy the properties required in (4).

Conversely, assume a sequence as in (4) is given. Note that Pe = res.(P;) are projec-
tive B-modules, since res.e is exact. Applying T, gives back the P;. Denote by N the
cokernel of Pie— Pye. We derive the existence of a commutative diagram

P, P, M 0

-k

Te(Pl) - T6<P0) - Te(N) —0.

Therefore, M ~ T,(N). O

We will use the above to prove the following
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Theorem 1.33. Let A = ey Aey be a basic algebra associated with A. The algebra A®
is basic and the functor T,, gives an equivalence mod A® ~ mod A, with quasi-inverse
res,.

Proof. We know that A” = e A" =¢;, A’® ... @e;, A’ and, clearly, e;, A%;, = e, Ae;, for
all t. Since e;, A is indecomposable in mod A, the algebra End(ej, A°) ~ e;, Abej, is local.
Therefore, e;, is a primitive idempotent of A°. Now assume that e;, A’ ~ ¢; A’. Using
the isomorphisms m;, from the proof of the previous proposition, we see that

b b
e, A e; A" @ esA e A @ esA ~ej A,

so t = r by the choice of ¢;,,...,¢;,.

We already know that T, is fully faithful. Now any module M € mod A has a resolution
P'—P— M —0, with P’, P projective. It remains to note that P and P’ are direct
sums of summands of e4A. By part (4) of Proposition 1.32, T, is essentially surjective,
and hence an equivalence. 0

If we are only interested in finite-dimensional modules, the theorem tells us that we
can restrict our attention to basic algebras.

Example 1.34. Let B = M, (A) be the algebra of (n x n)-matrices over an algebra A.
Clearly, the matrices M,; having 1 on the positions (4, j) and 0 everywhere else are a
complete set of idempotents. Furthermore, M;; B does not depend on (i,j) and hence
the associated basic algebra is M3 BMj; ~ A. Thus, mod A ~ mod M,,(A).

2. QUIVERS AND PATH ALGEBRAS

Definition. A quiver @ = (Qo, @1, s,1) is given by a set of vertices Qo, a set of arrows
@1 and two maps s,t: Q1 — @)y associating to any arrow « its source s(«) and its target
t(«). One frequently just writes Q). A quiver is called finite if Qy and @) are finite sets.

A subquiver is a quadruple Q' = (Qf, @}, s',t') such that Q) C Qp, Q] C @y and ¢, ¢/
are the restrictions of s,¢ to Q}. A subquiver is called full if any arrow with source and
target in @) belongs to Q).

If @ and b are elements in (Qy, a path from a to b of length [ is a sequence of arrows
aq, ..., such that s(ay) = a, t(oy) = s(agsq) for all 1 <k <1 and t(a;) = b. We will
write this as a;...q;. Note that with this convention the composition is not like that
of functions. Of course, one could define it the other way around which is the same as
considering the opposite algebra.

A cycle is a path such that source and target coincide. A cycle is a loop if it is of
length 1. A quiver is called acyclic if it contains no cycles.

For any vertex a we have the trivial path €, of length 0.

Definition. Let ) be a quiver. The path algebra K@ of @) is the K-algebra whose
underlying K-vector space has as basis all paths in ) and where the composition of two
paths aq ...a, and By ... 5 is defined by

(al...ak)(ﬁl...ﬁl) = 5bca1...04k,61...51,
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where b = t(ay) and ¢ = s(f1).

Note that K@ is an associative graded algebra since the composition of a path of
length & and one of length [ is a path of length & + [ (or 0). In symbols, KQ =
KQy® KQ1® KQy® ..., where K(Q; is the subspace generated by paths of length i.

Example 2.1. (1) The path algebra of the quiver with one vertex and one loop is
isomorphic to K[t|, with ¢ corresponding to the loop.
(2) If @ has one vertex and two loops, then K@ is the free associative algebra in two
noncommuting indeterminates.

(3) Consider the quiver @ given by 1—"=2 which is 3-dimensional as a k-vector
space and the multiplication rules are, for example, e;p = p, pes = p etc. It is
easily checked that K@) corresponds to the algebra of lower triangular (2 x 2)-
matrices.

Lemma 2.2. Let Q) be a quiver and KQ its path algebra. The algebra K@) has an identity
element if and only if Qo is finite. KQ is finite-dimensional if and only if Q) is finite
and acyclic.

Proof. It @ is finite, say Qo = {1,...,n}, then it is easily checked that > | ¢ is the
identity of K@Q). To see the converse of the first statement, assume that )y is not finite
and let 1 = ). \w;, where \; € K and w; are paths, be the identity element. The paths
w; have only finitely many sources, so take a vertex a not in this set. Then ¢,1 =0, a
contradiction.

If @ is finite and acyclic, there are only finitely many paths, hence K@) is finite-
dimensional. Conversely, if () is infinite, then so is K. If @) is not acyclic, then take
a cycle w. Considering all its powers gives that K() is infinite-dimensional. 0

Corollary 2.3. Let Q) be a finite quiver. The set of all stationary paths €,,a € Qq, is a
complete set of primitive orthogonal idempotents of K(Q).

Proof. 1t is clear that the ¢, are orthogonal idempotents. To check that they are primi-
tive, it is enough to show that the algebra B = ¢, K Q¢, is local, see Corollary 1.21. Note
that this algebra is clearly K if () has no cycles. In any case, an idempotent € of B can
be written as € = e, +w, where A € K and w is a linear combination of cycles through
a of length at least 1. Then

0=e—e=(A—=Nea + (2N — Dw + w?
shows that w = 0 and A\ = X\, hence A = 0 or A = 1. Hence, € = ¢, or € = 0. U

Remark 2.4. The set of primitive idempotents exhibited above is, in general, not unique,
consider, for instance, the lower triangular matrices.

Lemma 2.5. Let A be an algebra and assume that {ey...,e,} is a complete set of
primitive orthogonal idempotents. Then A is connected if and only if there does not exist
a nontrivial partition I 11 J of the set {1,...,n} such that for any i € I and j € J
61'146]' =0= €jA€Z'.
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Proof. Assume that such a partition does exist and let ¢ = ) jes €j- By assumption,
¢ is non-trivial. Furthermore, it is an idempotent, ce; = e;c = 0 for each i € [ and
ce; = ejc = e; for each j € J. By our hypothesis, e;ae; = 0 = ejae; for any a € A.

Therefore,
ca = Zeja = (Z eja)- 1= (Z eja)(z e + Z ex)

jeJ j j i€l keJ
= Z ejaey = (Z e; + Z ei)a(z er) = ac.
3k J i keJ

Hence, ¢ is a non-trivial central idempotent and so A is not connected.

Conversely, if A is not connected, there exists a central non-trivial idempotent c.
Since c¢ is central, we have ¢ = Z?:l eice;. Let ¢; = ejce;. Then ¢ = ¢, so ¢; € e;Ae;
is an idempotent. Since e; is primitive, ¢; = 0 or ¢; = ¢;. Set I = {i|¢; =0} and
J ={j|c¢; =e;}. This clearly is a partition of {1,...,n} and, since ce; = e; = e;c and
ce; = 0 = e;c, we have e;Ae; = 0 = ¢; Ae;. O

Using this we can now prove the

Lemma 2.6. Let Q) be a finite quiver. The path algebra K@) is connected if any only if
Q@ 1is a connected quiver, which, by definition, means that the graph obtained by forgetting
the orientation of the arrows is connected.

Proof. If @) is not connected, let " be a connected component and let Q" be the full
subquiver of ) having as vertices Qo \ Q. Take a in @Qf and b € Qj. Any path w in @
is either contained in @)’ or (in a connected component) of ()”. Therefore, either we, = 0
or e,w = 0. In any case, €,we, = 0. By Lemma 2.5, K@) is not connected.

Conversely, let @) be connected but not K. Thus we have a partition Qy = Qf LI Qf
as in the lemma. Since @) is connected, there exist a € @, and b € @ with an arrow «
from a to b. Then a = €,a€, = 0, a contradiction. O

We record the following obvious

Proposition 2.7. Let () be a finite connected quiver and A an associative algebra with
identity. For any pair of maps vo: Qo—=A and p1: Q1 — A satisfying (1) Zaer wola) =

L, (2) po(a)® = wola), (3) pola) # @o(b) for a # b and (4) if a: a—=D, then ¢i(a) =
wola)p1(a)po(b), there exists a unique K-algebra homomorhpism ¢: KQ— A such that

(€a) = pola) for any a € Qo and p(a) = ¢1(a) for any o € Q1. O
Definition. Let () be a finite and connected quiver. The two-sided ideal of K () generated
by the arrows of @ is called the arrow ideal and denote by R or simply R.

Clearly, Rg = KQ1 ® KQ2 @ ... as a K-vector space. This implies that RlQ =
@mleQm-
Proposition 2.8. Let ) be a finite connected quiver, R the arrow ideal of KQ and €, the

trivial paths associated to the vertices of Q. Consider the canonical algebra homomor-
phism m: KQ— KQ/R and the set of the images e, := m(€,). Then this is a complete
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set of primitive orthogonal idempotents for KQ/R and the latter algebra is isomorphic
to K x...x K. If Q is acyclic, then rad KQ = R and KQ is a finite-dimensional basic
algebra.

