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Abstract

We use a tensor structure on a triangulated category to turn the Grothendieck
group into a ring and characterize all dense “‘subrings” of the triangulated cat-
egory by subrings of the Grothendieck ring. Further, we apply the spectrum
construction to study the connection between the number of Fourier-Mukai part-
ners of a given scheme and the number of tensor structures on its derived cat-
egory. In the last chapter we compute the spectra of some tensor triangulated
categories which arise in algebraic geometry.
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Chapter 1

Introduction

The focus of this study are tensor triangulated categories in algebraic geometry.
The starting point was Balmer’s paper [3] which defined a ringed space for any
given tensor triangulated category. The most important example of such struc-
tures in algebraic geometry is the derived category of (quasi-)coherent sheaves
on a scheme X. One of the fundamental results in [3] was that the spectrum
of the bounded derived category of perfect complexes Dperf(X) on a noetherian
scheme X is actually isomorphic to X. Thus the scheme structure is completely
encoded in the homological data described by the derived category. More gen-
erally this approach provides a possibility to extract geometry from homological
data.
The study is divided into four chapters. The first one covers the basics about
tensor triangulated categories, in particular about derived categories. Most
facts presented are standard however some proofs are included since there are
no suitable references. The main facts of the spectrum construction from [3]
are given along with some new definitions and propositions which underline the
similarity of tensor triangulated categories to (semi-)rings.
Chapter 2 deals with the Grothendieck group which is defined for any trian-
gulated category. Since the studied categories have an additional structure
this allows us to make the Grothendieck group into a commutative ring. We
discuss the connections between the various construction of the Grothendieck
group respectively ring for a scheme X and give an explicit description of the
Grothendieck ring of the projective line.
In Chapter 3 we apply the spectrum construction to study the connection be-
tween the number m of Fourier-Mukai-partners of a given scheme X and the
number n of tensor structures on the derived category of X. This question
is interesting since a tensor structure which does not correspond to a Fourier-
Mukai-partner of X gives a new ringed space associated to X via the spectrum
construction and one may ask when this ringed space is a scheme or a variety.
We prove that m ≤ n and give explicit examples where m < n.
In the fourth and final chapter we turn to examples. First we present examples of
prime ideals in homotopy categories before turning to geometric examples: We
compute spectra of “subrings” of derived categories of certain schemes. Since
these “subrings” are not of the form Dperf(X) for a scheme X these examples
are not covered by the results in [3] and are presumably the first computations
of this sort in the geometrical context.
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Chapter 2

Preliminaries

2.1 Triangulated categories

Definition 2.1.1. Let T be an additive category with an additive automor-
phism T : T → T . Tn(A) will sometimes be abbreviated as A[n] and Tn(f) as
f [n]. A sequence of objects and morphisms in T :

A
u // B

v // C
w // TA

will be called a triangle and sometimes written as (A,B,C, u, v, w). C is called
a cone of u. A morphism of triangles is a commutative diagram:

A
u //

f

��

B
v //

g

��

C
w //

h
��

TA

Tf

��
A′

u′ // B′
v′ // C ′

w′ // TA′

Two triangles are called isomorphic if all the vertical arrows are isomorphisms.
T with the so called translation or shift functor T is called a triangulated category
if there is a class of so called exact (or distinguished) triangles fulfilling the
following axioms:

TR1: • Every morphism A
u−→ B can be completed to an exact triangle.

• The sequence A
id // A // 0 // TA is an exact triangle.

• Any triangle isomorphic to an exact one is itself exact.

TR2: A triangle A
u // B

v // C
w // TA is exact if and only if the ro-

tated triangle B
v // C

w // TA
−Tu // TB is exact.

TR3: Given two exact triangles and two morphisms f : A→ A′ and g : B → B′

such that gu = u′f there exists a morphism h : C → C ′ such that the
following diagram is a morphism of triangles:

A
u //

f

��

B
v //

g

��

C
w //

h
��

TA

Tf

��
A′

u′ // B′
v′ // C ′

w′ // TA′
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TR4: For all commutative diagrams

X2

u1

!!
X1

u2 //

u3

==

X3

and distinguished triangles

X1
u3 // X2

v3 // Z3
w3 // X1[1]

X2
u1 // X3

v1 // Z1
w1 // X2[1]

X1
u2 // X3

v2 // Z2
w2 // X1[1]

there exist two morphisms:

m1 : Z1
// Z2

m3 : Z2
// Z1

such that (idX1 , u1,m1) and (u3, idX3 ,m3) are morphisms of triangles and

Z3
m1 // Z2

m3 // Z1

v3[1]w1// Z3[1]

is a distinguished triangle.

Remark 2.1.2. Let (A,B,C, u, v, w) be an exact triangle in a triangulated
category T and let E be an object in T . Then the induced sequences of abelian
groups are exact:

Hom(E,A)
u∗ // Hom(E,B)

v∗ // Hom(E,C)

Hom(C,E)
u∗ // Hom(B,E)

v∗ // Hom(A,E)

TR2 gives that the sequences Hom(E,B)
v∗ // Hom(E,C)

w∗ // Hom(E,A[1])

and Hom(A[−1], E)
v∗ // Hom(C,E)

w∗ // Hom(B,E) are exact as well and

therefore one obtains long exact sequences.

Remark 2.1.3. If f : A −→ B is a morphism in a triangulated category T
then TR1 gives the existence of a cone of f . It follows from 2.1.2 that if two of
the vertical arrows in a morphism of triangles are isomorphisms then so is the
third and therefore a cone is unique up to a non-canonical isomorphism.

Definition 2.1.4. Let T and T ′ be triangulated categories. An additive functor
F : T → T ′ is called a triangulated or exact functor if it commutes with the
translation functors, i.e. the functors F ◦T and T ′ ◦F are isomorphic, and if F
transforms exact triangles into exact triangles.



Definition 2.1.5. Let T be a triangulated category and C be a full additive
subcategory. C is called a triangulated subcategory if we have the following:
Whenever two of the three objects of an exact triangle belong to C then so does
the third.

Remark 2.1.6. It is possible to replace 2.1.5 with the following equivalent
condition which is quite useful when dealing with triangulated subcategories of
the derived category of a scheme: C is closed under shifts, isomorphisms and
taking cones. We will give the proof since there does not seem to be a suitable
reference.

Proof. (⇒) Let A be an object of C such that f : A
∼−→ B. Then we have the

following commutative diagram of triangles:

A
id //

id
��

A //

f

��

0 //

��

TA

id
��

A
f // B // 0 // TA

Since these triangles are isomorphic and the upper one is exact the lower one is

exact as well and therefore B ∈ C. Now let A
f−→ B be a morphism between

objects in C. It follows easily from TR1 that C is closed under taking cones.
Finally TR2 gives that

A // 0 // TA
− id // TA

is an exact triangle and therefore TA is an object in C.
(⇐) Let

A
f // B // cone(f) // TA

be a triangle. Then we have to consider three cases:

• A,B ∈ C. Then cone(f) is determined up to a non-canonical isomorphism
and therefore is an object in C.

• B, cone(f) ∈ C. Then TR2 gives that

B // cone(f) // TA // TB

is an exact triangle so TA ∈ C and therefore A ∈ C.

• A, cone(f) ∈ C. Then by TR2 again

T−1cone(f) // A // B // cone(f)

is a triangle and therefore B ∈ C.

�

Definition 2.1.7. Let T be an additive category. An additive subcategory C
is called thick if it is closed under direct summands, i.e. A⊕B ∈ C implies that
A, B ∈ C.
C is called dense or cofinal if for every object A in T there exists an object A′

in T such that A⊕A′ ∈ C.



Remark 2.1.8. Let C be a dense and thick subcategory. Let A be an object in
T . Then there exists an object A′ in T such that A⊕ A′ ∈ C since C is dense.
But then A ∈ C, since C is thick, so C = T .

Definition 2.1.9. A tensor triangulated category is a triple (T ,⊗,1) consisting
of a triangulated category T , a distinguished object 1 and a covariant bifunctor
⊗ which is exact in every variable, i.e. the functors −⊗A and A⊗− are exact
for all objects A, and there are four natural isomorphisms:

A⊗ 1 ∼= A 1⊗A ∼= A A⊗ (B ⊗ C) ∼= (A⊗B)⊗C A⊗B ∼= B ⊗A.

A full additive subcategory C of a tensor triangulated category T is a tensor
triangulated subcategory if it is a triangulated subcategory and if the tensor
product in T restricts to a tensor product in C.
A tensor triangulated functor F between tensor triangulated categories T and
T ′ is a triangulated functor sending the unit to the unit, F (1T ) = 1T ′ , and
respecting the given tensor structures, i.e. F (A⊗T B) = F (A)⊗T ′ F (B) for all
objects A and B in T .

Definition 2.1.10. Let T and T ′ be tensor triangulated categories. Then
T ⊕ T ′ is again a tensor triangulated category with triangulation and tensor
structure defined componentwise.

Convention: Whenever it will be necessary to avoid set-theoretical difficulties
we will assume our categories to be essentially small, i.e. having an isomorphy
set of objects.

2.2 Complexes and homotopies

Recall that an abelian category A is an additive category in which:

1. Every morphism f : B → C has a kernel and cokernel.

2. Every monic arrow is a kernel and every epi arrow is a cokernel (Recall
that f : B → C is called monic if fg1 6= fg2 for every g1 6= g2 : A → B
and f : B → C is called epi if h1f 6= h2f for every h1 6= h2 : C → D).

Example 2.2.1. Let R be a commutative ring with identity. Then the category
A = R−Mod of R-modules is an abelian category. The (sub)category R−mod
of finitely generated R-modules is always addtive and it is abelian if and only
if R is a noetherian ring.

Example 2.2.2. Let X be a scheme. The category Sh(X) of sheaves of OX -
modules on X is an abelian category. The same is true for Qcoh(X), the cat-
egory of quasi-coherent sheaves on X. If X = Spec(R) is affine then Qcoh(X)
is equivalent to R−Mod (see [11], chapter II.5, corollary 5.5).

Example 2.2.3. Let X be a noetherian scheme. Then Coh(X), the category
of coherent sheaves of OX -modules on X is abelian. Similarly to the previous
example this category is equivalent to R−mod if X = Spec(R).



Let A be an abelian category. Recall that a complex A• is a sequence of
objects and morphisms in A of the form

. . . // Ai−1 di−1
// Ai

di // Ai+1 di+1
// . . .

such that di ◦ di−1 = 0 for all i ∈ Z. A morphism f : A• → B• between
complexes is a commutative diagram

. . . // Ai−1
di−1
A //

fi−1

��

Ai
diA //

fi

��

Ai+1
di+1
A //

fi+1

��

. . .

. . . // Bi−1
di−1
B // Bi

diB // Bi+1
di+1
B // . . .

These morphisms are also called chain maps. So we have a category of complexes
Kom(A) of an abelian category A where the objects are complexes and the
morphisms are chain maps. Kom(A) is an abelian category. If A is additive
then Kom(A) is only additive as well.

Remark 2.2.4. Mapping an object A ∈ A to the complex A• with A0 = A and
Ai = 0 ∀ i 6= 0 identifies A with a full subcategory of Kom(A). Such a complex
is sometimes called a 0-complex.

Definition 2.2.5. Let A• be a complex.

1. The cohomology Hi(A•) of A• is defined as

Hi(A•) = ker(di)/im(di−1)

A complex morphism f : A• → B• induces a natural homomorphism
Hi(f) : Hi(A•)→ Hi(B•) ∀ i ∈ Z.

2. f is called a quasi-isomorphism if the induced map Hi(f) is an isomor-
phism for all i ∈ Z.

3. A• is called acyclic or exact if Hi(A•) = 0 ∀ i ∈ Z.

4. A• is called split if there exists a collection of morphisms si : Ci → Ci−1,
i ∈ Z, such that disi−1di = di ∀ i ∈ Z. A split complex which is acyclic is
called split exact.

Remark 2.2.6. Note that two complexes can have isomorphic cohomology but
no chain map between them which is a quasi-isomorphism. Take for example
A• = [. . . → 0 → Z π→ Z/5Z → 0 → . . .] where π denotes the canonical
projection and Z sits in degree 0. Furthermore take B• to be the 0-complex
Z. These complexes have isomorphic cohomology, Z ∼= 5Z in degree 0 and 0
everywhere else, but there is no map from Z to Z which induces the above
isomorphism on cohomology.

