EXERCISES, COMPLEX GEOMETRY, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2015/2016

P. SOSNA

Sheet 6

Exercise 1. [2, Ex. 2.2.5] Let L be a holomorphic line bundle on a compact complex manifold X. Show that L is trivial if and only if L and its dual L^* admit non-trivial global sections.

Hint: Use the sections to construct a non-trivial section of $\mathcal{O}_X \simeq L \otimes L^*$.

Exercise 2. [2, Ex. 2.2.6 & 2.2.7] For this exercise we will assume the following fact: If $U \subset \mathbb{C}^n$ is open and $f: U \setminus \mathbb{C}^{n-2} \longrightarrow \mathbb{C}$ is holomorphic, then there exists a unique holomorphic extension $\overline{f}: U \longrightarrow \mathbb{C}$ of f.

Now prove the following statements.

- (1) Let X be a compact complex manifold, $L \in \text{Pic}(X)$ and let $Y \subset X$ be a submanifold of codimension at least two. Show that the restriction map $H^0(X, L) \longrightarrow H^0(X \setminus Y, L)$ is surjective.
- (2) Now let L' be a second holomorphic line bundle on X. Assume that L and L' are isomorphic on $X \setminus Y$. Prove that $L \simeq L'$.

Exercise 3. [2, Ex. 2.2.8] Show that any non-trivial homogeneous polynomial $0 \neq p \in \mathbb{C}[z_0, \ldots, z_n]_k$ of degree k can be considered as a non-trivial section of $\mathcal{O}(k)$ on \mathbb{P}^n .

Exercise 4. (compare [2, Ex. 2.2.9]) Let $s: \mathbb{P}^n \to \mathcal{O}(-1)$ be the zero section of the tautological line bundle. Show that $\mathcal{O}(-1) \setminus s(\mathbb{P}^n)$ is naturally identified with $\mathbb{C}^{n+1} \setminus \{0\}$. **Exercise 5.** (compare [2, Ex. 2.2.13]) Show that the holomorphic tangent bundle of a complex torus $X = \mathbb{C}^n / \Gamma$ is isomorphic to the trivial vector bundle of rank n.

References

- [1] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
- [2] D. Huybrechts, Complex geometry: An introduction, Springer, Berlin (2005).
- [3] M. Kashiwara and P. Shapira, *Sheaves on manifolds*, Springer, Berlin (1994).
- [4] C. Schnell, *Complex manifolds*, available at http://www.math.stonybrook.edu/~cschnell/.
- [5] C. Voisin, Hodge theory and complex algebraic geometry, Cambridge University Press, Cambridge (2002).