Proof. As a K-vector space we have

KQ/R = @a,berea(KQ/R)eb = @aEQoea(KQ/R)em

where the second equality stems from the fact that R contains all paths of length at least
1. Hence, KQ/R is a Qo-dimensional vector space. The elements e, give a compete set of
primitive orthogonal idempotents of K(Q)/R and every piece e¢,(KQ/R)e, is isomorphic
to K. Therefore, the first statement holds.

If @ is acyclic, then K@ is finite-dimensional and the length of paths in @) is bounded
by some integer [. Hence, R'™! = 0, so R C rad KQ, by Corollary 1.4. Since KQ/R ~
K x ... x K, Corollary 1.4 gives that R = rad K@ and it follows from Proposition 1.29
that K@ is basic. O

Remark 2.9. If () is not acyclic, then rad K() need not be equal to Rg. As an example
consider the quiver with one vertex and one loop. Then the radical is trivial, but Rq is
not.

Definition. Let ) be a finite quiver and R be the arrow ideal of the path algebra
KQ. A two-sided ideal I of K@ is called admissible if there exists an m > 2 such that
R™C I C R~

If I is an admissible ideal of K@, we call the pair (KQ, I) a bound quiver. The quotient
algebra KQ/I is said to be a bound quiver algebra.

It is clear that an ideal I C R? is admissible if and only if it contains all paths whose
length is large enough. In fact, this is the case if and only if for each cycle o there exists
an s > 1 such that o* € I. In particular, if () is acyclic, any ideal I C R? is admissible.

Example 2.10. (1) The ideal R™ is admissible for any m > 2.
(2) The zero ideal is admissible if and only if @ is acyclic.

(3) Let @ be the quiver
2
/N
l—2 4
N A
3
The ideal I = (a8 —~9) is admissible but I’ = (a8 — \) is not, since af —\ ¢ R%.

Definition. Let @) be a quiver. A relation p in @) with coefficients in K is a K-linear
combination of paths w; of length at least two having the same source and target. In
symbols, p = > Nw;. If (pj)jes is a set of relations such that the ideal they generate
is admissible, then we say that the quiver ) is bound by the relations p; = 0 for all j € J.
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Lemma 2.11. Let ) be a finite quiver and I be an admissible ideal of K(Q. The set
e, = m(€,), where m: KQ—KQ/I, is a complete set of primitive orthogonal idempotents
of KQ/I.

Proof. 1t is clear that the given set is a complete set of orthogonal idempotents. It
therefore remains to check that each e, is primitive or, equivalently, that the algebra
B, = e, (KQ/I)e, has only the trivial idempotents 0 and 1 for any a € Qy. Note that
any idempotent e in B, can be written in the form e = Ae, + w + I, where w is a linear
combination of cycles through a of length > 1 and A € K. Since e = e, we get

A= Neg+ 2N —NDw +w? e L

Since ] C R2, A2 =X =0,hence A\ =1or A =0. If A\ =0, then e = w + I, so w is
idempotent modulo /. Since R™ C [ for some m > 2, w™ € I, sow € I and hence e = 0.
If A\=1, then e, — e = —w + [ is an idempotent in B,, so w is idempotent modulo I,
thus nilpotent as before, so is an element in /. Thus e, = e. 0

Lemma 2.12. Let ) be a finite quiver and I be an admissible ideal of K(@Q). The bound
quiver algebra KQ/I is connected if and only if Q is a connected quiver.

Proof. 1f () is not connected, neither is K@), so there exists a central non-trivial idem-
potent v which is a sum of paths of length 0. Then its image is a central non-trivial
idempotent in KQ/I, since if 7(y) = 1, then 1—~ € I, which is impossible, since I C R2.
The reverse implication is proved as in Lemma 2.6. U

Proposition 2.13. Let Q) be a finite quiver and I an admissible ideal. Then KQ/I is a
finite-dimensional algebra.

Proof. We have a surjective homomorphism K@Q/R™—=K@/I. The former algebra is
finite-dimensional, since the finitely many paths of length at most m form a basis of
KQ/R™ as a K-vector space. O

Example 2.14. Consider the quiver ) having one vertex and two loops « and 3, and
the ideal I = (Ba, 3%). Then I is not admissible, since o™ ¢ I for any m > 1. Consider
A = KQ/I and the subspace J of A generated by elements of the form 7(a")7(8), n > 1,
where as usual 7: KQ—KQ/I. Clearly, J is a right ideal of A, since Jr(a) C J and
similarly for (). Hence J is a submodule of A4, but it is not finitely generated. Indeed,
assume J has a finite set of generators and take m to be the largest exponent of 7(«)
among this set of generators. Then 7(a)™"! 3 cannot be a K-linear combination of the
generators. Hence, A is not only not finitely generated, but not even right Noetherian.

Lemma 2.15. Let ) be a finite quiver. Fvery admissible ideal I of KQ 1is finitely
generated.

Proof. Consider the short exact sequence of KQ-modules
0 R™ I I/R"™ ——0.

Clearly, R™ is finitely generated and so is I/R™, being an ideal in K@Q/R™. Hence, I is
a finitely generated K()-module. 0
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Corollary 2.16. If I is an admissible ideal of a finite quiver @), then it is generated by
a finite set of relations.

Proof. We know that [ is generated by {o1,...,0,}, but the o; need not have the same
source and target. However, the set {€,0:6, | 1 <i < m, a,b € Qo} is as desired. d

Lemma 2.17. Let Q be a finite quiver and I an admissible ideal of KQ. Then R/I =
rad(KQ/I). Furthermore, the algebra KQ/I is basic.

Proof. We know that R™ C [ for some m > 2. Hence, (R/I)™ = 0 and R/I C
rad(KQ/I). Since (KQ/I)/(R/I) ~ KQ/R ~ K x ... x K, the assertions follow by
Corollary 1.4 and Proposition 1.29. O

Remark 2.18. For each [ > 1, rad' (KQ/I) = (R/I)!. Therefore,
rad(KQ/I)/rad*(KQ/I) ~ R/R?.

12

Example 2.19. It can be checked that if Q is the quiver 1 ——2 7 3, its path
algebra is isomorphic to the lower triangular (3 x 3)-matrices. The ideal I = (af) is
easily seen to be equal to R?, which is the set of matrices generated by the matrix Mas;.

Our next goal is to show that any basic and connected finite-dimensional algebra can
be described as the bound quiver algebra of a finite connected quiver. We begin with
the

Definition. Let A be a basic and connected finite-dimensional algebra and {es, ..., e,}
be a complete set of primitive orthogonal idempotents. The (ordinary) quiver of A,
denoted by ()4, is defined as follows:

(1) The vertices of Q4 are the numbers {1,...,n}.
(2) Given two points a,b € (Q4)o the arrows ov: a—=b are in bijective correspondence
with the vectors in a basis of e,(rad A/ rad? A)e.

Note that ()4 is finite, since A is finite-dimensional and, therefore, the vector spaces
ca(rad A/ rad® A)e, are also finite-dimensional.

Lemma 2.20. Let A be as in the definition. Then

(1) The quiver Q4 does not depend on the choice of a complete set of primitive
orthogonal idempotents of A.
(2) For any pair ey, ey, of primitive orthogonal idempotents of A the K-linear map

V1 eq(rad A)ey/eq(rad® A)e,—e,(rad A/ rad® A)e,

defined by
aley + eq rad® Aey—e,(x + rad”® A)e,

is an isomorphism Vx € rad A.
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Proof. By Theorem 1.23, the number of points of )4 is uniquely determined, since
it equals the number of indecomposable direct summands of A,. The same theorem
also gives that for distinct complete sets of primitive orthogonal idempotents, say e,
and ¢/, there is a bijection e, A ~ e/ A for all a. Define an A-module homomorphism
@ eq(rad A) —e,(rad A/ rad® A) by e z+=e,(z+rad® A). It is easy to see that its kernel
is e (rad® A). Hence, using that (rad(eA)/rad®(eA))e, ~ Hom4(eyA, rad(eA)/rad?(eA)),
we conclude that
eqa(rad A/ rad® A)e, ~ ¢/ (rad A/ rad® A)e).

This proves part (1) and (2) is trivial. O

Lemma 2.21. For each arrow a: i—j in (Qa)1, let x, € e;(rad A)e; be such that the
set {zo +rad® A | a: i—j} is a basis of e;(rad A/ rad® A)e;. Then
(1) for any two points a,b € (Qa)o, every element x € e,(rad A)e, can be written in
the form © = > Tay ... Ta;Aay..op, Where Aoy o, € K and the sum is taken over
all paths oy ...aq in Q4 from a to b.
(2) for each arrow a: i—=j, the element x, uniquely determines a nonzero noniso-
morphism %, € Homy(e;A, e;A) such that Z,(e;) = o, iImZ, C e;(rad A) and
im i, ¢ e;(rad® A).

Proof. Recall that rad A is nilpotent and, as a K-vector space, rad A ~ (rad A/ rad® A) @
rad® A. Since the z, are a basis of the first vector space, we get

T — Z Toda =: 2’ € e4(rad® A)ey,
a:a—>b
for A\, € K. Using that e,(rad® A)e, = D ce(@uy (€alrad A)ec)(ec(rad A)ey ), we get 2’ =
ZCE(QA)O xly., where z!, € e,(rad A)e. and ., € e.(rad A)e,. We now apply the previous
consideration to z/, and y. and get

T = Z Tola + Z Z T, AgA, modulo eq(rad® A)e.

a:a—>b B:ra—>cvy:c—>b

Induction and the nilpotency of rad A give (1). To prove (2), use the isomorphism
e;(rad A)e; ~ Homyu(e; A, e;(rad A)). O

Corollary 2.22. If A is a basic connected algebra, then Q) 4 is connected.