Definition 2.2.7. Two chain maps f, g : A• → B• are called homotopic,
f ∼ g, if there are morphisms hi : Ai → Bi−1, i ∈ Z, such that f i − gi =
hi+1 ◦ diA + di−1

B ◦ hi.
The homotopy category of complexes K(A) is defined to be the category with
Ob(K(A))=Ob(Kom(A)) and HomK(A)(A

•, B•) := HomKom(A)(A
•, B•)/ ∼.



See ([9], III.1.2) for details.
Furthermore we define the categories K+(A) and K−(A) to be the full subcat-
egories of K(A) consisting of those complexes A• such that Ai = 0 for i � 0
and i � 0 respectively. Kb(A) is defined to be the sull subcategory consisting
of bounded complexes.

Remark 2.2.8. Since there are no homotopies between maps of 0-complexes
A can be considered as a full subcategory in K(A).

Definition 2.2.9. Let A• be a complex and f : A• → B• be a chain map in
Kom(A).

1. Let n ∈ Z. Then A•[n] is the complex with (A•[n])i := Ai+n and diA[n] :=
(−1)ndi+nA . The shift of f is the chain map f [n] : A•[n] → B•[n] given
by f [n]i := f i+n. This defines a shift functor T : Kom(A) → Kom(A),
A• 7→ A•[1], which is clearly an equivalence. The same is true for K(A).

2. The mapping cone of f is the complex C(f) defined by

C(f)i := A[1]i ⊕Bi = Ai+1 ⊕Bi and diC(f) :=

(
−di+1

A 0
f i+1 diB

)
There are two natural complex morphisms i : B• → C(f) and π : C(f)→ A•[1].
Having established what a mapping cone is we can now introduce triangles in
K(A) as being isomorphic to a sequence of the form:

A•
f // B•

i // C(f)
π // A•[1]

We then get the

Theorem 2.2.10. K(A) is a triangulated category (for proof see e.g. [9], IV.1.9-
14 or [24], ch.10). The full subcategories K∗(A), where ∗ = +,−, b are triangu-
lated.

Remark 2.2.11. If F : T → T ′ is an exact functor between triangulated
categories and C is a triangulated subcategory of T it is in general not true that
the image of C under F is a triangulated subcategory in T ′. As an example
consider T ′ =K(A) where A = K − Mod is the category of K-vector spaces.
As T = C we consider the category of complexes where the complexes only
have Kn (n ∈ N) as objects. Then the inclusion functor is exact, but T is
not a triangulated subcategory of T ′ since it is not closed under isomorphisms.
However the essential image of F , i.e. the subcategory of T ′ consisting of all
objects isomorphic to some object of the image of F , is always a triangulated
subcategory as can be easily shown.

Definition 2.2.12. Let T be a triangulated, A an abelian category and H :
T → A an additive functor. H is called (co)homological if for every exact

triangle A // B // C // TA the induced sequence of objects in A
H(A) // H(B) // H(C) is exact.

Example 2.2.13. The functors Hom(- ,E) and Hom(E, -) are cohomological
for all objects E as was remarked in 2.1.2.
If T = K(A) then the homology functor Hi is a cohomological functor for all
i ∈ Z. Similarly to 2.1.2 one gets a long exact sequence.



Remark 2.2.14. Let f : A• → B• be a chain map. Then f is a quasi-
isomorphism if and only if the mapping cone of f is an acyclic complex. This
follows immediately from the long exact sequence in 2.2.13.

Definition 2.2.15. Let A = R − Mod and consider the homotopy category
K(A). The tensor product ⊗R in A induces a tensor product of complexes
defined by:

(A• ⊗B•)n :=
⊕
i+j=n

Ai ⊗R Bj and

dnA⊗B(ai ⊗ bj) := diA(ai)⊗ bj + (−1)iai ⊗ djB(bj).

The following proposition is well-known but since we could not find its proof
in the literature we include (a part of) it here.

Proposition 2.2.16. The above defined tensor product makes K(A) a tensor
triangulated category.

Proof. The unit is the 0-complex R and the defined tensor product is obviously
symmetric. It remains to prove that the tensor product is associative and exact
(in the sense of 2.1.4). First the associativity: Let A•, B• and C• be complexes.
Then:

[(A• ⊗B•)⊗ C•]n =
⊕
i+j=n

(A• ⊗B•)i ⊗ Cj =
⊕
i+j=n

( ⊕
k+l=i

Ak ⊗Bl
)
⊗ Cj =

=
⊕

k+l+j=n

Ak⊗Bl⊗Cj =
⊕

k+m=n

Ak⊗

 ⊕
l+j=m

Bl ⊗ Cj
 =

⊕
k+m=n

Ak⊗(B•⊗C•)m

= (A• ⊗ (B• ⊗ C•))n

So the objects in the complexes are equal. Let us have a look at the differentials:

dn(A•⊗B•)⊗C•((a
k⊗bl)⊗cj) = dk+l

A•⊗B•(a
k⊗bl)⊗cj+(−1)k+l(ak⊗bl)⊗djC•(c

j) =

dkA•(a
k)⊗ bl ⊗ cj + (−1)kak ⊗ dlB•(bl)⊗ cj + (−1)k+lak ⊗ bl ⊗ djC•(c

j) = (∗)

On the other hand:

(∗) = dkA•(a
k)⊗bl⊗cj +(−1)kak⊗dlB•(bl)⊗cj +(−1)k(−1)lak⊗bj⊗djC•(c

j) =

dkA•(a
k)⊗ (bl ⊗ cj) + (−1)kak ⊗ dl+jB•⊗C•(b

l ⊗ cj) = dnA•⊗(B•⊗C•)(a
k ⊗ (bl ⊗ cj))

The exactness is proved with similar (long but easy) calculations. �

Remark 2.2.17. 2.2.15 is not valid for arbitrary abelian categories. For exam-
ple consider a noetherian ring R so that the category A = R−mod is abelian.
The tensor product of two complexes in K(R−mod) need not be a complex of

finitely generated R-modules. Take e.g. R = Z and A• := [. . .
0→ Z 0→ Z 0→

Z 0→ . . .] ∈ Ob(K(A)). The tensor complex A• ⊗ A• is not an object in K(A).
However the above construction is possible if e.g. A = Sh(X) is the category
of sheaves of OX -modules on a scheme. A = Coh(X) is possible if we take the
bounded homotopy category.



2.3 Derived categories

Definition 2.3.1. Let A be an abelian category and consider the category of
complexes Kom(A). The derived category D(A) is a category together with a
functor Q : Kom(A)→ D(A) such that:

1. Q(f) is an isomorphism for every quasi-isomorphism f .

2. For every category B with a functor F : Kom(A) → B which transforms
quasi-isomorphisms into isomorphisms there exists a unique functor G :
D(A)→ B such that F = G ◦Q.

In order to prove the existence of the derived category and to be able to describe
its structure one first passes over to the homotopy category K(A). Then one
localizes K(A) with respect to the quasi-isomorphisms. This process is described
more generally in the following

Definition 2.3.2. Let T be a triangulated category and C a thick triangulated
subcategory. The Verdier localization of T at C, denoted by T /C, is the category
obtained by formally inverting those morphisms whose cone is an object in C. It
is a triangulated category with triangles defined as being isomorphic to the image
of a triangle in T via the natural functor T → T /C. It has a universal property,
namely: Every functor to a triangulated category which makes morphisms whose
cone is in C to isomorphisms factors through T /C.

It turns out that the derived category D(A) can be obtained by localizing K(A)
with respect to quasi-isomorphisms. The category C is in this case the category
of all acyclic complexes, cf. 2.2.14 and note that any acyclic complex A• is a
cone of the quasi-isomorphism 0→ A•. The localization then gives that:

Ob(D(A)) = Ob(K(A)) = Ob(Kom(A))

and that a morphism between objects A• and B• in D(A) can be represented
by a roof of the form:

C•

s

}}

f

!!
A• B•

with s being a morphism whose cone is in C (in our case s is a quasi-isomorphism)
and f a chain map. For details see [9], III.2 or [19], chapter 2. Note the similarity
to the construction of the localization of a ring.

Remark 2.3.3. One can also consider D∗(A) with ∗ = +,−, b. The natural
functors D∗(A)→ D(A) define equivalences of D∗(A) with the full triangulated
subcategories of D(A) formed by complexes A• with Hi(A•) = 0 for i� 0, i� 0
and |i| � 0. There is also an equivalence between A and the subcategory in
D(A) consisting of complexes A• with Hi(A•) = 0 for i 6= 0. Such a complex is
often called a H0-complex.

Example 2.3.4. Let A be a semi-simple abelian category, i.e. a category where
every exact triple is isomorphic to a triple of the form

0 // X
i // X ⊕ Y

p // Y // 0



where i denotes the inclusion and p the projection. Then D(A) is equivalent
to the category Kom0(A) whose objects are cyclic complexes (all differentials
are zero). An example for a semi-simple category is A = K−Mod. A counter-
example is the category of abelian groups.

Example 2.3.5. Denote by I and P the full additive subcategories of an abelian
category A containing all injective respectively projective objects. Define K∗(I)
and K∗(P) where ∗ = +,−, b, ∅ in the obvious way. If A contains enough
injectives/projectives then the natural functors i : K+(I)→ D+(A) respectively
i : K−(P)→ D−(A) are equivalences.

Remark 2.3.6. If 0 // A•
u // B•

v // C• // 0 is an exact sequence

in Kom(A) then there is a morphism C•
w // A•[1] making the sequence

(A,B,C, u, v, w) a triangle in D(A). Furthermore every triangle in D(A) is
isomorphic to one obtained in this way (see [9], IV.2.8). This is not true for
K(A).

Definition 2.3.7. Let X be a noetherian scheme. A complex A• on X of
sheaves of OX -modules is called perfect if for every point x ∈ X there is a
neighbourhood U ⊂ X such that A•|U is quasi-isomorphic to a bounded complex

of locally free OX -modules. We denote by Dperf(X) the full subcategory of
perfect complexes in D(Sh(X)). It is in fact a thick triangulated subcategory.

Remark 2.3.8. X is smooth if and only if Dperf(X) is equivalent to Db(Coh(X)).

Convention: If X is a scheme we denote by D∗(X) (where ∗ = +,−, b, ∅) the
derived category D∗(Coh(X)).

2.4 Derived functors

If F : A → B is an additive functor between abelian categories, then a natural
question to ask is how to define an extension of F on the level of derived cate-
gories. This will not work in general but only for functors F which are at least
half-exact (in the abelian sense). Their extensions will be exact functors in the
triangulated sense. The extension of such a functor F to the level of the ho-
motopy category is straightforward by applying F to the objects of a complex.
The passing to the derived world is trickier: If we take an acyclic complex A• in
K(A) it becomes isomorphic to 0 in D(A) so the extension of F on the derived
level must take A• to 0 in D(B), i.e. an acyclic complex. Thus we see that
we cannot define the derived functor of F as easily as K(F ), its extension to
the homotopy category, because in general such a functor would not transform
acyclic complexes into acyclic ones. The basic idea in the construction of the
derived functor is the following: Take an arbitrary complex A• in D(A) replace

it with an isomorphic complex Ã• which has adapted objects and then apply F
to Ã• term by term. We will not delve into the general theory but just mention
that a class of objects R in A is adapted to a left/right exact functor F if F
maps any acyclic complex from Kom+(R)/Kom−(R) to an acyclic complex and
any object in A is a subobject/quotient of an object in R. Let us consider the
functors which will be of interest in the following. Our description follows [13].



Tensor product. Let X be a projective scheme over a field K and F ∈
Coh(X). Then we have the right exact functor F ⊗ ( ) and we are looking for
its left derived functor. By assumption on X every sheaf admits a resolution by
locally free sheaves. Using the fact that for an acyclic complex E• the complex
F⊗E• is still acyclic we conclude that the class of locally free sheaves is adapted
to F ⊗ ( ), i.e. we get the left derived functor

F ⊗L ( ) : D−(X) −→ D−(X)

If X is smooth of dimension n then any coherent sheaf admits a locally free
resolution of length n so F ⊗L ( ) is defined on the bounded derived category.
In the more general situation, i.e. if we consider a complex F•, one has to show
that the subcategory of complexes of locally-free sheaves is adapted to F•⊗ ( ).
The situation is summarized in the following diagram:

D−(X)×D−(X)
⊗L // D−(X)

Db(X)×Db(X)
?�

OO

X smooth // Db(X)
?�

OO

Let us mention that for a scheme X which is not necessarily projective one uses
flat sheaves instead of locally free ones.

