EXERCISES, COMPLEX GEOMETRY, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2015/2016

P. SOSNA

SHEET 7

Let $(V, \langle , \rangle, I)$ be a euclidian vector space endowed with a compatible almost complex structure. Let z_1, \ldots, z_n be a C-basis of $V^{1,0}$. Write $z_i = \frac{1}{2}(x_i - iI(x_i))$ with $x_i \in V$. Show the following statements.

- (1) The set $x_1, y_1 = I(x_1), \dots, x_n, y_n = I(x_n)$ is an \mathbb{R} -basis of V and x_1, \dots, x_n is a \mathbb{C} -basis of (V, I).
- (2) Assume $\langle , \rangle_{\mathbb{C}}$ on $V^{1,0}$ is given by a matrix $\frac{1}{2}(h_{ij})$. Then $(x_i, x_j) = h_{ij}, (x_i, x_j) =$ $-ih_{ij}$ and $(y_i, y_j) = h_{ij}$. (3) We have $\omega = \frac{i}{2} \sum_{i,j=1}^{n} h_{ij} z^i \wedge \overline{z}^j$, where upper indices refer to the dual vectors.
- (4) If $x_1, y_1, \ldots, x_n, y_n$ is an orthonormal basis, then $\omega = \frac{i}{2} \sum_{i,j=1}^n z^i \wedge \overline{z}^j = \sum_{i=1}^n x^i \wedge \overline{z}^j$ y^i .

Exercise 2. [2, Ex. 1.3.1] Let $U \subset \mathbb{C}^n$ and $V \subset \mathbb{C}^m$ be open subsets and $f: U \longrightarrow V$ be a holomorphic map. Show that the natural pullback $f^*: \mathcal{A}^k(V) \longrightarrow \mathcal{A}^k(U)$ induces maps $\mathcal{A}^{p,q}(V) \longrightarrow \mathcal{A}^{p,q}(U).$

Exercise 3. [2, Ex. 1.3.2] Show that $\overline{\partial \alpha} = \overline{\partial} \overline{\alpha}$. Conclude that a real (p, p)-form α is ∂ -closed (exact) if and only if it is $\overline{\partial}$ -closed (exact).

References

- [1] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
- [2] D. Huybrechts, Complex geometry: An introduction, Springer, Berlin (2005).
- [3] M. Kashiwara and P. Shapira, Sheaves on manifolds, Springer, Berlin (1994).
- [4] C. Schnell, Complex manifolds, available at http://www.math.stonybrook.edu/~cschnell/.
- [5] C. Voisin, Hodge theory and complex algebraic geometry, Cambridge University Press, Cambridge (2002).