Proof. Assume the converse and write (Q4)o as a disjoint set Q' IT Q”. We will show
that for ¢ € Q" and j € Q" we have e;Ade; = 0 = ejAe;, which means that A is
not connected, a contradiction. We have already seen that M rad A = rad M for any
right module M, so rad(e;A) = e;rad A. Furthermore, e;Ae; ~ Hom(e;A, e;A) and
Hom(e;A,rade;A) ~ e;(rad A)e;. The latter space is zero by our assumption and the
lemma. Hence, we are done, if we can show that

Hom(e;A, e;A) ~ Hom(e; A, rad e; A).
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Recall that, given an idempotent e € A, rad(eA) is the unique maximal submodule of
eA (Proposition 1.18). This implies that eA/rad(eA) ~ eA/erad A is simple.

Now take any map ¢: e;A—¢;A. If it is not surjective, we are done, since the image
has to be in rad e; A. If ¢ is surjective, then e; A/ ker(p) >~ e;A. Since ker(y) C rad(e;A),
this gives a map e;A—S(i) := e;A/rad(e;A) which is surjective. Factoring out its
kernel, we get a non-trivial map S(j)—=S5(i), a contradiction by Schur’s lemma, since
S(j) cannot be isomorphic to S(i) by the assumption that A is basic and Corollary
1.27. U

Example 2.23. If A = K]Jt]/(t™) for m > 1, then Q4 has only one point since the
only nonzero idempotent of A is the identity. The radical of A is the image of the ideal
generated by (), by Corollary 1.4. Therefore, a basis of rad A/ rad® A is given by one
element and ()4 is the quiver with one vertex and one loop.

Lemma 2.24. Let Q be a finite connected quiver, I an admissible ideal and A = KQ/I.
Then Q4 = Q.

Proof. By Lemma 2.11, {e, =€, + I | a € Qp} is a complete set of primitive orthogonal
idempotents of A = KQ/1, so the sets of vertices of () and ) 4 are the same. On the other
hand, Remark 2.18 gives that the arrows from a to b in ) are in bijective correspondence
with the vectors in a basis of e,(rad A/ rad® A)ey, that is, with the arrows from a to b in

Qa. O

Theorem 2.25. Let A be a basic and connected finite-dimensional K-algebra. There
exists an admissible ideal I of KQ4 such that A ~ KQa/I.

Proof. Let a: i—=j in (Q4)1 and choose z, € rad A such that {z, +rad® A | a: i—j}
forms a basis in e;(rad A/ rad* A)e;. Consider

Po (QA)O_>A7 a—¢€,
and
01: (Qa)1—A, ar—z,.

It is clear that the conditions of Proposition 2.7 are satisfied and hence we get an algebra
homomorphism p: KQ 41— A. It remains to check that ¢ is surjective and that its kernel
is an admissible ideal of K@) 4.

The Wedderburn-Malcev theorem tells us that A ~ A/rad A @ rad A. The former
space is generated by the e,, while any element of rad A is in the image by Lemma 2.21.
Hence, ¢ is surjective. By definition, ¢(R) C rad A, hence ¢(R') C rad' A for any [ > 1.
Since rad A is nilpotent, there exists an m > 1 such that R™ C ker(p) =: I. It remains
to check that I C R%. Any x € I can be written as

T = Z €ara + Z Qe + 1,

a€(Qa)o ac(Qa
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where A\, po € K and y € R?. If p(x) = 0, then
Z €ahg = — Z Talta — p(y) € rad A.

a€(Qa)o a€(Qa)1

Since rad A is nilpotent, this implies that A, = 0 for all a. A similar reasoning shows
that 3¢, Takla = —(y) € rad® A, so

Z (2o +1ad® A)pte =0 in rad A/rad® A.
a€(Qa

By assumption on the z,, all the u, have to be zero, hence z = y € R?.
O

Remark 2.26. We say that two algebras A and A’ are Morita equivalent if mod A ~
mod A’. Since any algebra A is Morita equivalent to a basic algebra by Theorem 1.33,
Theorem 2.25 implies, in particular, that any connected algebra is Morita equivalent to
a bound quiver algebra. Furthermore, we could deal with non-connected algebras as well
by considering their connected factors.

3. REPRESENTATIONS OF QUIVERS

Definition. Let @) be a finite quiver. A K-linear representation M of () consists of the
following data. For each point a € @)y a vector-space M, and for every arrow a: a—=b
a K-linear map ¢,: M,— M,. A representation is called finite-dimensional if every M,
is a finite-dimensional vector space.

A morphism between representations M and M’ consists of linear maps f,: M, — M/
for every a € )y such that

Ma&)Mb

fal jfb
P

commutes for all a,b and .

It is clear that maps of representations can be composed and that there exist identity
maps, so there is a category Rep(Q) of representations of (). We can define direct sums,
kernels and images componentwise and it is easily checked that this makes Rep(Q) into

an abelian category. The full abelian subcategory of finite-dimensional representations
will be denoted by rep(Q).

Example 3.1. Let @ be the quiver 1 ——=2——=3. A representation of @ is, for

example M = [ K —9~ K ——0]. Another representation is N = [0 —= K —=0].
It is easily checked that Hom(M, N) = 0, while Hom (N, M) ~ K.
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Definition. If w = a5 ...q; is a non-trivial path from a to b in a finite quiver ), the
evaluation of w is the K-linear map

SOUJ - Soal .. '80011: MaéMb'

This extends to K-linear combinations of paths with the same source and target. If [ is
an admissible ideal of K@), a representation M of () is said to satisfy the relations in [
or to be bound by I if ¢, = 0 for all relations p in 1.

The full subcategory of Rep(Q) consisting of representations satisfying the relations
in I will be denoted by Rep(Q, I), and similarly for rep(Q).

Example 3.2. Consider the quiver @)
2
ZN
1 4
3

with the relation v = ad and the representations M and N of () given by

KQyK\O
N

and
K
2N
K K
N
K

Both are bound by I. On the other hand, changing one of the maps in the second
representation to 0 gives a representation not bound by I.

Theorem 3.3. Let Q be a finite connected quiver, I an admissible ideal of KQ and
A= KQ/I. There exists a K-linear equivalence

F: Mod A ~ Rep(Q, )

that restricts to an equivalence F': mod A ~ rep(Q, I).
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Proof. We start with the construction of F' on objects. Let M € Mod A and a € Q.
Set M, to be Me,, where ¢, is the image of the stationary path €, under the canonical
projection KQ— KQ/I. Next, if a: a—=0bis an arrow and z € M, = Me,, let ¢, (z) :=
xar, where @ is the class of & modulo I. If p = )", \jw; is a relation in /, then

pp(x) = Z Aipw, (2) = xp = 0.

Hence, F/(M) is indeed a representation bound by 1.
Let f: M — M’ be a homomorphism of A-modules. For any a € Qg and = = xe, € M,
we have
f(zey) = f(ze?) = f(veqa)eq € M'eq = M.
Thus, we get a K-linear map f,: M,— M, for any a € @)y which is just the restriction
of f. Given an arrow a: a—=b and x € M,, we now compute

fopa(z) = fza) = f(z)a = @o falz).

It is obvious that F' is a K-linear functor. Furthermore, it restricts to a functor
mod A— rep(Q, ).

We will now define a functor G: Rep(Q,I)— Mod A. So, let M be a representation
bound by I. We set G(M) = Bqeq,M,. We will define an A-module structure on G(M)
in two steps, first by specifying a K(@-module structure and then checking that it is
annihilated by I. To define a K@Q-module structure on G(M), we have to say what an
arbitrary path w does. Let z € G(M). If w = ¢,, then set zw = x,. If w is a non-
trivial path from a to b, we define zw to be the component of ¢, (x) in M,. This endows
G(M) with a KQ-module structure. If p € I, by definition zp = 0, hence G(M) is an
A-module.

Next, given a morphism (f,)acq, from M = (M,, f,) to M’ = (M., f!), we clearly
have a K-linear map

f: GM)=a,M,—G(M')=d,M..

It remains to check that this map is A-linear. Without loss of generality we will do this
for x, € M, C G(M) and @ € KQ/I, where w is a path from a to b in Q). Then

f(@8) = fopu(ra) = ¢ fal(za) = f(2)@.

The functor G is obviously K-linear and restricts to a functor rep(Q, I)— mod A.
It is left to the reader to check that F' and G are quasi-inverse to each other. Finally,
note that a representation M of a finite quiver is finite-dimensional if and only if M, is
finite-dimensional for all a € )y, which proves that F' and G restrict to equivalences of
the smaller categories. U

Recall that Corollaries 1.25 and 1.28 classify the indecomposable projective and simple
modules in mod A, where A is any finite-dimensional algebra.

We now consider the following situation. Let () be a finite connected quiver with n
vertices, I an admissible ideal of K@ and let K@Q/I be the associated path algebra,
which we know to be basic and connected, to have R/I as radical and m(e,) = e,, for
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a € Qo as a complete set of primitive orthogonal idempotents. We want to understand
the indecomposable projective/injective and the simple modules in mod A ~ rep(Q, I).
We will not distinguish between these two categories in what follows.