Local Homs. Let X be a noetherian scheme, then for any F ∈ Qcoh we
have the left exact functor

Hom(F , ) : Qcoh(X)→ Qcoh(X)

The class of injective objects in Qcoh(X) is adapted to this functor so we get
the right derived functor RHom. The general situation is summarized in the
following diagram

D−(Qcoh(X))opp ×D+(Qcoh(X))
RHom // D+(Qcoh(X))

D−(X)opp ×D+(X)
?�

OO

// D+(X)
?�

OO

Db(X)opp ×Db(X)
?�

OO

X regular // Db(X)
?�

OO

Inverse image. If f : (X,OX) → (Y,OY ) is a morphism of ringed spaces
one defines the inverse image functor f∗ : ShOY → ShOX to be the compo-
sition of the exact functor f−1 and the right exact functor OX⊗f−1(OY ), i.e.
f∗(F) = OX ⊗f−1(OY ) f

−1(F). Thus, f∗ is right exact and it is possible to
construct its left derived functor Lf∗ using flat sheaves. If f is a flat morphism
then f∗ is exact and therefore does not need to be derived.

Convention: From now on functors between derived categories will always
be assumed to be derived. We will omit the extra symbols, e.g. ⊗L will be
denoted by ⊗ when working in the derived world.



2.5 The spectrum of a tensor triangulated cate-
gory

The main references for the following section are [3] and [4].

Definition 2.5.1. Let T be a tensor triangulated category. A full additive
subcategory C is called a thick tensor ideal if:

(i) C is a thick triangulated subcategory;

(ii) For all C ∈ C and for all D ∈ T one has that C ⊗D ∈ C.

P is called a prime ideal if P is a proper thick tensor ideal and if:

A⊗B ∈ P =⇒ A ∈ P or B ∈ P

Now the spectrum of T is defined to be the set of all prime ideals in T :

Spc(T ) = {P,P prime in T }

Remark 2.5.2. Note the similarity to the definition of primes in commutative
algebra. However, some of the following definitions will not have this property.

Having associated a set to a tensor triangulated category we now endow this
set with a topology:

Definition 2.5.3. Let A ∈ T . The support of A is defined to be the subset

supp(A) = {P ∈ Spc(T ) | A /∈ P} ⊂ Spc(T )

Accordingly let S be an arbitrary family of objects in T and define:

Z(S) = {P ∈ Spc(T ) | S ∩ P = ∅} =
⋂
A∈S

supp(A).

The collection of these subsets defines the closed subsets of the so called Zariski
topology on Spc(T ). The sets U(A) = Spc(T ) \ supp(A) define a basis of open
subsets for this topology.

Remark 2.5.4. Let P be a prime in T and consider the Verdier localization
T /P of T in P. Since we have the exact triangle 0 // P // P // 0
(P ∈ P) all objects of P become isomorphic to zero in T /P. Using this descrip-
tion one has

supp(A) = {P ∈ Spc(T ) | A 6= 0 in T /P}

Remark 2.5.5. Let T be a non-trivial tensor triangulated category and A ∈ T .
We list some properties of the spectrum and the support:

(i) Spc(T ) 6= ∅;

(ii) For every proper thick ⊗-ideal J there exists a maximal proper thick
⊗-ideal P with J ⊂ P and P is prime;

(iii) supp(A) = ∅ ⇐⇒ ∃ ≥ 1 such that A⊗n = 0;



(iv) supp(A) = Spc(T ) ⇐⇒ 〈A〉 = T where 〈A〉 denotes the smallest thick
⊗-ideal containing A, i.e. the intersection of all thick ⊗-ideals containing
A;

(v) supp(A⊕B) = supp(A) ∪ supp(B);

(vi) supp(TA) = supp(A);

(vii) If A // B // C // TA is a triangle then supp(A) ⊂ supp(B) ∪
supp(C);

(viii) supp(A⊗B) = supp(A) ∩ supp(B).

“Dual” properties hold for the open complements.

Proposition 2.5.6. ([3], Proposition 2.9.) Let P ∈ Spc(T ). Then {P} =
{Q ∈ Spc(T ) | Q ⊂ P}.

Proof. Set S := T \ P. Then P ∈ Z(S) and if P ∈ Z(S′) then S′ ⊂ S and
therefore Z(S) ⊂ Z(S′). It follows that Z(S) is the smallest closed subset
containing P, i.e. its closure in Spc(T ). �

Remark 2.5.7. This result shows that not everything is the same as in com-
mutative algebra where the closure of a prime ideal consists of all prime ideals
containing it. However ([3], Proposition 2.11.) tells us that for every prime P
there is a minimal prime P ′ such that P ′ ⊂ P.

Proposition 2.5.8. ([3], Proposition 2.18.) Let Z 6= ∅ be an irreducible closed
subset in Spc(T ). Then Z = {P} where P = {A ∈ T | U(A) ∩ Z 6= ∅}. There-
fore if Spc(T ) is noetherian then it is a Zariski space.

Proposition 2.5.9. ([3], Proposition 3.6.) The spectrum is functorial: Given
a ⊗-triangulated functor F : T → T ′ the map

Spc(F ) : Spc(T ′)→ Spc(T ), Q 7→ F−1(Q)

is well-defined, continuous and for all A ∈ T we have Spc(F )−1(suppT (A)) =
suppT ′(F (A)). Given another ⊗-triangulated functor G : T ′ → T ′′ we have
Spc(G ◦ F ) = Spc(F ) ◦ Spc(G).

Remark 2.5.10. In general there are two possibilities to define F−1(Q):

(i) F−1(Q) = {A ∈ T | F (A) ∈ Q},

(ii) F−1(Q) = {A ∈ T | ∃B ∈ Q : F (A) ∼= B}.

Since Q is closed under isomorphisms these two definitions coincide.

Proof. Let Q ∈ Spc(T ′). Then F−1(Q) is clearly a thick additive subcategory

in T since F is an additive functor. Next let A // B // C // TA be
a triangle in T such that A,B ∈ F−1(Q). Then

F (A) // F (B) // F (C) // F (TA) = T (F (A))

is a triangle in T ′ with F (A), F (B) ∈ Q so that F (C) ∈ Q and therefore
C ∈ F−1(Q). Now let A⊗B ∈ F−1(Q). Then F (A⊗B) = F (A)⊗ F (B) ∈ Q,



so, since Q is prime, w.l.o.g. F (A) ∈ Q and A ∈ F−1(Q), i.e. F−1(Q) is prime.
The proof that F−1(Q) is a thick ⊗-ideal is similar. So Spc(F ) is well-defined.
Now:

Spc(F )−1(suppT (A)) = Spc(F )−1 {P ∈ Spc(T ) |A /∈ P} =

=
{
Q ∈ Spc(T ′) |A /∈ F−1(Q)

}
= {Q ∈ Spc(T ′) | F (A) /∈ Q} = suppT ′(F (A))

Since the subsets supp(−) form a basis for the topology on Spc(T ) it follows
that Spc(F ) is continuous. Finally if F,G are both ⊗-triangulated then so is
G ◦ F and the rest is clear. �

Next we quote some results from [3] which will be used later on.

Proposition 2.5.11. ([3], Corollary 3.7.) If F, F ′ : T → T ′ are isomorphic
⊗-triangulated functors, then Spc(F ) = Spc(F ′).

Corollary 2.5.12. If F : T → T ′ is an equivalence, then Spc(F ) is a homeo-
morphism.

Proposition 2.5.13. ([3], Proposition 3.11.) Let I be a thick ⊗-ideal in T
and consider the ⊗-triangulated localization functor q : T → T /I. Then
the map Spc(q) induces a homeomorphism between Spc(T /I) and the subset
{P ∈ Spc(T ) | I ⊂ P} of Spc(T ).

Proposition 2.5.14. ([3], Proposition 3.13.) Let C be a full dense triangulated
subcategory in T having the same unit. Then the map Spc(i) : Spc(T ) →
Spc(C), where i is the inclusion functor, is a homeomorphism.

Definition 2.5.15. Let T be a ⊗-triangulated category and A ∈ T .

i. A is called a unit if there exists a B ∈ T such that A⊗B ∼= 1;

ii. A is called a t-generator if 〈A〉 = T , i.e. the smallest thick ⊗-ideal con-
taining A equals to T ;

iii. A is called a zero-divisor if there exists B 6= 0 ∈ T such that A⊗B ∼= 0.

Remark 2.5.16. Let us list some properties of the above defined objects.

• The product of two units is again a unit.

• Let A be a unit. Then so is T (A) since if A⊗B ∼= 1 then T (A)⊗T−1(B) ∼=
1.

• Let A be a t-generator. Then for all objects B ∈ T we have that A⊕ B
is a t-generator.

Remark 2.5.17. The above definitions are of course inspired by commutative
algebra. Certain properties turn out to be the same as in ring theory (and so
are the proofs), e.g.:

• A zero divisor is not a unit.

• If A is a unit, then A is a t-generator.



But the converse of the second statement is not true. Consider e.g. a principal
ideal domain R and the homotopy category K(R−Mod). Then R2, considered as
a 0-complex is a t-generator, but it cannot be a unit: Assume for a contradiction
that there exists a complex A• such that A• ⊗ R2 ∼= 1 in K(R − Mod). In
particular the isomorphy is a quasi-isomorphy. Therefore R ∼= H0(A• ⊗ R2) =
H0(A•)⊗R2 = H0(A•)2, contradiction. See chapter 3 for more examples.
Therefore some statements of commutative algebra have to be adjusted, e.g.: It
is again true that every element which is not a unit is contained in a maximal
thick prime ideal. In our setting this statement is also true for every non-t-
generator.

Proposition 2.5.18. Let T be a tensor triangulated category such that Spc(T )

is irreducible. Let A // B // C // T (A) be a triangle. Then if one

of the objects is a t-generator at least one of the other two also has this property.

Proof. W.l.o.g. we assume that A is the given t-generator. Then Spc(T ) =
supp(A) = supp(B)∪supp(C). Since Spc(T ) is irreducible one of the two sets
has to be Spc(T ), i.e. either B or C is a t-generator. Rotation of the triangle
gives the result. �

Example 2.5.19. Consider Db(P1
C). The exact sequence in Coh(X)

0 // O(k) // O(k + 1) // k(x) // 0

(where k(x) is the skyscraper sheaf in a closed point x ∈ P1
C) gives rise to an

exact triangle in Db(P1
C). It will follow from 2.5.23 that skyscraper sheaves are

not t-generators in Db(P1
C) so the statement of the previous proposition cannot

be strengthened.

Remark 2.5.20. The previous proposition is not true if we replace “t-generator”
by “unit”. To see this consider the homotopy category of a principal ideal do-

main R. Then the exact sequence 0 // R // R3 // R2 // 0 (with

the obvious maps) gives rise to the triangle R // R3 // R2 // R[1]

in D(R − mod) (see [9], Lemma IV.1.13) and R2, R3 are not invertible in
D(R−mod), see [8].

Proposition 2.5.21. Let F : T → T ′ be a ⊗-triangulated functor. If A ∈T is
a unit/t-generator, then so is F (A).

Proof. The first statement follows immediately from F (A⊗B) ∼= F (A)⊗F (B)
and F (1T ) = 1′T , the second from Spc(F )−1(suppT (A)) = suppT ′(F (A)). �

Definition 2.5.22. Let Y ⊂ Spc(T ). Then the following subcategory is a thick
⊗-ideal:

TY := {A ∈T | supp(A) ⊂ Y } =
⋂

P∈Spc(T )\Y

P.

Theorem 2.5.23. ([3], Corollary 5.6.) Let X be a noetherian scheme and
T := Dperf(X) the derived category of perfect complexes over X. Then there is
a homeomorphism f : X

∼−→ Spc(Dperf(X)) defined by:

f(x) =
{
A ∈Dperf(X) |Ax ∼= 0 in Dperf(OX,x)

}
for all x ∈ X.



