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Exercise 1. (compare [2, Ex. 2.6.2]) Show that any oriented Riemann surface admits
a natural almost complex structure.

Hint: You could first show that a two-dimensional euclidian vector space V' with a
fixed orientation admits a natural almost complex structure.
Exercise 2. (compare [2, Ex. 2.6.6]) Let X be a complex manifold. Show that the
exterior product induces a multiplication on the full Dolbeault cohomology &, ,H??(X)
and that this yields a Z*-graded algebra &, ,H??(X) for any complex manifold X.
Exercise 3. (compare [2, Ex. 2.6.7]) Let X be a complex manifold. Verify that the
following definition of the Bott-Chern cohomology

P9X) | da=0
00 AP—1a-1
makes sense. Show that there are natural maps
HEA(X)—HP(X).

Exercise 4. (compare [2, Ex. 1.2.3]) Prove the following identities: *[17? = [I"~ %" Px
and [L,I] = [A,I] = 0.

Exercise 5. (compare [2, Ex. 1.2.8]) Let a € P* and r > s. Prove the following
formula:

NLDa=(-1)°r(r=1)...r—s+1)n—k—r+1)...(n—k—r+s)L" °a.
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