Let a € Qo and consider the representation S(a) defined by S(a), = d.p /K, where gy
is the Kronecker delta and b € Qy. In other words, S(a) only has the vector space K
over the vertex a. Hence, all the linear maps in S(a) are zero.

Lemma 3.4. Let A= KQ/I be the bound quiver algebra of (Q,I). The A-module S(a)
is isomorphic to tope,A. In particular, the set {S(a) | a € Qo} contains precisely the
simple A-modules.

Proof. The vector space S(a) is one-dimensional for all a, hence defines a simple A-
module. We also have Hom (e, A, S(a)) ~ S(a)e, ~ S(a), # 0, so there exists a nonzero
map e, A—=S(a). The map is surjective by Schur’s lemma and its kernel is a maximal
submodule of e, A, hence isomorphic to rad e, A. This proves the first statement. Since
obviously Hom(S(a), S(b)) = 0 for a # b, the S(a) are pairwise non-isomorphic which
proves the second statement. 0

Remark 3.5. A path algebra of a finite quiver with a cycle can have infinitely many
pairwise non-isomorphic simple finite-dimensional modules. For example, take () to be

1—=2
We have the simple modules S(1) = K —=0 and S(2) = 0—=K . But also

id
Sy = K—=K for A € K* are simple pairwise non-isomorphic modules.
A

Before stating the next result, define the socle of a module M, denoted by soc M, to
be the submodule of M generated by all simple submodules of M. Furthermore, we say
that a vertex of a quiver is a sink resp. a source if no arrow starts resp. ends in this
vertex.

Lemma 3.6. Let M = (M,, ¢.) be a bound representation of (Q,1). Then

(1) M is semisimple if and only if po =0 for all « € Q1.
(2) soc M = N where N = (N, 1,) is the representation where N, = M, when a is
a sink, whereas
N, = ﬂ ker(yq : My, —= My)
a:a—>b

if a is not a sink, and 1, = 0 for every arrow «.

(3) rad M = J, where J = (Ju,Va) with

J, = Z im(py : My—=M,)

a':b—>a

and Yo = (Pa)|J, for every arrow a of source a.
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(4) top M = L, where L = (L, %) with L, = M, if a is a source, while
L, = Z coker (g 1 My—=M,)

a’:b—>a
if a is not a source, and ¥, = 0 for any arrow .

Proof. (1) M is semisimple if any only if it a direct sum of copies of the S(a), whence
(1) holds.

(2) Clearly, N is a semisimple submodule of M. Let S be a simple submodule of
M, which has to be isomorphic to some S(a). So given any arrow «: a—=b, we have a
commutative diagram

K ~ S(a)y —= S(a), =0

| |

M, —"—— M,
It follows that S(a), C ker(g,) for all arrows a: a—=b, hence S(a), C N,. Therefore,
S(a) € N, hence N =soc M.
(3) Start with the equation J = rad M = MradA = M(R/I) = }_ ., Ma,
where @ = a + [ and R is, as usual, the arrow ideal of K. This implies that
Jo = 0. p—>o Ma. Given an arrow with target a,

Ma = Meya = Mya = g (M) = im @,

Hence, J, for all a is as claimed and the assertion follows.
(4) follows from (3), since top M = M /rad M. O

B
Example 3.7. Let () be the Kronecker quiver 1 =—=2 . Note that 1 is a sink and 2 is
a source.
We know that the simple modules are S(1) and S(2) where the former has K over
vertex 1 and 0 over 2 and vice versa for S(2). We consider the representation M given by
™5
K™ 1 =— K™, where m > 2 and the maps are given by the following ((m — 1) x m)-

To

matrices:
1000 ... 0
1 0 ... 0
Ty = 0001 ...0 :
00 0O 1
01 00 0
0010 0
T = 00 01 0
00 0O 1
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Clearly, both maps are surjective, ker(m,) has as basis e, and ker(mg) has as basis e;.
Hence, soc M =rad M = S(1)™! and top M = S(2)™.

Lemma 3.8. Let (Q, I) be a bound quiver, A = KQ/I and P(a) = e, A, where e, = €,+1
and a € Q. We have the decomposition As = Bacq,aA corresponding to the complete
set of primitive orthogonal idempotents {e, | a € Qo}.

(1) If P(a) = (P(a)y, pg), then P(a), is the vector space with basis the set of all
W = w+ I withw a path from a to b, and for an arrow : b—=c the map
wp: Pa),—P(a). is given by the right multiplication with = 5+ I.

(2) Let rad P(a) = (P'(a)y, p3). Then P'(a), = P(a)y, for b # a, P'(a), is the vector
space with basis set of all = w+1I with w a non-trivial path from a to a, Y3 = @g

for any arrow of source b # a and ., is the restriction of @, to P'(a), for any
arrow a with source a.

Proof. It suffices to prove (1), since (2) follows from it and part (3) of the previous
lemma. We have

P(a), = P(a)ey, = ejAep = e (KQ/I)ey, = (e, KQep)/(€alep).

This proves the first statement. It follows immediately from the construction of the func-
tor F' that for an arrow 3: b—c, the K-linear map g is given by the right multiplication
with 3, proving the second statement. 0

Remark 3.9. If I = 0 and @ is acyclic, the space P(a), has as basis the set of all paths
from a to b.

Example 3.10. Let Q) be the quiver
1
2 3
The representation P(1) is then
K
0 0
while P(2) is

KVK\O
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K
/ w
0 K.
The path algebra of a finite quiver () has the following useful property.

Proposition 3.11. Let Q) be a finite quiver, and A = KQ. For any right A-module M
there exists a projective resolution of the form

and P(3) is

f
0—— @ate Et(a)A ®K MES(Q) e ®i€Qo GZ'A ®K MEZ' L- M —— 0,
where f(a®@m) =aa®m —a® ma and g(a’ @ m') =m'd’.

Proof. First note that obviously go f = 0. To see that f is injective, consider a non-zero
element a ® m = ) aq, ® m, and look at the component where a, has the maximal
length with m, # 0. Then by definition of f, the image will not be zero, since we are
composing a, with a.

One way to see the surjectivity of g and the exactness in the middle, is the following.
Note that K(Q) ®xg M can be written as a quotient of K() ®x M by the linear span of
elements of the form ae; ®m —e®@me; and aa@m —a®@ma, for i € Qp and o € (1, since
elements in Qg and (), generate K () as a vector space. Furthermore, since Ay = ®;¢; A,
we get KQ®x M = @, jeg,eiA®; Me;. Clearly, the linear span of aa®@m—a®@ma is just
the image of f and the linear span of ae; ®m —e®me; can be seen to be ®;.e; ARk Me;.
This concludes the proof. U

Theorem 3.12. The path algebra KQ of a finite quiver Q is hereditary, that is, Ext'(M, N) =
0 for all M, N € mod A and all i > 2. In particular, the global dimension of KQ is at
most 1.

Proof. The Ext-groups are computed using projective resolutions. Since any module

admits a projective resolution of length one by the previous proposition, the claim follows.
O

Using the duality functor D it is in fact also possible to classify the indecomposable
injective modules. Since this is rather straightforward, we just note that a module in
mod A, where A is any algebra, is injective/simple if and only if the dual module in
mod A is projective/simple. Dual to the notion of a projective cover is the injective
envelope which is a monomorphism with the property that every submodule in the target
space has nonzero intersection with the image. Any module has a unique injective
envelope, since projective covers correspond to injective envelopes via D. For future
reference we record the

Proposition 3.13. Every indecomposable injective module in mod A is isomorphic to
I(j) = D(Ae;j) for some j. Dually to the case of projective modules, the module I1(j) is
the injective envelope of the simple module S(j) for all j. U
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We now go back to our standard quiver situation. Note that, since Hom(eA, M) ~ Me
for any idempotent e in an algebra A, we have Hom(Ae,, A) = D(Ae,) = I(a), because
the Ae, are the projective modules in A°?. Hence,

Proposition 3.14. If A = KQ/I is a bound quiver algebra, the indecomposable injective
modules are precisely I(a) = D(Ae,) for a € Q. O

We can easily prove the

Lemma 3.15. (1) Given a € Qo, the simple module S(a) is isomorphic to the simple

socle of I(a).

(2) If I(a) = (I(a)y, pp), then I(a)y is the dual of the K -vector space with basis the
set of allw = w + I with w a path from b to a, and for an arrow [: b—c the
map pg: 1(a),—1(a). is given by the dual of the left multiplication by [3.

(3) Let I(a)/S(a) = (Lp,v3). Then Ly is the quotient space of I(a), spanned by the
residual classes of paths from b to a of length at least one, and g is the induced
map.

Proof. (1) Since S(a) = tope,A, it is the socle of I(a) by duality. Alternatively, apply
Lemma 3.6, (2).

(2) We have I(a), = I(a)e, = D(Aeq)ey = D(epAe,) = D(ep(KQ)eq)/(€ples). Now
apply Lemma 3.8 to see the first statement and the second follows similarly.

(3) is a consequence of (2). O

Example 3.16. Let @ be the quiver from Example 3.10. Then I(2) = S(2),1(3) = S(3)
and the injective representation (1) is

/ K\
K K.
Note that 7(2)/S(2) = 0 = 1(3)/S(3), while I(1)/S(1) = S(2) & S(3).

Definition. Let A be an algebra. The Nakayama functor of mod A is defined to be the
endofunctor v = DHom(—, A).