Moreover for any perfect complex A ∈ Dperf(X) the closed subset supph(A) :=
{y ∈X |Ay is not acyclic} ⊂ X corresponds via f to the closed subset supp(A) ⊂
Spc(Dperf(X)).

Remark 2.5.24. It is possible to equip Spc(T ) with a structure sheaf as fol-
lows: Let U ⊂ Spc(T ) be an open subset, Z = Spc(T ) \ U and consider
TZ = {A ∈T | supp(A) ⊂ Z} = {A ∈T | supp(A) ∩ U = ∅} = T U . Then we
can consider the localization T /TZ and the image of the unit via the localiza-
tion, denoted by 1U . We know from [2] that EndT /TZ (1U ) is a commutative
ring. If U ′ ⊂ U then Z ⊂ Z ′ and therefore TZ ⊂ TZ′ . Hence from the universal
property of localization we get a canonical functor T /TZ → T /TZ′ . By this we

have defined the following presheaf ÕSpc(T ) of rings:

U 7→ EndT /TZ (1U )

The sheafification of this presheaf will be denoted by OSpc(T ). So we have
made Spc(T ) into a ringed space which will be denoted by Spec(T ). If T =
Dperf(X) as above then OSpc(T ) identifies with OX , i.e. Spec(T ) is isomor-
phic to (X,OX) as a ringed space. This is due to the fact that the canonical
functor Dperf(X)/Dperf(X)U → Dperf(U) induced by the restriction functor
Dperf(X)→ Dperf(U) is fully faithful (see [23]).

The next two propositions are from [7].

Proposition 2.5.25. Let P ∈ Spc(T ). Then the stalk OSpc(T ),P equals to
EndT /P(1).

Proof. First we will show that P =
⋃
P∈U T U .

“⊂” Let A ∈ P. Then P ∈ U0, where U0 denotes the complement of supp(A),
and therefore A ∈ T U0 .
“⊃” Assume A /∈ P. Then by definition P ∈ supp(A) and therefore there is no
open subset U containing P such that supp(A) ∩ U = ∅, i.e. A /∈

⋃
P∈U T U .

Now
OSpc(T ),P = lim −→

P∈U
OSpc(T )(U) = lim −→

P∈U
EndT /T U (1) =

= EndT /
⋃
P∈U (T U )(1) = EndT /P(1)

�

Proposition 2.5.26. If F : T → T ′ is a tensor triangulated functor, then
f := Spc(F ) : Spc(T ′)→ Spc(T ) is a morphism of ringed spaces.

Proof. We have to define a natural morphism of sheaves OSpc(T ) → f∗OSpc(T ′).
Consider an open subset U ⊂ Spc(T ) and f−1(U) ⊂ Spc(T ′).
Claim: We have that F (TZ) ⊂ T ′Z′ where Z = Spc(T ) \ U and Z ′ = Spc(T ′) \
f−1(U).
Assume the converse: Then there exists A ∈ T such that supp(F (A))∩f−1(U) 6=
∅. Let Q ∈ Spc(T ′) be an element of the intersection, i.e. Q ∈ f−1(U) and
F (A) /∈ Q. Then A /∈ F−1(Q) and f(Q) = F−1(Q) ∈ U so that F−1(Q) ∈
U ∩ supp(A) which is a contradiction.
So we have that F (TZ) ⊂ TZ′ and therefore F induces a functor T /TZ →
T ′/T ′Z′ and for every open U ⊂ Spc(T ) we have a morphism ÕSpc(T )(U) →
f∗ÕSpc(T ′)(U) which is clearly compatible with restrictions. This morphism of
presheaves then induces the desired morphism of sheaves. �



Chapter 3

The Grothendieck ring

3.1 Definition and properties

Let T be a triangulated category. Recall that the Grothendieck group K0(T ) is
defined to be the quotient of the free abelian group on the set of isomorphism
classes of T by the Euler relations: [B]=[A]+[C] whenever there exists a triangle
in T :

A // B // C // TA

It has the following universal property: Whenever there is a function f from
the set of isomorphism classes of objects in T to an abelian group G such that
the Euler relations hold, then f factors through K0(T ), i.e. there is a unique
group homomorphism f so that we have the following commutative diagram:

T
f //

[ ] ""

G

K0(T )
f

<<

From the exact triangle A // A⊕B // B // T (A) one gets [A] +

[B] = [A ⊕ B] and from the triangle A // 0 // T (A) // T (A) we

have [T (A)] = −[A]. Furthermore [0] = 0. If F : T → T ′ is a triangulated
functor, then F induces a group homomorphism between K0(T ) and K0(T ′) by
sending [A] to [F (A)].

Proposition 3.1.1. Let T be a tensor triangulated category. Then one can
introduce a commutative multiplication on the Grothendieck group K0(T ) by
setting:

[A] ∗ [B] := [A⊗B]

This definition makes the Grothendieck group a commutative ring with identity.

Proof. One first needs to check that the operation is well-defined. Consider for
example an exact triangle

A′ // B // C ′ // TA′
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so that [B] = [A′] + [C ′] in K0(T ). Now tensoring the triangle with an object
A gives, since the tensor product is an exact functor, a triangle

A′ ⊗A // B ⊗A // C ′ ⊗A // TA′ ⊗A

So in K0(T ) one has:

[A] ∗ ([A′] + [C ′]) = [A] ∗ [A′] + [A] ∗ [C ′] = [A⊗A′] + [A⊗ C ′] = [B ⊗A]

as was to be shown.
The unit element in T serves as the unit in the ring K0(T ). Associativity,
commutativity and distributivity are clear. �

It was shown in [22] that there is a one-to-one correspondence between dense
triangulated subcategories of a triangulated category T and subgroups ofK0(T ).
Since now the triangulated category has an additional structure we get the
following

Proposition 3.1.2. There is a bijective correspondence between dense tensor-
triangulated subcategories C in T containing the unit element and subrings R of
K0(T ).

Proof. As in [22] one considers im(K0(C)) in K0(T ) for a given subcategory
C. To a subring R one considers the full subcategory CR consisting of objects
A such that [A] ∈ R. We know from [22] that these assignments provide the
correspondence on the level of groups. Let us see that the additional structures
are preserved:
The subgroup im(K0(C)) contains the unit since C does. Let [A], [B] ∈ im(K0(C)).
Then [A] ∗ [B] = [A⊗B] ∈ im(K0(C)) since C is closed under ⊗. So im(K0(C))
is indeed a subring of K0(T ).
On the other hand we already know that CR is a dense triangulated subcategory
in T . As before it is clear that it contains the unit and it is closed under ⊗
since for A,B ∈ C one has [A⊗B] = [A] ∗ [B] ∈ R, so A⊗B ∈ C. �

Remark 3.1.3. If we consider an abelian categoryA, e.g. the category Coh(X)
of coherent sheaves on a (noetherian) scheme X, then there are several ways
to define the Grothendieck group of A. Following the above approach we could
consider T = Db(A). On the other hand one can consider A and define the
Grothendieck group to be the free abelian group K0(A) generated by all objects
where we factor out the subgroup generated by relations:

F − F ′ −F ′′

whenever there is an exact sequence 0 // F ′ // F // F ′′ // 0 .
Denote the image of an object F in K0(A) by ψ(F). As in the above case
there is a universal property, namely:
Every additive function λ, i.e. λ(F) = λ(F ′)+λ(F ′′) whenever there is an exact
sequence as above, from A to an abelian group G factors through K0(A). Now
considering an object of A as a 0-complex in T and setting λ = [ ] : A → K0(T )
we see that λ is an additive function because of the Euler relations and therefore



we get a homomorphism Φ : K0(A)→ K0(T ),Φ(ψ(F)) = [F ]. Now considering
a complex A• ∈ T set, in the same notation as above,

f : T → K0(A), A• 7→
∞∑

i=−∞
(−1)iψ(Ai)

If ∆ = A• // B• // C• // A•[1] is a triangle in T then it is isomor-

phic to a triangle of the form ∆′ = X• // Y • // // Z• // X•[1]

such that the sequence of complexes 0 // X• // Y • // Z• // 0 is
exact in Kom(A) (see 2.3.6). The Euler relation holds for ∆′ and therefore for ∆
so we get a homomorphism Θ : K0(T )→ K0(A), Θ([A•]) =

∑∞
i=−∞(−1)iψ(Ai).

Obviously Θ ◦ Φ = id. The other identity will follow from 3.2.1.

Remark 3.1.4. Note that the introduction of multiplication for the Grothendieck
group is in general not straightforward on the level of the abelian category
Coh(X), since the usual tensor product of sheaves is not exact. However for
any noetherian scheme X one can consider the group K0(X) defined in es-
sentially the same way as K0(X) but using locally free coherent sheaves. If
X is a noetherian, integral, separated, regular scheme then the natural map
Ξ : K0(X) → K0(X) is an isomorphism (see [11], Chapter III, Ex.6.9). Ap-
parently K0(X) is a ring with the multiplication being induced by the tensor
product (which is now possible since the considered sheaves are locally free and
therefore tensorizing with them is exact). Then Φ ◦ Ξ : K0(X) → K0(T ) is a
ring isomorphism. It is an isomorphism of abelian groups anyway, and further-
more Φ ◦ Ξ sends the unit to the unit and the derived product of 0-complexes
of locally free sheaves is the usual tensor product so Φ ◦ Ξ is compatible with
the multiplication.

Example 3.1.5. Let X = A1
K for an arbitrary field K. Then we know that

K0(X) = Z using the rank of a (locally free) sheaf. Now 3.1.2 shows that there
are no proper dense tensor triangulated subcategories in D(X) since there are
no proper subrings in Z.
More generally we have that K0(AnK) = Z for all n ∈ N since we can compute
the Grothendieck group using locally free sheaves which correspond to projective
modules over K[x1, ..., xn] and these are free by a theorem which was proven
independently by Quillen and Suslin.

Remark 3.1.6. If X is a smooth projective variety over C then the morphism
groups in T = Db(X) are in fact C-vector spaces. Furthermore we have that
for every pair of objects E,F ∈ T dimC(

⊕
i HomT (E,F [i])) <∞. It is possible

to define a bilinear form, called the Euler form, on K0(T ) via

χ(E,F ) =
∑
i

(−1)i dimC HomT (E,F [i]).

One now defines two objects E1, E2 to be numerically equivalent, E1 ∼num E2,
if χ(E1, F ) = χ(E2, F ) ∀ F ∈ T . The group N(T ) := K0(T )/ ∼num is usually
called the numerical Grothendieck group and has finite rank in our case. Now
using

χ(E ⊗G,F ) =
∑
i

(−1)i dimC HomT (E ⊗G,F [i]) =



=
∑
i

(−1)i dimC HomT (E,Hom(G,F [i])) = 0

we see that N(T ) inherits the ring structure introduced on K0(T ).

3.2 The Grothendieck ring of the projective line

Lemma 3.2.1. For all complexes A• ∈ T we have [A•] =
∑∞
i=−∞(−1)i[Ai] in

K0(T ) where [Ai] denotes the class of the 0-complex Ai.

Proof. By induction on the number of non-zero terms of A•. The claim is trivial

for a 0-complex. For a complex A• = [ Ak
d // Ak+1 ](k ∈ Z and Ak sits in

degree k) note that A• = cone(f) where f : Ak[−(k + 1)]
d−→ Ak+1[−(k + 1)].