Lemma 3.17. The Nakayama functor is right exact and isomorphic to the functor —® 4
DA.

Proof. First note that v is the composition of two contravariant left exact functors, hence
right exact and covariant. Define a functorial morphism ¢: — ®,4DA—v by

O M @4 DA— DHomuy (M, A), & fr—(Y—f(¥(x))).

If M = Ay, then ¢); is an isomorphism. Hence, it is an isomorphism for any free
module. It is also an isomorphism if M is projective, because both functors are linear
and a projective module is a direct summand of a free module. Now recall that any
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module has a projective cover. This implies that it has a projective presentation, that is,
there exists a sequence
p1

P, P2 M 0,

such that Py—= M and P, — ker(pg) are projective covers. Now apply both functors to
a projective presentation of M to get

P,®y DA— Py®y DA— M ®4y DA ——0

¢P1 l ¢PO l ¢N[l

vP vP, vM 0.

The two left vertical arrows are isomorphisms, hence the third is also one. [l

Proposition 3.18. The Nakayama functor establishes an equivalence between the full
subcategory of projective modules and the full subcategory of injective modules. The
quasi-inverse is given by Homs(D(4A), —).
Proof. If a € Qo, then vP(a) = DHom(e, A, A) = D(Ae,) = I(a). On the other hand,
Homa(D(4A), I(a)) ~ Homyu(D(4A), D(Ae,)) ~ Homyop (Ae,, A) ~ e,A = P(a).
O

Lemma 3.19. Let A = KQ/I, M an A-module and a € Qy. There are functorial
1somorphisms of K-vector spaces

Homy (P(a), M) ~ Me, ~ DHomy (M, I(a)).
Proof. Since P(a) = e, A, the first isomorphism is clear. As for the second one,
DHoma (M, I(a)) ~ DHom (M, D(Ae,)) ~ DHom gop (Ae,, DM)
~ D(e,DM) ~ D(DM)e, ~ Me,.
O

Proposition 3.20. Let A = KQ/I and a,b € Qo. There exists an isomorphism of
K -vector spaces

Ext! (S(a), S(b)) =~ e,(rad A/ rad® A)e,.
Since the number of arrows in A from a to b is equal to the dimension of the right-hand
side, it is equal to dimg Ext(S(a), S(b)).

Proof. Let S be a simple module. It admits a projective resolution P,—.S and, in fact, a
minimal one, meaning that P;— im(p;) is a projective cover for all j > 1. By definition,
to compute Ext’(S, S’), we have to apply the functor Hom(—, ") to the complex P* and
compute the cohomology of the resulting complex

O - > Hom(PO’ S,) _— HOH’I(Pl, S,) _— HOIH(PQ, S/) —_— ...



32 P. SOSNA

Let f € Hom(P;,S’) be a nonzero homomorphism. Then f is surjective, since S’
is simple. Since P; is projective, we can consider its decomposition into indecom-
posable projective modules and conclude that there exists a direct summand P’ such
that f is the composition P,—P'—P’'/rad P’ ~ S’. Since we assumed the resolu-
tion to be minimal, we have P;/rad(P;) ~ imp;/rad(imp;), so there exists a surjec-
tion from imp; = P;/kerp; to P;/rad P;, hence imp;,; = kerp; C rad P;. Since the
map Hom(p;y1,5"): Hom(P;, S")—Hom(P;;1,S’) is given by precomposing with p; 1,
we have, for any ¢« > 0 and any = € P,

Hom(pit1, 5)(f)(x) = fpin(x) € f(impir) € f(rad F) C rad(S') = 0.

Therefore, all the maps in the above complex are zero and correspondigly, Ext*(S, S) ~
Hom(P, S").

Assume that S = S(a). The semisimple module rad P(a)/rad® P(a) is a direct sum of
simple modules, say

rad P(a)/rad® P(a) =~ @.eq,5(c)®™,

for some integers n.. Let us recall how a minimal projective resolution of S(a) is con-
tructed. First, we take the projective cover of S(a) = top P(a) which is just P(a)
and the map P(a)—S(a) is the natural projection. Next, consider the kernel of this
map, namely rad P(a) =: M; and take its projective cover. The approach was to con-
sider the semisimple A/rad A = B-module M;/rad M;, take its decomposition and
then “lift” to A. Hence, in our case this gives that the next term in the resolution is
precisely @.cq,P(c)®". Therefore, Ext'(S(a), S(b)) = Hom(®ecq,P(c)®", S(b)). Now
note that for a simple module S and an arbitrary module M we have Hom(M,S) ~
Hom(M/rad M, S), since any non-trivial map from M to S sends rad M to 0. Applying
this to M = @eeg, P(c)®, we get Ext'(S(a), S(b)) = Hom(rad P(a)/rad® P(a), S(b)).
Since rad P(a)/rad® P(a) is semisimple, it is equal to its socle. On the other hand, S(b)
is the socle of I(b). Since any map between modules maps the socle into the socle, we
conclude that Hom(rad P(a)/rad® P(a), S(b)) ~ Hom(rad P(a)/rad® P(a), I(b)). So,

Ext'(S(a), S(b)) ~ Hom(rad P(a)/rad® P(a), I(b)) ~ DHom(P(b),rad P(a)/rad® P(a))
~ DHom(epA, eq(rad A/ rad® A)) ~ D(e,(rad A/ rad® A)ey)
~ eq(rad A/ rad® A)ey,

where the second isomorphism is Lemma 3.19, the third applies the equality M rad A =
rad M to M = e, A and the forth is Lemma 1.16. O

Remark 3.21. The proposition allows us to give an alternative definition of the ordinary
quiver of a basic and connected K-algebra. Namely, the vertices are in bijective corre-
spondence to the simple modules in mod A and the number arrows between two vertices
is equal to the dimension of the Ext! between the corresponding simple modules.
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4. DIMENSION VECTORS AND THE EULER FORM

Let A be a basic and connected finite-dimensional K-algebra which will we write as
A = KQ/I for a finite and connected quiver ) and an admissible ideal I in KQ. In
this section we will assume that the vertices of () are given by the set {1,...,n}. Recall
that for any j € Qo, e; is the corresponding primitive idempotent, P(j) = e;A are
precisely the indecomposable projective modules, I(j) = D(Ae;) the indecomposable
injective modules and S(j) = top P(j) the simple modules. Furthermore, recall that for
any representation M we have

M; = Mej ~ Homu(P(j), M) ~ DHomy (M, I(j)).

Definition. Let M be a finite-dimensional K@) /I-module. The dimension vector of M
1s
dimM = (dimg Me, ..., dimg Me,)" € Z".

Remark 4.1. As seen before, the dimension vector of S(i) is precisely the i-th basis
vector in Z". Note that the definition of the dimension vector does not depend on the
choice of a complete set of primitive orthogonal idempotents, up to permutation of the
coordinates. Furthermore, since Me; >~ Homy(P(j), M) by Lemma 3.19, we can express
the dimension vector in terms of projectives (or injectives).

Example 4.2. Consider the quiver from Example 3.10. Then dimP(1) = (1,0,0),
dimP(2) = (1,1,0)" and dimP(3) = (1,0, 1)".

Lemma 4.3. If 0 L M N 0 s an exact sequence of A-modules,
then dimM = dimL + dimN.

Proof. Apply the exact functor Hom(P(j),—) to the sequence to get dimy Me; =
dimg Le; + dimg Nej for all j = 1,...,n and the claim follows. O

Recall that the Grothendieck group of a small abelian category A is defined to be
the free abelian group Ky(A) generated by the isomorphism classes of objects where we
factor out the subgroup generated by relations: [F| = [F'] + [F"], whenever there is an
exact sequence

0 F’ F F" 0.

This group has the following universal property. Any map « from the set of isomor-
phism classes of A to an abelian group which is additive, that is, a(F) = a(F") + a(F")
for an exact sequence as above, factorizes over Ky(.A).

In particular, this applies to A = mod A. Denote the image of a module M in
Ky(mod A) = Ky(A) =: Ko(A) by [M].

Proposition 4.4. The Grothendieck group Ko(A) is isomorphic to 7.".

Proof. Take any module M. It admits a composition series, hence its class can be written
as a sum of simple modules. This shows that this set generates Ky(A). The previous
lemma shows that dim is an additive function, hence we get a group homomorphism
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Ko(A)—7Z". Since the simple modules have the basis vectors as dimension vectors, the
claim follows. O

Corollary 4.5. For any module M € modA the number c;(M) of simple composi-
tion factors that are isomorphic to S(j) is precisely dimg Me;. Furthermore, (M) =
dimK M.

Proof. Writing out the composition series for M explicitly gives [M] = >"" | ¢;(M)[S(4)],
hence dimM = " | ¢;(M)dimS(¢). Since the S(i) are basis vectors, the first claim
follows. The second follows from the first, since (M) = > . ¢;(M) = > . dimg Me;, =
dimg M. U

Definition. The Cartan matriz of A is the (n x n)-matrix Cs4 = (¢ij)1<ij<n Where
Cij = dlmk eiAej.

Note that if one were to choose a different complete set of primitive orthogonal idem-
potents, the corresponding matrix C’; one gets is conjugate (over Z) to C.

Proposition 4.6. The i-th column of C4 is dimP(i) = CydimS(i), while the i-th row
of Ca is dim/(i) = C,dimS(7).

Proof. Use e;Ae; = P(i)e; = Hom(P(j), P(i)) = Hom(I(j), I(7)). O
Example 4.7. The Cartan matrix of the quiver in Example 3.10 is

1 11

010

0 01

Proposition 4.8. If A is an algebra of finite global dimension, then the determinant of
the Cartan matriz is equal to +1 or —1. In particular, Cy is invertible over Z.

Proof. Our assumption gives a finite projective resolution P, — S(i) for any S(7). Hence,
dimS(i) = >°7*,(~1)/dimP;. Now the projective modules P; can be decomposed into
the P(k). Hence, the i-th basis vector dimS(i) can be written as a Z-linear combination
of the dimension vectors dimP(k). Using the fact that these vectors are the columns of
Cy, the claim follows. O

Definition. Let A be a basic connected algebra of finite global dimension. The Fuler

form of A is the Z-bilinear form (—, —)4: Z" x Z"—=7Z defined by (z,y) = 2}(C")ty.
The FEuler quadratic form of A is the quadratic form g4: Z™—7Z defined by ga(z) =

(z,z).

Example 4.9. Let Q be the quiver from 3.10. Then (C;')! is the matrix

1 00
1 10
-1 01
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Hence, the Euler form of A is
(T,y)4 = T1y1 + Tay2 + T3Ys — Tay1 — T3
and the quadratic form is

2, 2, 2
qa(x) = ] + o5 + 25 — T2x1 — T371.

Example 4.10. Let @) be the quiver 1 <—a>_ 2 with relations af = 0 = Sa and consider
B

the algebra A = KQ/I. Then P(1) = ( K <—OL> K)=I2)and P(2) = (K —= K ) =
id

I(1). The Cartan matrix is , hence the algebra cannot be of finite global dimen-

11
11
sion. Another way to see this is to check that the minimal projective resolution of S(1)
has the form

. ——=P(1)—= P(2) P(1) P(2) P(1) S(1) 0.

Note that the module A, is injective, hence A is a so-called self-injective algebra.

Proposition 4.11. Let A be of finite global dimension and (—,—)4 be its Euler form.
For any two modules M, N € mod A we have
(dimM, dimN) 4 = Y (—1) dimy Ext/ (M, N)
=0
and
ga(dimM) =) “(—=1)7 dimy Ext?) (M, M).

7=0
Proof. Of course, it is enough to prove the first statement and we will do it by induction
on the projective dimension d of M. Without loss of generality we may assume that M
is indecomposable, since both sides are additive. Also note if A = K@, then j in fact
only runs from 0 to 1.
Assume d = 0. Hence M is an indecomposable projective, so M = e; A for some i. We
now compute
(dimM, dimN) 4 = (dimP (i), dimN) 4 = (dimP(7)) (C;")* (dimN)

= (C;'dimP(i))"(dimN) = (dimS(7))'dimN

= dimg Ne; = dimgx Homy(P(i), N),
thus showing the statement for d = 0. So assume that d > 1 and the result holds for all
modules with projective dimension at most d — 1. Consider a short exact sequence

0 L P M 0
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with P projective. Then the projective dimension of L is d — 1 and applying Hom(—, N)
to this sequence, we get a long exact cohomology sequence from which the claim follows
by induction and using dimM = dimP — dimL. 0J

Definition. Let C'y be the Cartan matrix of an algebra A of finite global dimension.
The Cozeter matriz of A is the matrix
dy=-CLCL
The Cozxeter transformation is the group homomorphism ® 4 : Z" —Z" defined by ® 4(z) =
Qy-xfor x = (21,...,2,)" € 2™
Proposition 4.12. ¢, - dimP(i) = —dim/I(i) for alli € {1,...,n} and
(T, y)a = —(y, Paz)a = (Paz, Pay) .
Proof. We know that dimS(i) = C;*dimP (i), hence dim/(i) = C%,dimS(i) = —® ,dimP(i).
Furthermore,
(2,y) = 2" (C1N)'y = ((y'C3Na) = y'Ch'e
=y'(C41)'CACy =y (C1) (—Pa)z = —(y, Daz)4
and the last equation follows by applying what we just proved. U

5. GABRIEL’S THEOREM

The purpose of this section is to prove Gabriel’s theorem which classifies the quiver
having finitely many indecomposable representations. Given a quiver () and the associ-
ated algebra A = K@ we will secretly change our convention from before and go to the
opposite algebra. This has minor effects: for instance, the projective modules will be
Ae; now and not e;A as before.

Definition. Let @) be a finite quiver with vertex set {1,...,n}. If i is a vertex, the
quiver o;() is obtained from () by reversing all arrows which start or end at 1.

Example 5.1. Let ) be 2 . Then @) is 2 .
1 3 1 3

Definition. An ordering iy ...,1%, of the vertices of @) is called admissible if for each p
the vertex i, is a sink for the quiver o;,_, ... 0 Q.

It is easy to check that if 41,...,%, is an admissible ordering, then o;, ...0,Q = Q.

Lemma 5.2. An admissible ordering of the vertices of Q) exists if and only if Q) has no
oriented cycles.

Proof. We only sketch one implication by induction on n. Suppose () has no oriented
cycles and let i,, be the starting vertex of a path of maximal length. This implies that 7,
is a source. The quiver obtained by deleting this vertex has an admissible ordering by
the induction hypothesis, hence so does Q). O
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Example 5.3. Let () be the quiver from the previous example. Then 2,1,3 or 2,3,1
are admissible orderings.

Let @ be a finite quiver without loops with n vertices. The Fuler form is the bilinear

form
<_7 _>: 7" x Zn_>Z7 <ZE,y> = Z TiYi — Z Ts(a)Yt(a)-
1€Qo acQ1

It is an exercise to check that this coincides with the definition from the previous section
when A = KQ@Q: It is enough to check the equality of the two forms on the basis vectors,
that is, on the simple representations. This can be done using Proposition 4.11 and
Remark 3.21.

We get a symmetric bilinear form by setting (x,y) = (x,y) + (y, x).

The reflection with respect to a vertex ¢ is the map

2(x, €)
(61‘, ei)
Here e; as usual denotes the i-th coordinate vector. It is an exercise to check that o; is
an isometry with respect to (—, —) and is of order 2.

We are now close to the definition of reflection functors which will be indespensable

in proving Gabriel’s theorem. First note that, given two quivers () and @', it of course
makes sense to talk about functors between the respective categories of representations.

o L"—1", oi(r)=x— ”

Definition. Let i be a sink of a quiver ) and consider the quiver ' = 0;Q). We define
the functor S;" as follows.

Given a representation (My, p,) of Q, set S;(My, o) = (Ng,14) to be the represen-
tation with N; = M; for j # ¢ and with NV; the kernel of the map ¢ in the following
sequence

3 3
Ny — @ate,t(a):i My(o) — M; .
If a is an arrow and t(a) # i, we set 7, = @q. If t(a) = i, we set 1, to be the map &
followed by the projection onto M(q).
If f: M—= M’ is a morphism between representations, then S;'(f) = g is defined as
follows. If j # i, then g; = f;. If j =4, then define g;: N;— N] to be the restriction of

the map

(fs(a))oc: @ 'Ms(a)_> @ M;(O'/)

a€Q1 t(a)=i a€Q1,t(a)=1i

If 7 is a source of @), we will dually construct S; as follows. For j # ¢ we again set
N; = M;. For j =i, N; is the defined as the cokernel of the map &' in the following
sequence

¢t £
Mz—>@ Mt(a) —>Nz .

a€Q1,s(a)=t
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For an arrow a, 1, = @q if s(a) # 4, while 7 : Ny) = M) —N; is the restriction of

€ if s(o) = 4. If f is a morphism of representations as above, then g; = f; for j # ¢ and
gi: N;—= N/ is the map induced by

(ft(a))a: @ 'Mt<a)€‘ @ Mff(oz)

a€Q1,5()=i a€Q1,5(a)=i

Note that if i is a sink and M is any representation, then S; S;"M exists. In fact,
there exists a natural monomorphism

defined as the identity on the vector spaces over vertices not equal to i and where (¢;M);
is the canonical map

(S, S M); = cokerf = im & — M.
On the other hand, if 7 is a source, we have a natural epimorphism
m M M —>SZ~Jr S; M

defined as the identity on the vector spaces over vertices not equal to ¢ and where (7;) M;
is the canonical map

M;— im ¢ = ker & = (S;FS;M);.

The following result collects some properties. It is tacitly assumed that the expressions
make sense, that is, the vertices considered are sinks/sources at the correct moment.

Lemma 5.4. The functors S are additive. If M is any representation, then M =
(S;S;"M)@®coker(1,; M) and M = (S;7S; M )@ker m;M . If cokert; M = 0, then dimS;" M =
oi(dimM). If kerm;M =0, then dimS; M = o(dimM).

Proof. The first statement is obvious. To see the second, note that the representations
(S;S;*M) and M are the same over all vertices j # i. Now, at the i-th vertex we
have a monomorphism (;;M);: (S;S;"M);— M;, hence M; decomposes as the direct
sum of the cokernel of this map and (S; S;"M);. Since the representation cokers;M is
concentrated at the i-th vertex, this proves the second statement and the proof of the
statement concerning 7; is analogous.