Therefore [A•] = (−1)kAk + (−1)k+1Ak+1. To complete the induction consider

A• = [ 0 // Ak
d // Ak+1 // . . . ] where k denotes the index such that

Al = 0 ∀ l < k. Now denote by Ã• the complex with Ãn = An ∀ n > k and

An = 0 otherwise. Then A• = cone(f) where f : Ak[−(k + 1)]
d−→ Ã•. By

induction the claim is true for Ã• and therefore for A•. �

Example 3.2.2. Consider X = P1
C and T = D(Coh(P1

C)). Recall that every

coherent sheaf F on P1
C is of the form F =

⊕k
i=1O(ni) ⊕

⊕l
j=1 Θ(Pj) where

Θ(Pj) denotes a torsion sheaf in a point Pj (note that the Pj are not necessarrily
distinct). Furthermore recall that the rank of a coherent sheaf F on an integral
noetherian scheme is defined to be

rk(F) := dimOξFξ

where ξ denotes the generic point. Obviously the rank of a locally free sheaf of
rank r is r and the rank of a skyscraper sheaf (or more generally of a torsion
sheaf, i.e. a sheaf whose stalk at the generic point is zero) is zero.
Recall from ([11], II, Ex.6.11) that K0(X) = Z ⊕ Z using degree (of the deter-
minant line bundle of a coherent sheaf) and rank. However, the above defined
multiplication is not the usual componentwise multiplication in Z⊕ Z:

Proposition 3.2.3. Let T = Db(Coh(P1
C)). The multiplication on the ring

K0(T ) = Z⊕ Z is given by

(a, b) ∗ (c, d) = (ad+ bc, bd)

Proof. By 3.1.4 we know that K0(T ) ∼= K0(P1
C) so it will be sufficient to prove

the proposition for direct sums of locally free sheaves. Let F = O(n1) ⊕ . . . ⊕
O(nk) and G = O(m1) ⊕ . . . ⊕ O(ml). Then their images in K0(X) are (n1 +
. . .+nk, k) = (deg(F), k) and (m1 + . . .ml, l) = (deg(G), l). The tensor product

F ⊗OX G equals to
⊕l

j=1O(n1 + mj) . . .
⊕l

j=1O(nk + mj) and its image in

K0(X) is (l ·n1 + deg(G) + . . . l ·nk + deg(G), k · l) = (l ·deg(F) +k ·deg(G), k · l)
as was to be shown. �

Remark 3.2.4. A more general description of K0(Pn) for an arbitrary n ∈ N
can be found in [15].

Corollary 3.2.5. The only subrings R of K0(Db(P1
C)) are R = nZ⊕Z, n ∈ N.



Proof. Since R is an abelian subgroup of Z⊕ Z it is of the form R = nZ⊕mZ,
m,n ∈ N. Now R is a subring and contains the unit element which in this case
is (0, 1). Therefore m = 1. �



Chapter 4

D-Equivalences and tensor
structures

Definition 4.0.6. Let X be a noetherian scheme. A scheme Y is called D-
equivalent to X if there is an equivalence of triangulated categories Db(X) ∼=
Db(Y ). We denote by FM(X) the set of isomorphy classes of D-equivalent
schemes of X. These will be also called Fourier-Mukai partners of X.

Remark 4.0.7. The first example of non-isomorphic schemes which are FM-
partners, namely an abelian variety and its dual, was given by Mukai in [17].

We will now consider the map φ : FM(X) → TS(X) from the set of FM-
partners to the set of tensor structures (in the sense of definition 2.1.9) on Db(X)
defined in the following way: Let Y be a Fourier-Mukai partner of X. Define a
new product on Db(X) by setting:

A ∗Y B := F−1(F (A)⊗Y F (B))

This clearly defines a tensor structure on Db(X) with the unit being F−1(1Db(Y )).

Proposition 4.0.8. φ is injective.

Proof. Let Y and Y ′ be two non-isomorphic Fourier-Mukai partners of X and
assume that the induced tensor structures ?Y and ?Y ′ are equal. By definition
of these structures the functors

F : (Db(X), ?Y )→ (Db(Y ),⊗Y )

and

F ′ : (Db(X), ?Y ′)→ (Db(Y ′),⊗Y ′)

are tensor -triangulated equivalences. Therefore they induce maps on the spec-
tra and these are isomorphisms. Since the identity functor id : (Db(X), ?Y ) →
(Db(X), ?Y ′) is also a tensor-triangulated equivalence by assumption we con-
clude that Y ∼= Y ′, contradiction. �

Proposition 4.0.9. φ is not surjective.
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Proof. Let X be connected. We will prove that X is not a Fourier-Mukai partner
of X q X, yet there exists a tensor structure on Db(X q X) such that the
spectrum of Db(X q X) with this structure is X. The proof consists of three
steps.
Step 1. Since Db(X qX) ∼= Db(X)⊕Db(X) we set:

(A,B) ∗ (C,D) := (A⊗X C,A⊗X D ⊕B ⊗X C)

(we will omit X from now on). The associativity and comutativity of this
product is proved in the same way as in commutative algebra where one defines
a new multiplication on the product of two rings in a similar way (with ⊗ being
the multiplication and ⊕ being the addition). The unit element is 1 = (OX , 0).
It remains to show that the defined product is exact in every variable. Because
of the commutativity it suffices to show the exactness of the functor −∗ (A′, B′)
where (A′, B′) is an arbitrary object in Db(X q X). The additivity is clear.
Next we show that − ∗ (A′, B′) is compatible with the shift functor:

((A,B)[1])∗(A′, B′) = (A[1], B[1])∗(A′, B′) = (A[1]⊗A′, A[1]⊗B′⊕B[1]⊗A′) =

((A⊗A′)[1], (A⊗B′)[1]⊕ (B ⊗A′)[1]) = ((A,B) ∗ (A′, B′))[1]

Now consider a triangle in Db(X qX):

(A,B) // (C,D) // (E,F ) // (A,B)[1] = (A[1], B[1])

The product with (A′, B′) gives:

(A⊗A′, A⊗B′ ⊕B ⊗A′) // (C ⊗A′, C ⊗B′ ⊕D ⊗A′) //

(E ⊗A′, E ⊗B′ ⊕ F ⊗A′) // (A[1]⊗A′, A[1]⊗B′ ⊕B[1]⊗A′) .

One now sees immediately that in the first argument we just have the triangle

A // C // E // A[1] tensorized with A′ in Db(X) which is a triangle

since the tensor product in Db(X) is exact. Similarly, in the second argument
we have the direct sum of the triangles

A⊗B′ // C ⊗B′ // E ⊗B′ // A[1]⊗B′

and
B ⊗A′ // D ⊗A′ // F ⊗A′ // B[1]⊗A′

in Db(X) which is again a triangle. Therefore our functor is exact and we have
indeed defined a tensor structure.
Step 2. Let us have a look at the spectrum of Db(X q X) with ∗. Let P ∈
Spc(Db(X qX)): Since P is a triangulated thick subcategory in Db(X qX) it
is immediate that P decomposes into a direct product P = P1⊕P2 where P1, P2

are thick triangulated subcategories in Db(X). Because P is a prime ⊗-ideal
one sees immediately from the definition of the tensor structure that P1 is a
prime in Db(X). Since P is a ⊗-ideal we have

(A,B) ∗ (C,D) ∈ P ∀(A,B) ∈ Db(X qX), ∀ (C,D) ∈ P



Therefore (A⊗D⊕B⊗C) ∈ P2 ∀ (A,B) ∈ Db(XqX) and since P2 is thick one
has A⊗D ∀D ∈ P2 ∀ A ∈ Db(X) i.e. P2 is a thick ⊗-ideal in Db(X). Assume
that P2 6= Db(X). Then P2 does not contain the unit element 1 in Db(X) and
therefore (0,1) /∈ P . But (0,1) ∗ (0,1) = (0, 0) ∈ P , contradiction. Therefore
P2 = Db(X) and every prime P in Spc(Db(X qX)) is of the form Q⊕ Db(X)
where Q ∈ Spc(Db(X)). Now one defines a functor

F :
(
Db(X qX) = Db(X)⊕Db(X), ∗

)
−→

(
Db(X),⊗X

)
, (A,B) 7→ A

This functor is obviously ⊗-triangulated and therefore induces

Spc(F ) : Spc(Db(X))→ Spc(Db(X qX)), Q 7→ F−1(Q) = Q⊕Db(X)

which is the wanted isomorphism.
Step 3. X is not a Fourier-Mukai partner of X q X. Assume the converse,
then there exists an exact equivalence F : Db(X)⊕Db(X)→ Db(X). The cat-
egory Db(X)⊕Db(X) is decomposable into the two triangulated subcategories
Db(X)⊕0 and 0⊕Db(X) (for the definition of decomposable see [13], chapter 1).
Since F is exact the essential “images” of these subcategories are triangulated
subcategories in Db(X) which define a decomposition of this category. But X
is connected and therefore Db(X) is indecomposable ([13], proposition 3.10). It
follows w.l.o.g. that F (Db(X) ⊕ 0) contains no object non-isomorphic to zero.
But then F−1F ((1, 0)) ∼= F−1((0, 0)) = (0, 0), contradiction, since there is no
isomorphism between 1 and 0 in Db(X). �

Now we will apply this approach to a slightly different situation. Let X and
Y be two irreducible projective schemes such that #FM(X) = #FM(Y )=1 and
there exists a non-trivial smooth morphism f : X → Y . We will use this data
to show that the map φ : FM(Y qX)→ TS(Y qX) is not surjective. In order
to do this we will first the following

Lemma 4.0.10. Let V and W be FM-partners, mV , mW be the number of
connected components of V and W . Then mV = mW and the equivalence
between Db(V ) and Db(W ) restricts to equivalences between the components.

Proof. First assume that mV = 1. Then V is connected so Db(V ) is indecom-
posable and an argument similar to that used in Step 3 of 4.0.9 shows that W
must be connected as well.
Next assume that mV = 2 and mW ≥ 3. W.l.o.g. we consider the case mW = 3.
So we have the connected components V1, V2 of V , W1,W2,W3 of W and an
equivalence F : Db(V1)⊕Db(V2)→ Db(W1)⊕Db(W2)⊕Db(W3). Consider the
exact functor

F ◦ I : Db(V1)→ Db(W1)⊕Db(W2)⊕Db(W3)

where I : Db(V1) → Db(V1) ⊕ Db(V2) is the natural (exact) embedding. This
functor defines an equivalence of Db(V1) and its essential image F ◦ I(Db(V1)).
Since V1 is connected we conclude w.l.o.g. that F ◦ I(Db(V1)) ⊂ Db(W1) and
therefore its essential image is a triangulated subcategory in Db(W1). The
same argument applied to F−1 and Db(W1) shows that F−1(Db(W1)) must
be contained in Db(V1) or Db(V2). But since F and F−1 are quasi-inverse
to each other so for every object A in Db(V1) we have F ◦ F−1(A) ∼= A and



there are no morphisms between objects in Db(V1) and Db(V2) we conclude
that F−1(Db(W1)) ⊂ Db(V1). So our equivalences restrict to F : Db(V1) →
Db(W1) and F−1 : Db(W1)→ Db(V1) which are equivalences as well. That the
functors are fully faithful is clear and as to the essential surjectivity: Let B be
an arbitrary object in Db(W1) and assume that B is not isomorphic to F (A)
for all A in Db(V1). But then F ◦F−1(B) ∼= B which lies in the isomorphy hull
of F (Db(V1)), contradiction. Similarly for F−1. Thus the restricted F gives
an equivalence between Db(V1) and Db(W1). Because of that one immediately
gets that w.l.o.g. F (Db(V2)) ⊂ Db(W2) and then an equivalence of Db(V2) and
Db(W2) via F . Therefore Db(W3) = 0, W3 = ∅ and therefore mV = mW = 2.
Induction proves the claim. �

It is immediate from the lemma that if #FM(X) = #FM(Y )=1 then we also
have #FM(Y qX) = 1. Yet there is more than one tensor structure on D(Y qX).
Define:

(A,B) ∗ (C,D) := (A⊗Y C, f∗(C)⊗X B ⊕ f∗(A)⊗X D)

and note that this is indeed a tensor structure since f∗ is compatible with ⊗
and is an exact functor. Therefore literally the same proof as in Step 2 of 4.0.9
applies.
Unfortunately the spectrum of Db(Y qX) is not as easily described as in 4.0.9:
Let P be a thick prime ideal in Db(Y q X). Then, as before, it is immediate
that P is a product of thick triangulated subcategories P1 and P2 in Db(Y ) and
Db(X) respectively. It is also clear that P1 ∈ Spc(Db(Y )). Since P is prime we
again have that 1X ∈ P2. Therefore f∗(Db(Y )) ⊂ P2. Since P2 is thick we also
have that f∗(A)⊗B ∀B ∈ P2 and ∀A ∈ Db(Y ).
One possible approach to describe the spectrum of Db(Y qX) in this case would
be to find conditions on f and/or X,Y so that f∗ is an equivalence (then the
spectrum would be Spc(Db(Y ))). It is unclear how often this will be possible:
For example assume X and Y to be smooth projective varieties over C and f∗

to be an equivalence. Then f∗ is a Fourier-Mukai-transform i.e. there exists an
object P ∈ Db(X × Y ) such that f∗(E) = px(P ⊗ p∗y(E)) ∀ E ∈ Db(Y ) where
px, py denote the projections. But f∗(OY ) = OX and the right hand side rarely
has this property.
Of course we can weaken our assumptions on f∗. If f∗(Db(Y )) were to contain
elements which generate Db(X) as a triangulated category the situation would
become as clear as in the previous case. For example consider a map f : PnC → Y
with Y smooth and projective. If the induced map on the Picard groups is sur-
jective then O(−n), . . . ,O are elements in f∗(Db(Y )) and since these elements
generate Db(PnC) as a triangulated category we are done.