Next, if coker(;; M) = 0, then dim(S;"M); = dim M; for all j # 4, while

dim(SFM); = ) dim M) — dim M;,
a€Q1,t(a)=1

which follows immediately from the exact sequence we used to define (S;"M);. Since
(dimM, ;) = dim Mi—3" e, s()=: im My(a), it follows easily that dim(S;" M) = o;(dimM)
and the last statement is proved similarly. 0

Remark 5.5. As noted in the proof, the representations cokers; M and ker m; M are con-
centrated at the i-th vertex. Therefore, they are direct sums of copies of S(i).



SOME TOPICS IN THE REPRESENTATION THEORY... 39

Before we formulate the next result, we recall that there is a partial order on Z™ defined
by
r<y < x <y Vk.

Lemma 5.6. Let i be a sink and M an indecomposable representation of ). Then the
following conditions are equivalent:

(1) M 2 S(3).

(2) S;"M is indecomposable.

(3) S+M # 0.

(4) Sz SIEM ~ M

(5) The map &: Doco, 1(a)=i Msa)—=M; is an epimorphism.
(6) o;(dimM) > 0.

(7) dimS;" M = o;(dimM).

If i is a source, corresponding statements hold for S; .

Proof. This follows rather easily from Lemma 5.4. For example, assume that S;"M is
decomposable, so S M = N & N’. Then S; S M = S; N & S; N’ which is a direct
summand of M, giving a contradiction. Hence (1) implies (2). O

We record the above discussion in the

Theorem 5.7. The functors S; and S; induce mutually inverse bijections between the
isomorphism classes of indecomposable representations of @) and those of o;Q) except
for the simple representation S(i) which is annihilated by these functors. Moreover,
dimSFM = o;(dimM) for every indecomposable representation M % S(i). O

If @ is a finite quiver and we forget the orientations of the arrows, then the resulting
object is a finite graph I". For a graph I' with n vertices, we get a symmetric bilinear
form on Z" by setting (e;, e;) = 2 — 2d;; and (e;, e;) = d”, where d;; is the number of
edges joining the vertices ¢ and j. Note that this is the same definition as we had before
(for us, d;; = 0 since we usually do no have cycles). We of course also have a quadratic
form ¢ defined by ¢(x) = 3(z,2) and

Z x; — Z dijzix;.
i<j
On the other hand, ¢ also determines (—, —), since (x,y) = q(z +vy) — q¢(x) — q(y).
Definition. The radical of the form ¢ is the set
radg ={z € Z" | (x,—) =0}.

Definition. Let q: Z" —7Z be an arbitrary quadratic form. It is called positive definite
if g(x) > 0 for x # 0 and positive semi-definite if q(x) > 0 for all x.

We will use the following terminology in the next lemma and afterwards: A vector v
will be called sincere if v; # 0 for all 7.
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Lemma 5.8. Let I' be a connected graph, q the associated quadratic form defined above
and y € Z" a positive vector contained in the radical. Then y is sincere and q is positive
semi-definite. For a vector x € 7™ we have

¢(z) =0 <=z € Qy < z € radgq.

Proof. Since y is contained in the radical and (—, —) is symmetric, we have, for any
1 <3 <n,
(5.1) 0= (ei,y) = (2 — 2dis)y; — Zdijyj-

J#

If y; = 0, then > i d;;y; = 0 and since every term is non-negative, y; = 0 whenever i
and j are joined by an edge. Therefore, y = 0, since I' is connected, contradicting our
assumption. Hence, y is sincere.

To show the next statement, we first compute, for x € Z™:

n
_ 2 o
= E x; — E dijz;z;

i<j
= Zx Zdzﬂ? Tj— Zd“x
1<J
i i<j
22(2_222 yz ZL‘ —Zd”IIL’]
7 1<J
= Z dijﬁm? — Z dijz;z;
il i<j
= Z d;j 23/] 2+ Z d;j 2'% x? — Z d;jx;;
1<j 1<j 1<J
_ il T Ly
=Y dj; > G, yj)Q >0,

where the ﬁfth equality uses (5.1) and the last inequality is clear. Therefore, if ¢(x) = 0,
then xi = L whenever there is an edge joining ¢ and j. Since I' is connected, x € Qy. If

T € Qy, then x € radg, since y € radg. Lastly, x € radq readily implies that ¢(z) = 0. O
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The following quivers will play a prominent role in Gabriel’s theorem. First, the simply
laced Dynkin diagrams with n vertices are:

A, e ° o ° ° Es °
° ° ° ° °
D, e E; °

and

The Euclidean diagrams with n = m + 1 vertices are as follows. We mark each vertex
with the value 9; of a vector § € Z".

A (m > 0) 1l— .. —1
1/ \1
\1—...—1/

D, (m>4) 1 1
\2—...—2/
1/ \1

Eg 1
|
2

1 2 z‘a 2 1
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2 4 6 5 4 3 2 1

Theorem 5.9. LetI' be a connected graph and q the corresponding quadratic form. Then
I' is a Dynkin diagram if and only if q is positive definite. It is a Fuclidean diagram if
and only if q is positive semi-definite and not positive definite. In this case there is a
unique positive vector 6 € Z" with radq = Z0.

Proof. First we show that if I is Euclidean, then ¢ is positive semi-definite and radq = Z4.
For this, we want to use Lemma 5.8. Hence, we have to check that ¢ is a radical vector,
since it is positive by definition. This boils down to proving that

(62‘, 5) = 252 — Z 5]'
j=1,d;;#0
is zero for 1 < ¢ < n. This is done by explicit computation which proves the first
statement. To see the second, note that §; = 1 for some i and therefore radg = QoNZ" =
Z4, since if A € Q\ Z, then \J ¢ Z", because \J; ¢ Z.

Next, note that if I' is a Dynkin diagram then ¢ is positive definite. Indeed, there
exists a Euclidean diagram I' such that I' is obtained by deleting some vertex e. The
diagram I' satisfies g(z) > 0 for every x # 0 with x, = 0, proving the claim.

Finally, if I' is neither Dynkin nor Euclidean, then there exists a vector x such that
q(z) < 0. One proves this statement by first checking that there exists a Euclidean
subgraph I (this is a purely combinatorial statement) with radical vector §. If the
vertices of I' and I" coincide, then § = = will satisfy ¢(z) < 0. Otherwise we take a
vertex i of I'\ IV which is connected with " by an edge and set z = 2§ + e;. O

Let I be a Dynkin or Euclidean diagram. We say that a non-zero vector is a root if it
is an element in
A={zeZ"|qlx)<1}.
The following result summarizes some properties of roots.

Proposition 5.10. If ' is a Dynkin or Euclidean diagram, then the following holds.

(1) Each basis vector e; is a root.

(2) If z is a root and y € radq, then —z,x 4+ y are roots.
(3) Ewvery root is either positive or negative.

(4) If T is FEuclidean, then A/radq is a finite set.

()

3
4
5) If I' is Dynkin, then A is a finite set.



SOME TOPICS IN THE REPRESENTATION THEORY... 43

Proof. (1) follows by inspection. Since ¢(y £ z) = q(y) + ¢(z) £ (y,x) = ¢q(z), (2) is
clear. To see (3), let « be a root and write it as x = ™ — 2=, where 21,2~ both have
non-negative entries and have disjoint support. The condition on the support implies
that (z7,27) <0, and in turn

1> q(z) =q(@") +qla”) = (@",27) > q(a™) +q(z7) > 0.

Therefore, either ¢(z*) = 0 or g(z~) = 0, since both numbers are integers. If both
vectors are non-zero, then one of them has to be sincere by Lemma 5.8, which gives a
contradiction.

Let us prove (4). Fix a vertex e. If z is a root whose component x. at e is 0, then
d —x and 0 + x are positive at e. Since ¢ € radg, (2) implies that 0 + x are roots. By
(3), they are positive. Hence,

{reAljz. =0} C{zeZ"| —0<z<d},

where for vectors v, w we write v < w if v; < w; for all 7. The latter is a finite set. If
x € A, then x — x.9 belongs to the finite set {x € A | x, = 0}.
Finally, a Dynkin diagram I' can be obtained from a Euclidean diagram I' by deleting

some vertex e. Any root x of I' can be viewed as a root for ' with 2, = 0. Therefore,
(5) follows from (4). O

Lemma 5.11. Let QQ be a quiver whose underlying graph is Dynkin or Fuclidean. If x
is a positive root and o;(x) is not positive, then r = e;.

Proof. Since o; preserves (—, —), o;(z) is a root. It is not positive by assumption, hence
negative by (3) of the previous proposition. For each vertex j # i, we have o;(x); = z;
(0; only changes the vector in the i-th coordinate), which has to be both positive and
negative. Hence z; = 0 and z = e;. l

Definition. Let ) be a quiver without oriented cycles and assume for simplicity that
1,...,n is an admissible ordering of the vertices. The Coxeter transformation is the
automorphism ¢ of Z" defined by ¢(x) = o, ...01(x).

Remark 5.12. This definition coincides with our previous one, that is, the Coxeter matrix
of the previous section is the matrix of the Coxeter transformation in the canonical basis
of Z". For the proof see [1, Prop. VI1.4.7].

Lemma 5.13. Using the previous remark, we can translate statements from Section 4.
For instance, c(dim(i)) = —dimI (i) for all i and (z,y) = —(y,c(x)) = {(c(x),c(y)), see
Proposition 4.12. U

Lemma 5.14. Let x € Z™. Then c(x) = x if and only if x € radg.

Proof.
c(x) =1x <= x;, = c(x); = 04(x); Vi <= (z,¢;) = 0 Vi.
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If the underlying graph of the quiver @) is Dynkin or Euclidean, then ¢ induces a
permutation of the finite set A/radg. In particular, for some h > 0, c” is the identity on
A/radq. This already implies that ¢" is the identity on Z" /radq, since ¢; € A for all i.

Lemma 5.15. Let Q) be of Dynkin type and x € Z". Then there exists an integer r > 0
such that ¢"(x) is not positive.

Proof. Consider y = Zf;g ¢"(x) and note that it is fixed by ¢. By the previous lemma,
y € radgq, hence y = 0 because ) is Dynkin. Therefore, ¢"(z) is not positive for some
r > 0. U

Lemma 5.16. Let Q be of Euclidean type and x € Z™. Then (1) ¢"(x) > 0 for allr € Z
implies that c"(x) = x and (2) if *(z) = x, then (§,z) = 0.

Proof. Let us prove (1). Suppose that ¢(x) = x+wv for some 0 # v € radg. By induction,
dh(x) = o+ lv for all [ € Z. Since v is sincere and either positive or negative, there
exists an r such that ¢"(z) is not positive.

To see (2), let y = Zf;é c"(x). As before, y € radq. But then

h—1
0=(5,9) =D (6, (x)) = h(s,x),
r=0
using that ¢ is radical, hence (6, x) = —(z, ), and Lemma 5.13. O

We can now state the main result of this lecture.

Theorem 5.17. Let () be a connected quiver. There are only finitely many isomor-
phism classes of indecomposable representations of Q) if and only if the underlying graph
1s of Dynkin type. More precisely, the assignment M+—dimM establishes a bijection
between the isomorphism classes of indecomposable representations and the positive roots
corresponding to ().

Proof. Let () be a Dynkin diagram and choose an admissible ordering i1, . . . , 7,, of vertices
of (). Let M be an indecomposable representation of () with dimension vector x = dimM.
Lemma 5.15 gives the existence of an integer r such that 7'(z) = (oy, ...0:,)"(x) is not
positive. Consider 7 = o;_...0;, 7', the shortest expression such that 7(z) is still not
positive. Applying our reflection functors and using Lemma 5.6 we get that

St USE(SHLLUSE)TM ~ S(iy).

1s—1
This implies
M~ (S; ...S;)"S; ... 5 S(is),
since the functors S;” and S; are inverse bijections of the sets of indecomposable rep-
resentations apart from S(i). Therefore, dimM is a positive root. Similarly one shows
that if M’ is indecomposable with dimM = dimM’, then M ~ M’.
Conversely, let x be a positive root. Let

T=0...04(04 ...04)"
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be the shortest expression such that 7(x) is not positive. Lemma 5.11 implies that

Cig_y 004, . ..00) =€,

s

Setting M = (S;, ... S; )"S;, ... S;._1S(is), we can apply reflection functors to conclude
that M is indecomposable and

dimM = (Jil . O-in>ro-i1 -0y (eis) = xI.

Since a Dynkin diagram has only finitely many roots, we established the “if” direction.

To see the other direction, we infer from Propositions 5.18 and 5.25 below that a
Euclidean diagram has infinitely many indecomposable representations. So, let () be a
diagram not of Dynkin type. We already know that it contains a Euclidean subquiver
()'. Since any representation (IV, ¢,) of @' can be extended to a representation of () by
setting V; = 0 for all i € Qg \ Q) and ¢, = 0 for all a € @, \ @}, we conclude that Q
has infinitely many indecomposable representations. U

To complete the proof of the theorem, it remains to show that any Euclidean diagram
has infinitely many isomorphism classes of indecomposable representations. We will split
the proof of the statement into two parts, dealing with the case of a diagram with oriented
cycles first.

Proposition 5.18. Let Q be a quiver of Euclidean type A, with n > 0. There exist
infinitely many isomorphism classes of indecomposable representations.

Proof. The orientation ot the graph is not important in the following. Fix an arrow «.
Define, for any p > 1, a representation (M (p), ¢.) as follows. For every vertex ¢ we set
M; = K? and for every arrow a # ag let ¢, = id, while for oy the map ¢,, is given as
the Jordan block of size p with eigenvalue 0. A straightforward computation shows that
End(M(p)) ~ K]Jt]/t?, which is a local ring. Therefore, by Corollary 1.22, M(p) is an
indecomposable representation. Clearly, M (p) 2 M(p') for p # p'. d

From now on we will consider quivers () without oriented cycles.
Let i1,...,%, be an admissible ordering of the vertices of our finite quiver ). The
Cozxeter functor with respect to this ordering is the functor

Ct =8 ...S5 ~Rep(Q, k) —Rep(Q, k).
Similarly,
C™ =5, ...5 ~Rep(Q,k)—Rep(Q, k).
If r € Zwg, write C" = (CT)". If r =0, set C" =id, and if r € Z_o write C" = (C7)™".

Lemma 5.19. The functors C* and C~ do not depend on the choice of the admissible
ordering of the vertices of Q).

Proof. 1f i and j are sinks with respect to some orientation and they are not joined by

an arrow, then S-S = 575" as follows immediately from the definitions. Let 4y,. .., 1,
and 77,...,i be two admissible orderings of () and let iy = ¢/,. In this case i,...,1

’ ' m

cannot be joined to i; by an arrow (This can be seen by induction: for instance, let
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m = 2. So 7} is a sink and i; = i), is a sink for i} @), hence there cannot be an arrow from
i to i, because that would contradict ¢, being a sink for #}() and there is no arrow from
i4 to 1) because i; = i} is a sink.) Therefore,

+ + _ o+ + o+

Sy - ..Sz.,1 = Sl.;h1 : ..Si,lSil.
Applying the same argument to is, i3, ... gives the claim. U
Convention For simplicity, we will from now on assume that 1,...,n is an admissible

ordering of the vertices of Q.
Lemma 5.20. Let i be a vertex. Then
dimP(i) =0y ...0;_1(e;) and dimlI(i) =0y, ...0;11(€).
Furthermore,
P(i) ~ Sy ...S.,5(i) and I(i)~SH...S55,5(i).

Proof. Since the proofs for P(i) and I(7) are dual, we only consider the case of projectives.
Fix a vertex i. Firstly, one shows by induction that for any 0 < [ < i the following holds
(by definition oy = id):

!

Oi—1 - - 'O'ifl(ei) = E Ai,ifjeifj}
j=0

where \;;_; is the number of paths starting in ¢ and ending in ¢ — j. For l =7 — 1,
we therefore get oy ...0;_1(e;) = dimP(i), because, by admissibility, there are no paths
from i to j if 7 > 4.

To see the second statement, one checks by induction that for any 0 <[ < ¢ we have

dlIIlSl+ vee SYP(Z) =0141--- ai_l(ei).
This implies that S, ... S P(i) ~ S(i), hence P(i) ~ S ...S; S(4). O

Lemma 5.21. Let M be an indecomposable representation of Q. If M ~ P(i) for some
i, then C*M ~ 0. Otherwise, C~CTM ~ M. Similarly, if M ~ 1(i) for some i, then
C~M ~0 and otherwise CTC~M ~ M.

Proof. By the previous lemma, P(i) ~ Sy ...S;;S(i), hence
C*tP(i) = St...SS(i) ~0.
If M 2257 ...5,_,5(i) for all 4, then
C~Ct*M~S;...S, S ...Sf M~ M,

using that, for all i, S;S;'M =~ M under our assumption. The proof of the second
statement is the same. 0
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Corollary 5.22. Any indecomposable representation M satisfies one of the following
conditions: (1) M ~ C"P(i) for some i and r < 0 and this holds iff C"M ~ 0 for some
r >0, (2) M ~C"I(i) for some i and r > 0 and this holds iff C"M ~ 0 for some r < 0,
or (8) C™M 20 for allr € Z. An M satisfying (1) is called preprojective, if it satisfies
(2) it is called preinjective and regular if (3) holds. O

Lemma 5.23. If C"P(i) ~ C*P(j) # 0, then i = j and r = s, and similarly for I(k).
Proof. If C"P(i) ~ C*P(j) # 0, then P(i) ~ C*"P(j), so s —r < 0 by Lemma 5.21.
The same argument gives that » —s < 0, hence r = s. Thus P(i) ~ P(j),soi=j. O

Definition. Let () be a quiver of Euclidean type. The defect of a vector x € Z" is the
number dx = (0,z) = —(z,d). The defect M of a representation M is defined to be
odimM .

Lemma 5.24. Let M be an indecomposable representation. Then M s preprojective iff
OM < 0, preinjective iff OM > 0 and regular if and only if OM = 0.

Proof. We know that dimC"N = ¢"dimN for any representation N with C"N # 0. If
M ~ C"P(i), then

OM = —(c"(dimP(i)), ) = —(dimP(i), ) = —¢; < 0.
The preinjective case is proved analogously. For the regular case use Lemma 5.16. [

Proposition 5.25. Let (Q be a Euclidean diagram without oriented cycles and n vertices.
Then C7"P(i) and C"I1(i), r € N, i € Qo, give 2n infinite families of pairwise non-
1somorphic representations.

Proof. We only need to show that C~"P(:) # 0 and C"I(i) # 0 for all r > 0. If

C~"P(i) = 0, then P(i) is preinjective. Since preprojectives and preinjectives have
different defects by the previous lemma, the claim follows. O
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