Chapter 5

Examples and applications

5.1 Examples of prime ideals

Example 5.1.1. Let us consider the general construction in a specific example,
namely take X = Spec(Z). Then Dperf(X) = Kb(Z − proj), where Kb(Z −
proj) denotes the homotopy category of bounded complexes of finitely generated
projective Z-modules. Since a projective Z-module is free, we get:

Dperf(X) = Kb(Z−modff )

where Z−modff denotes free Z-modules of finite rank. The homeomorphism ofX

and Spc(Dperf(X)) sends a prime ideal P in X to the class of all those complexes
A• such that A•P

∼= 0 in Db(ZP). Thus we see that the prime ideal corresponding
to P contains all those complexes which become acyclic when localized in P.

For example take P = (2) then the complex [. . . 0 // Z 5 // Z // 0 . . . ]

becomes exact when localized in (2). In general a necessary condition for this
is that

∀n ∈ Z : rk(im(dn−1)) = rk(ker(dn))

Another way of stating this is:
For an arbitrary n ∈ Z let

im(dn−1) = spanZ(v1, ..., vk)

and
ker(dn) = spanZ(w1, ..., wk)

Then A• becomes acyclic at An when localized in P iff

spanZP (v1, ..., vk) = ker(dn) = spanZP (w1, ..., wk)

Now let us have a look at the generic point of Spc(Dperf(X)). From the above
discussion we see that it contains all those complexes which become acyclic
when tensorized with Q. On the other hand ([3], Proposition 2.18) shows that
the generic point x of an irreducible closed subset in Spc(T ) is given by:

x = {A ∈ T such that U(A) ∩ Z 6= ∅}
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Since in our case Z = Spc(Dperf(X)) we get:

x = {A ∈ T such that U(A) 6= ∅}

Since U(A) 6= ∅ iff A does not generate T as a thick ⊗-ideal we have that
only complexes which do not become acyclic when tensorized with Q generate
Kb(Zff ) as a thick tensor ideal.

In the following we give an example of a prime ideal in an “ungeometric” situ-
ation.

Proposition 5.1.2. P = {A• ∈ T , A• ⊗Q = 0} is a prime ideal in T = K(Z−
mod ).

Proof. It is clear that P is thick and closed under shifts and isomorphisms. It
is a ⊗-ideal because ⊗ is commutative and associative: If A• ∈ P and B• ∈ T
then

(A• ⊗B•)⊗Q• = (A• ⊗Q•)⊗B• = 0

To see that P is prime consider two complexes A• and B• which are not in
P. This means that the complexes of Q-vector spaces A• ⊗ Q and B• ⊗ Q
are not homotopy equivalent to the zero complex. This in turn means that
these complexes are not acyclic. It then follows from the Künneth formula that
A• ⊗B• is again not acyclic (see the proof of 5.2.1). �

Remark 5.1.3. It is not clear whether the spectrum of T is just a point. For
example the full subcategory of complexes of finite abelian groups G is a ⊗-ideal,
prime, is closed under shifts and thick. But it is not closed under isomorphisms:
Consider the complexes

A• = [ . . . // 0 // Z/2Z id // Z/2Z // 0 // . . .]

and

B• = [ . . . // 0 // Z⊕ Z/2Z id // Z⊕ Z/2Z // 0 // . . .] .

Define f• : A• → B• to be the natural injection in each term and g• : B• → A•

to be the natural projection in each term. These are clearly chain maps. Then
g•◦f• = id and f•◦g• sends (x, y) to (0, y) so f•◦g•− id sends (x, y) to (−x, 0).
By setting s : Z⊕ Z/2Z→ Z⊕ Z/2Z, (x, y) 7→ (−x, 0) we see that f• ◦ g• − id
is homotopic to zero so that A• and B• are isomorphic in T and therefore G is
not closed under isomorphisms.

5.2 Spectrum of the homotopy category of vec-
tor spaces

Theorem 5.2.1. Fix an arbitrary field K. We consider T = K(A) where
A = K−Mod. We know from 2.2.15 that this is a tensor triangulated category.
Then:

1. A proper thick ⊗-ideal I in T cannot contain a complex which is not
acyclic.



2. The identity map of an acyclic complex of K-vector spaces is homotopic
to the zero map.

3. The isomorphy hull of the zero complex is a prime ideal.

From all this it follows that the spectrum of T is just a point.

Proof. 1. Suppose I contains a complex C• which is not acyclic. Then there
is an index n such that im(dn−1) is a proper sub vector space in ker(dn). Take
a vector x ∈ Cn which is in the kernel but not in the image. Take a basis of
im(dn−1), complete it via x to a basis B′ of ker(dn) and then complete B′ to a
basis B′′ of Cn. Denote by B the set B′′ \ {x}. Now we have:

Cn ∼= K · x⊕ spanKB
∼= K⊕ V

Modulo this isomorphim dn = 0 ⊕ d̃n where d̃n denotes the restriction of dn

to span(B). Since im(dn−1) ⊂ span(B) we see that we can decompose write

C• = Ĉ• ⊕ K• where Ĉ• = C• except in degree n, Ĉn = V and d̂n = d̃n and
K• = 1[−n]. Now since I is thick it contains K•; since it is triangulated it
contains 1 and then I = T because I is a ⊗-ideal. So we have a contradiction.
2. Consider an acyclic complex C• and an arbitrary n ∈ Z:

[. . . // Cn−1 dn−1
// Cn

dn // Cn+1 // . . .]

Choose a basis B′ of im(dn) ⊂ Cn+1 and complete it to a basis B′′ of Cn+1.
Define sn : Cn+1 → Cn to be zero for all b′′ ∈ B′′ \ B′ and for each b′ ∈ B′
define sn(b′) to be an arbitrary element b̃ ∈ Cn such that d(̃b) = b. This
gives a linear map such that dsd = d and identifies im(dn) with a subspace

U = span(B̃) of Cn (as B′ is identified with B̃). Now from the homomorphy
theorem and the exactness we get: Cn/ im(dn−1) ∼= Cn/ ker(dn) ∼= im(dn) ∼= U
so that Cn ∼= im(dn−1) ⊕ U . We have to show that id = ds + sd for all n ∈ Z.
Denote by B a basis of im(dn−1). Then every element in Cn can be written as:

x =
∑
i

λibi +
∑
j

µj b̃j

where bi ∈ B ∀ i and b̃j ∈ B̃ ∀ j. Now

ds(x) = d(
∑
i

λis(bi)) =
∑
i

λibi

and similarly

sd(x) = s(
∑
j

µjd(̃bj)) =
∑
j

µj b̃j

so that ds+ sd = id.
3. Denote the isomorphy hull of the zero complex by 0̃. Considered as a (full)
subcategory 0̃ is clearly closed under shifts, isomorphisms and taking cones so
it is a triangulated subcategory. It is clear that it is thick as well. To see that
0̃ is a prime ⊗-ideal we use the Künneth formula which, since we are dealing
with vector spaces, yields: If A• and B• are two complexes then one has

Hn(A• ⊗B•) =
⊕
i+j=n

Hi(A
•)⊗Hj(B

•).



This formula immediately gives that 0̃ is a tensor ideal. Further, assume that
A• and B• are not acyclic. Then there exist i, j such that Hi(A

•) 6= 0 and
Hj(B

•) 6= 0 so the Künneth formula states that the complex A• ⊗ B• is also

not acyclic and therefore not zero in T so 0̃ is indeed prime. �

Remark 5.2.2. If we equip Spc(K(K−Mod)) with a structure sheaf as in 2.5.24
then the global sections are the endomorphism ring of the 0-complex K, i.e. K.
Therefore Spec(K(K−Mod)) is isomorphic to Spec(K) as a scheme.

Remark 5.2.3. 1. The above proof shows that Spc(K(K−Mod)) is a point.
From [3] we already knew that for X = Spec(K) we have

X = Spec(Dperf(X)) = Spec(Db(Coh(X))) = Spec(Kb(K−mod))

The above result is therefore a slight generalisation.

2. For more general rings the zero complex need not be a prime ideal. Con-
sider e.g. K(Z − Mod) and the 0-complexes A• = (Z/2Z) and B• =
(Z/3Z). Then A• ⊗B• = 0 although A• 6= 0 and B• 6= 0 in K(Z−Mod).

3. In general the class of all acyclic complexes need not be a ⊗-ideal. Again
consider K(Z−Mod) and the acyclic complex:

C• = [. . .→ 0→ Z ·2→ Z π→ Z/2Z→ 0→ . . .]

where π denotes the canonical projection. Tensorizing C• with A• as in
remark 2. yields the complex:

C• ⊗A• = [. . .→ 0→ Z/2Z 0→ Z/2Z id→ Z/2Z→ 0→ . . .]

which is not acyclic. This shows in particular that the triangulated functor
K(A)→ D(A) is in general not tensor -triangulated.

5.3 Subrings in Db(P1
C)

Consider X = P1
C and T = Db(P1

C). We know that as a triangulated category T
is generated by O(−1) and O, see [5]. This means that the smallest triangulated
category containing O(−1) and O and which is closed under shifts and taking
cones is equivalent to T . So basically, up to isomorphism, every object in T can
be reached by shifting O(−1) and O, taking a cone of an arbitrary morphism
and repeating this procedure a finite number of times. Now quite a natural
question is to ask what one gets if O(−1) is replaced by O(k), k 6= −1. Since
we are interested in ”subrings” of T we will also ask this category to be closed
under the tensor product.

Definition 5.3.1. Tn := 〈O,O(n)〉⊗ := the smallest tensor triangulated sub-
category of T containing O and O(n).

Recall that since X is a regular variety of dimension 1 for every coherent
sheaf F on X there exists a resolution

0 // E1 // E0 // F // 0



where Ei are locally free sheaves (see [11], III, Ex. 6.9). Then one can define
the determinant of F to be the line bundle

det(F) = (Λr0E0)⊗ (Λr1E1)−1 ∈ Pic(X)

where ri is the rank of Ei and Λ denotes the exterior power. Obsiously the
determinant of a locally free sheaf is its highest exterior power, e.g. det(O(2)⊕
O(7)) = O(9). The determinant of a skyscraper sheaf k(P ) of a closed point P
is O(1) since for P = (a : b) we have the exact sequence

0 // O(−1)
a·x1−b·x0 // O // k(P ) // 0

where the last map is the evaluation.
Now since det(F) ∈ Pic(X) it is of the form O(k) for a k ∈ Z. We define the
degree of F to be k. This degree function determines an isomorphism between
Pic(X) and Z.
If A• is a complex in T we define the degree of A• to be the (finite) sum:

deg(A•) =

∞∑
i=−∞

(−1)ideg(Ai)

This defines a group homomorphism K0(T )→ Z since this map is the composi-

tion of the group homomorphisms K0(T )
Θ // K0(X)

det // Pic(X)
deg // Z

(for the definition of Θ see remark 3.1.3). Defining the rank of A• to be

rk(A•) =

∞∑
i=−∞

(−1)irk(Ai)

we get a ring homomorphism K0(T )
(deg,rk)−→ Z ⊕ Z where the multiplication in

Z⊕ Z is described by proposition 3.2.3.

Definition 5.3.2. Cn = {A• ∈ T | deg(A•) ≡ 0 (mod n)}.

Remark 5.3.3. Cn is a dense “subring” in T , i.e. a tensor triangulated dense
subcategory containing the unit. To prove this it will be sufficient to see that
Cn = CR where R = nZ⊕Z using notation of 3.1.2. Now what we actually have
to prove is that the condition on the degree allows arbitrary ranks. To see this
consider, for an arbitrary i ∈ N, the sheaf F = O(−1)i⊕k(P )i which has degree
0 and rank i. Considering F as a complex and shifting it to the left we get a
complex with degree 0 and rank −i.

Lemma 5.3.4. Consider T = Kb(A) or T = Db(A) (where A is an abelian
category), C a full triangulated subcategory of T and A• ∈ T a complex such
that all terms Ai of A• are in C. Then A• ∈ C.

Proof. We use the same technique as in the proof of proposition 3.2.1 and the
fact that C is closed under shifts and taking cones. �

Theorem 5.3.5. The categories Tn and Cn are equal.



Proof. Due to proposition 3.1.2 is will be sufficient to see that Tn is dense in T
because its image in K0(X) ∼= Z ⊕ Z is obviously nZ ⊕ Z. Since Tn is closed
under the tensor product the collection {O(a · n) | a ∈ N} is in Tn. Now for
m, k ∈ Z we consider the following exact sequences in Coh(P1

C) (see [10]):

(1) 0 // O(k)m−k−1 // O(k + 1)m−k // O(m) // 0 if m > k + 1

(2) 0 // O(m) // O(k)k−m+1 // O(k + 1)k−m // 0 if m < k

Consider the case n > 1 first. Set m = n and k = 2n. Then the second sequence
reads:

0 // O(n) // O(2n)n+1 // O(2n+ 1)n // 0

This exact sequence gives a triangle in T and as the first two terms are in Tn
by assumption then so is the third, namely O(2n+ 1)n. Now set m = −n and
k = 2n, then (2) reads

0 // O(−n) // O(2n)3n+1 // O(2n+ 1)2n // 0

and by the same argument as before O(−n) ∈ Tn. Therefore {O(b · n) | b ∈ Z}
⊂ Tn. Now O(1)n = O(−2n)⊗O(2n+ 1)n ∈ Tn. In the next step we set m = n
and k = 2n− 1 and get

0 // O(n) // O(2n− 1)n // O(2n)n−1 // 0

so O(2n−1)n ∈ Tn and therefore O(−1)n ∈ Tn. It follows that for all l ∈ Z there

exists an xl ∈ N such that O(l)(xl) ∈ Tn, namely xl = np where p ≡ |l|(mod(n)).

This can be seen by considering O(1)n⊗O(1)n = O(2)(n2), O(−1)n⊗O(−1)n =

O(−2)(n2), O(1)n ⊗O(n) = O(n+ 1)n etc.
Now take an arbitrary coherent sheaf F . Considering the locally free resolution

0 // E1 // E0 // F // 0

and using that E0 and E1 are direct sums of twisted sheaves O(k) we look at the
exact sequence

0 // Es1 // Es0 // Fs // 0

where s is big enough so all direct summands of E0 and E1 are elements in Tn
and therefore Es1 and Es0 are elements in Tn. Then F is also an element in Tn.
So we proved the following:
If n > 1 then for all coherent sheaves F there exists a coherent sheaf G such
that F ⊕ G ∈ Tn.
Now we will show that Tn = T−n ∀ n ∈ N. We have already seen that T−n ⊂
Tn ∀ n > 1. Now let n = 1. Consider sequence (1) with m = 1 and k = −1.
Then we get:

0 // O(−1) // O2 // O(1) // 0

and therefore O(−1) ∈ T1 so T1 = T−1 = T = C1.
Finally let −n < −1. Consider sequence (1) again, now with m = −n, k = −2n:

0 // O(−2n)n−1 // O(−2n+ 1)n // O(−n) // 0



Then O(−2n+ 1)n ∈ T−n. Now set m = n and k = −2n:

0 // O(−2n)3n−1 // O(−2n+ 1)3n // O(n) // 0

so O(n) ∈ T−n and therefore Tn ⊂ T−n as desired.
So we have shown that for every complex A• ∈ T there exists a complex B• ∈ T
such that A• ⊕ B• ∈ Tn. The previous lemma therefore gives that Tn is dense
in T and because Tn and Cn define the same subring of K0(X) they are equal
by proposition 3.1.2. �

Corollary 5.3.6. Spc(Tn) = Spc(T ) = P1
C.

Remark 5.3.7. If k(P ) is the skyscraper sheaf of a closed point then the exact
sequence

0 // O(−1) // O // k(P ) // 0

gives that the smallest subring of T containing O and k(P ) is T .

Question: Do we have that Spec(Tn) = Spec(T ) as ringed spaces? Proba-
bly not since this would mean that there is no “smallest” subcategory of T
possessing all information to recover the scheme structure of P1

C.

5.4 Semistable sheaves on an elliptic curve

In the following C will denote an elliptic curve, i.e. a smooth projective curve
of genus 1 over an algebraically closed field K. Recall the following

Definition 5.4.1. Let F be a torsion free coherent sheaf on C. F is called
semistable if for every non-trivial subsheaf F ′ of F we have that

deg(F ′)
rk(F ′)

=: µ(F ′) ≤ µ(F) :=
deg(F)

rk(F)

Equivalently, F is semistable if for every quotient sheaf F ′′ we have that µ(F ′′) ≥
µ(F). F is called stable if the inequality is strict. We call µ the slope of F .

Remark 5.4.2. Since we consider sheaves on a curve, a semistable sheaf is
automatically locally free. An example of a stable sheaf is a line bundle. For
more general stability concepts of sheaves see [14].

Now let λ ∈ Q. We will consider the full subcategory Aλ of Coh(C) con-
sisting of semistable sheaves with slope λ. We will need the following

Lemma 5.4.3. Let 0 // F1
// F2

// F3
// 0 be an exact sequence

of coherent sheaves on C. Then the slopes are either strictly increasing or strictly
decreasing or all equal.

Proof. Let µ(F1) = d1
r1

, µ(F2) = d2
r2

and µ(F3) = d3
r3

. Note that d3 = d2 − d1

and r3 = r2 − r1. Assume that µ(F1) < µ(F2). Then we have:

µ(F1) < µ(F2)⇐⇒ d1r2 < d2r1 ⇐⇒ d2r2 − d2r1 < d2r2 − d1r2 ⇐⇒

d2

r2
= µ(F2) <

d2 − d1

r2 − r1
= µ(F3)

The other cases are dealt with similarly. �



Corollary 5.4.4. Aλ is closed under kernels and cokernels.

Proof. A morphism f : F → G between semistable sheaves of slope λ gives us
two exact sequences, namely

0 // ker(f) // F // im(f) // 0

and
0 // im(f) // G // coker(f) // 0

Using the semistability of F and G and the previous lemma we deduce that the
slopes of ker(f), coker(f) and im(f) are again equal to λ. Then the semistability
of ker(f) and coker(f) follows immediately from the definitions. �

Proposition 5.4.5. The category Aλ is closed under extensions in Coh(C).
In particular, it is abelian.

Proof. See [21], chapter 14. �

Remark 5.4.6. Consider λ = 0. Then the tensor product of two sheaves with
slope 0 has again slope 0 (see 3.2.3) and it is semistable (see [14], theorem 3.1.4).

We will now consider the bounded derived category T :=Db(A0). This
category is tensor triangulated by the previous remark. Since the tensor product
of locally free sheaves is exact in the abelian sense we do not need to derive it
and the tensor product in T is the usual tensor product of complexes. Our aim
is to describe the spectrum of T . First we recall the

Definition 5.4.7. A sheaf F is called indecomposable if it cannot be written as
a direct sum of two proper subsheaves. By definition every sheaf can be written
as a direct sum of indecomposable sheaves.

Remark 5.4.8. In the following we will use some results on existence and
properties of (semi)stable sheaves over an elliptic curve, see [1] for the original
proofs or [12] for proofs of these results using Fourier-Mukai-transforms:

• For every r ∈ N there is a unique (up to isomorphy) semistable vector
bundle Er of rank r and degree 0.

• For all r ∈ N there is a short exact sequence

(∗) 0 // OC // Er // Er−1
// 0

In order to describe the spectrum we will need two lemmas.

Lemma 5.4.9. If F is a decomposable semi-stable bundle with slope 0 and
F =

⊕
j Fj where Fj are all indecomposable then µ(Fj) = 0 ∀ j.

Proof. If one of the Fj has a negative slope, i.e. a negative degree, then another
one has to have a positive degree and therefore a positive slope. This contradicts
the semi-stability of F . �

Lemma 5.4.10. A complex A• in T with indecomposable homology objects is
a t-generator in T , i.e. J = 〈A•〉 = T where 〈A•〉 denotes the smallest thick
⊗-ideal containing A•.



Proof. First note that the homological dimension of T is ≤ 1 and therefore
every complex is isomorphic to the cyclic (all differentials are zero) complex of
its homology objects. We will show that each complex with the above property
which is not isomorphic to the zero complex generates T as a thick ⊗-ideal.
Since we are only interested in the ideal generated by our complex A• we replace
it by the isomorphic object

⊕
i∈ZH

i(A•)[−i]. Because J is thick, it contains
Hi(A•) ∀ i ∈ Z. Now these objects are by assumption indecomposable semi-
stable bundles of slope 0 and at least one object is not equal to zero.

• If one of the homology objects is O, i.e. E1, J contains the unit and
therefore T = J .

• Next we consider the case r = 2. Then E2 ⊗E4 = E3 ⊕E5 (see [12]) and
since E3⊕E5 ∈ J and J is thick it contains E3. Using the exact sequence
(∗) for r = 3 we get a triangle in T such that two of the three objects are
elements of J . Therefore the third, i.e. O, is contained in J .

• r ≥ 3. We consider E2 ⊗ Er = Er−1 ⊕ Er+1 and with a similar sequence
as in the case above we have that O ∈ J .

�

Theorem 5.4.11. The spectrum of T is a point.

Proof. Immediate from the previous two lemmas. It follows that the unique
prime ideal of T is the isomorphy hull of the zero complex. That this is indeed
a prime ideal can also be seen directly, e.g. as follows:
Take two complexes which are not isomorphic to zero in T . They are isomorphic
to the direct sum of their homology objects, each one has a homology object 6= 0
and this object is a semi-stable vector bundle of slope 0. Tensorizing these and
localizing in a point x ∈ C we see that the tensor product is again not acyclic
since we get the tensor product of two non-zero free modules somewhere in the
homology and therefore cannot be isomorphic to zero in D(Cx). �

Remark 5.4.12. In Db(C) the isomorphy hull of the zero complex is not a
prime ideal. To see this consider the homeomorphism in 2.5.23. If we show that
for every x ∈ C there is a non-acyclic complex (in particular not isomorphic
to zero in Db(C)) which becomes exact localized in x we are done. But such a
complex exists, e.g. the 0-complex k(y) with x 6= y (and y not the generic point
of C). Therefore we see that 0 is not of the form f(x) for some x ∈ C.

Proposition 5.4.13. As a scheme Spec(T ) is isomorphic to Spec(K).

Proof. We will consider the global sections of the structure sheaf of Spc(T ). In
the notation of 2.5.24 we take U = Spc(T ), then T U = 0. Since a morphism
whose cone is 0 is an isomorphism we see that localizing in 0 is trivial. Therefore
Γ(Spc(T ),OSpc(T )) = EndT (OC) = EndCoh(C)(OC) = K. �

Remark 5.4.14. If we consider the natural inclusion functor I : T → Db(C)
then T is not a triangulated subcategory of Db(C) because it is not closed

under isomorphisms, take for example the complex [k(P )
i→ OC ⊕ k(P )] which

in Db(C) is isomorphic to its homology, i.e. OC ∈ T . Taking the isomorphy hull
of T in Db(C) we get a triangulated category which will be denoted by T ′ and



is generated by OC as a triangulated category. Indeed, we use sequence (∗) in
5.4.10 for r = 2. This sequence gives a triangle in Db(C) and after appropriate
rotation of the triangle we see that E2 is a cone of a certain morphism f :
OC [−1] → OC , i.e. E2 is in the triangulated subcategory generated by OC .
Inductively we get Er ∀ r ∈ N. All other semistable bundles of slope 0 are direct
sums of the Er. Using lemma 5.3.4 we see that the triangulated subcategory
which is generated by OC contains T and must therefore be T ′.

5.5 Homogeneous bundles on abelian varieties

Definition 5.5.1. Let A be an abelian variety and for a fixed x ∈ A denote by
Tx : A → A the translation map sending an element a ∈ A to a + x. A vector
bundle E on A is called homogeneous if T ∗x (E) ∼= E ∀ x ∈ A.

In his book [21] Polishchuk showed that there is an equivalence between

sheaves with finite support on A and homogeneous bundles on Â, the dual
abelian variety. Therefore the category of homogeneous bundles is an abelian
category which will be denoted by A. Furthermore A has a tensor product
since for two homogeneous vector bundles E,E′ and an arbitrary point x ∈ A
we have E ⊗ E′ ∼= T ∗x (E) ⊗ T ∗x (E′) ∼= T ∗x (E ⊗ E′). Having established this we
can consider Db(A) := T which is of course tensor triangulated. Denote its
isomorphy hull in Db(A) again by T .

Proposition 5.5.2. Let I : T → Db(A) be the inclusion functor. Then the
induced map on spectra Spc(I) : Spc(Db(A)) → Spc(T ) sends everything a
point.

Proof. Indeed, take an element A• in T . By definition, its homology objects
are homogeneous bundles. Assume that there exists a point x ∈ A such that
A•x is acyclic, i.e. A• ∈ Spc(I)(P) = I−1(P) = P ∩ T for a prime ideal P in
Spc(Db(A)). Then we have that the homology objects are zero when localized
in x. But these objects are locally free sheaves over an integral scheme and
therefore they must have been zero. This proves at once that the class of all
acyclic complexes (i.e. the isomorphy hull of the zero complex) in T is a prime
ideal since for every prime P in Spc(Db(A)) we have that the prime I−1(P) =
P ∩ T ⊂ {acyclic complexes} and since all these complexes are isomorphic to
each other we have that I−1(P) = {acyclic complexes}. In particular, the class
of all acyclic complexes is the only closed point in Spc(T ). �

Remark 5.5.3. The proposition provides us with a large class of objects which
are t-generators but not units. By [8] we know that the set of all units in Db(A)
is isomorphic to Pic(A) ⊕ Z. Now the proposition shows that every complex
of homogeneous bundles is a t-generator but is not a unit if at least one of the
objects has rank ≥ 2.

Remark 5.5.4. Consider an elliptic curve, i.e. dim(A) = 1. Then we have that

{homogeneous bundles} = {semi-stable bundles with slope 0} .

Therefore in this case the spectrum is only a point.



Proof. “⊆” Let F be a unipotent bundle, i.e. there exists a filtration 0 ⊂ F1 ⊂
. . . ⊂ Fn = F such that Fi+1/Fi ∼= OA. Obviously F2 is an extension of OA by
OA and is therefore a semi-stable bundle with slope 0. Using induction we have
that F also has this property. Now an arbitrary homogeneous bundle F is of
the form

(∗) F =
⊕
i

Li ⊗ Fi

where the Fi are unipotent bundles and the Li are line bundles of degree 0 (see
[16]).
“⊇” Now let Er be the unique indecomposable semi-stable bundle with rank
r and degree 0. Then Er fits into an exact sequence

0 // Er−1
// Er // OA // 0

(this is the dual sequence of the one mentioned in the previous section using
that the Er are self-dual)
Using induction we have that Er−1 is unipotent with filtration Ekr−1. Then the
filtration (Ekr−1, Er−1) shows that Er is unipotent and an arbitrary semi-stable
bundle is a direct sum of the Er and hence homogeneous (put Li = OA in
(∗)). �

Conjecture: The spectrum of the bounded derived category of homogeneous
bundles on an abelian variety of dimension n ≥ 2 is a point.

5.6 Linearized sheaves on a projective variety

Definition 5.6.1. Let X be a smooth projective variety over C with an action
by a finite group G. A linearization of a coherent sheaf F on X is given by
isomorphisms λg : F ∼→ g∗F for every g ∈ G satisfying λ1 = id and λgh =
h∗λg ◦ λh.

It follows that the category A of G-linearized sheaves is an abelian category
with enough injectives. We refer to [20] for further properties. We will consider
DG(X) := Db(A). Note that this category is tensor-triangulated. Our goal is
to describe its spectrum. In order to do this we recall the following definition
taken from [3]

Definition 5.6.2. A classifying support datum on a tensor triangulated cate-
gory (T ,⊗,1) is a pair (Y, σ) where Y is a topological space and σ an assignment
associating to any object A ∈ T a closed subset σ(A) ⊂ Y subject to the fol-
lowing rules:

(i) σ(0) = ∅ and σ(1) = Y ;

(ii) σ(A⊕B) = σ(A) ∪ σ(B);

(iii) σ(TA) = σ(A);

(iv) σ(A) ⊂ σ(B) ∪ σ(C) for any triangle A // B // C // TA ;

(v) σ(A⊗B) = σ(A) ∩ σ(B);



(vi) Y is noetherian and every non-empty irreducible slosed subset Z ⊂ Y has
a unique generic point;

(vii) There is a bijection ψ : {W ⊂ Y |W =
⋃
αWα with Yα closed} ∼−→

{J ⊂ T | J radical thick ⊗-ideal} defined by W 7→ {A ∈ T | σ(A) ⊂W}
with inverse ϕ given by J 7→ σ(J ) :=

⋃
A∈J σ(A).

If (Y, σ) is a classifying support datum on T then ([3], Theorem 5.2.) gives
that there is a homeomorphism f : Y → Spc(T ) where f(x) := {A ∈ T | x /∈ σ(A)}.
Our aim is to use this theorem with appropriately chosen (Y, σ). First let us
introduce some notation: The canonical continuous projection X → X/G will
be denoted by π and for a complex A• ∈ DG(X) supph(A•) will denote the ho-
mological support of A•, i.e. the union of the supports of the homology sheaves
of A•. The proof of the following theorem will tacitly use the fact that the
forgetful functor for : DG(X)→ Db(X) is tensor-triangulated.

Proposition 5.6.3. The pair (Y := X/G, σ := π ◦ supph) is a classifying
support datum on DG(X).

Proof. First note that σ is well-defined: Since A is an abelian category the
homology objects of a complex in DG(X) are G-linearised and therefore their
supports are G-invariant closed subsets in X. It follows that supph(A•) is G-
invariant and closed because DG(X) is homologically bounded and A• has only
finitely many homology objects. Therefore π−1(π(supph(A•)) = supph(A•)
which by definition of the quotient topology means that π(supph(A•)) is a
closed subset in X/G. It is trivial that conditions (i)-(iii) are fulfilled for
supph and therefore for σ. (iv) is true for supph because of the long ex-
act homology sequence and therefore is true for σ as well. As to (v) note
that (A• ⊗ B•)x = A•x ⊗ B•x for all x ∈ X and now the desired property
for supph follows from the Künneth formula since A•x and B•x are complexes
of free Ox-modules. Since σ(U ∩ V ) = σ(U) ∩ σ(V ) for G-invariant (closed)
subsets U, V ⊂ X (v) is true for σ. Obviously (vi) is fulfilled in our set-
ting so it remains to prove (vii). This property is proved in [22] for the pair
(X, supph) on Dperf(X) and our proof will closely follow the proof presented
there, with certain necessary modifications. The general idea is of course to
use the fact that everything is true in Dperf(X). First note that since the sheaf
of homomorphisms of two G-linearized sheaves is again G-linearized the cat-
egory DG(X) has an internal Hom-functor and therefore proposition 2.4. in
[4] gives that all thick ⊗-ideals are automatically radical. It is clear that ϕ
is well defined and the same property for ψ is easily checked using the fact
that

{
A• ∈ Dperf(X) | supph(A•) ⊂ π−1(W )

}
is a thick ⊗-ideal. Obviously if

J ⊂ J ′ then ϕ(J ) ⊂ ϕ(J ′) and if W ⊂ W ′ then ψ(W ) ⊂ ψ(W ′). Next
let J be a thick ⊗-ideal in DG(X), then ψϕ(J ) = ψ(

⋃
A•∈J π(supph(A•))) ={

B• ∈ DG(X) | π(supph(B•)) ⊂
⋃
A•∈J π(supph(A•)))

}
so J ⊂ ψϕ(J ). For a

closed subset W in X/G we obviously have ϕψ(W ) ⊂ W . It remains to prove
the reverse inclusions. Let us first prove that W ⊂ ϕψ(W ):
Since W is a union of closed subsets Wα it suffices to show that for every α there
exists an A• ∈ DG(X) such that π(supph(A•)) ⊂ Wα so that A• ∈ ψ(W ). We
know that there exists a perfect complex E• such that supph(E•) ⊂ π−1(Wα).
Now set A• =

⊕
g∈G g

∗E• and note that this is a G-linearized complex with

supph(A•) ⊂ π−1(Wα) since π−1(Wα) is a G-invariant subset in X. Then A•



is the desired complex.
To show that ψϕ(J ) ⊂ J let A• ∈ ψϕ(J ) be given. By definition there
exist complexes B•α ∈ DG(X) such that π(supph(A•)) ⊂

⋃
α π(supph(B•α)).

Considering these complexes as elements in Dperf(X) we have supph(A•) ⊂⋃
α supph(B•α). Then there exist finitely many indices such that supph(A•) ⊂⋃n
i=1 supph(B•i ) = supph(

⊕n
i=1B

•
i ) (see the original proof in [22]). Now lemma

3.14. in [22] gives that the smallest thick ⊗-triangulated subcategory C in
Dperf(X) containing

⊕n
i=1B

•
i contains A as well. Consider C ∩ DG(X) :=

(for)−1(C), note that this is a (non-empty) thick ⊗-ideal in DG(X), C∩DG(X) ⊂
J and A• ∈ C ∩DG(X). This completes the proof. �

Remark 5.6.4. It was shown in [6] that under certain assumptions the category

DG(X) is equivalent to the category Db(X̃) where X̃ is a crepant resolution of
X/G. However, this equivalence is not tensor triangulated so our result is not
a contradiction.

Proposition 5.6.5. The map on spectra Spc(for) : X ∼= Spc(D(X)) −→
X/G = Spc(DG(X)) induced by the ⊗-triangulated functor for corresponds to
the projection π : X → X/G.

Proof. Let x ∈ X be an arbitrary point and consider the corresponding prime
ideal Px ∈ Spc(Db(X)). Then

Spc(for)(Px) = Px ∩ DG(X) =
{
A• ∈ DG(X) | A•x ∼= 0

}
=: P̃x

and P̃x corresponds precisely to the class x of x in X/G. �

Our next goal is to describe the structure sheaf of Spc(DG(X)). Recall from
[18] that under our assumptions on X and the G-action the pair

(
X/G,OX/G

)
is actually a variety and OX/G ∼= (π∗OX))G, where (π∗(OX))G denotes the
subsheaf of G-invariant sections in π∗(OX). The question is: What is the con-
nection between the structure sheaf defined via categories and (π∗OX))G?

Abbreviate DG(X) by T and X/G by Y . Recall from proposition 2.5.26
that the tensor triangulated functor for : T → Db(X) induces a morphism of
ringed spaces π = f : Spec(Db(X)) → Spec(T ). For an arbitrary open subset
U ⊂ Y f induces a homomorphism fU : Γ(U,OSpc(T ))→ Γ(U, f∗(OSpc(Db(X)))).

Now Γ(U,OSpc(T )) equals to the ring EndT /T U (1) where T /T U denotes the
localization of T in the thick ⊗-ideal

T U = {A• ∈ T | π(supph(A•)) ⊂ Y \ U} =
{
A• ∈ T | supph(A•) ⊂ X \ π−1(U)

}
and Γ(U, f∗(OSpc(D(X)))) equals to EndD(X)/C(1) where C is the thick ⊗-ideal

C =
{
B• ∈ D(X) | supph(B•) ⊂ π−1(U)

}
i.e. T U = C∩T . Now EndDb(X)/C(1) = EndDb(X)/C(OX) = EndDb(π−1(U))(OX) =

Γ(π−1(U),OX) = Γ(U, π∗(OX)). The morphism fU sends a roof OX
s← E•

α→
OX in DG(X)/T U to the same roof considered as an element in Db(X)/C
which is then identified via the restriction map as an endomorphism of OX in
Db(π−1(U)). Therefore we see that the image of fU is contained in Γ(U, π∗(OX))G

and furthermore fU is onto this subset since any G-invariant section t can be



considered as a G-invariant morphism t of OX in Db(π−1(U)) and then we just

consider the roof OX
id← OX

t→ OX in DG(X)/T U . After sheafification we see

that we get a surjective morphism of sheaves OSpc(DG(X))
// // (π∗(OX))G .
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