EXERCISES, COMPLEX GEOMETRY, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2015/2016

P. SOSNA

Sheet 4

Exercise 1. Let \mathcal{F} be a presheaf on a topological space X. Show that there is a homomorphism $\varphi \colon \mathcal{F} \longrightarrow \mathcal{F}^+$ which is an isomorphism if \mathcal{F} is a sheaf. Show that (\mathcal{F}^+, φ) satisfies the following universal property: For any morphism $\psi \colon \mathcal{F} \longrightarrow \mathcal{G}$, where \mathcal{G} is a sheaf, there is a unique sheaf morphism $\theta \colon \mathcal{F}^+ \longrightarrow \mathcal{G}$ such that $\theta \circ \varphi = \psi$.

Exercise 2. (compare [1, Ex. II.1.16])

- (1) Show that if $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ is an exact sequence of sheaves and if \mathcal{F}' and \mathcal{F} are flasque, then so is \mathcal{F}'' .
- (2) Show that if $f: X \longrightarrow Y$ is a continuous map and \mathcal{F} is a flasque sheaf on X, then $f_*\mathcal{F}$ is a flasque sheaf on Y.

Exercise 3. (compare [1, Ex. II.1.19]) Let X be a topological space, Z be a closed subset, let $i: Z \longrightarrow X$ be the inclusion, $U = X \setminus Z$ be the open complement and $j: U \longrightarrow X$ be its inclusion.

- (1) Show that \mathcal{F} is a sheaf on Z, then $(i_*\mathcal{F})_x$ is \mathcal{F}_x if $x \in \mathbb{Z}$ and 0 otherwise.
- (2) Let \mathcal{F} be a sheaf on U. Prove that the assignment $V \longrightarrow \mathcal{F}(V)$ if $V \subset U$ and $V \longmapsto 0$ otherwise defines a presheaf. Show that its sheaffication $j_!\mathcal{F}$ satisfies the following property: $(j_!\mathcal{F})_x = \mathcal{F}_x$ if $x \in U$ and $(j_!\mathcal{F})_x = 0$ if $x \notin U$.

Exercise 4. Let A be a commutative ring with 1. Recall that a *complex* of A-modules is a sequence of modules and A-linear maps $d^i: M^i \longrightarrow M^{i+1}$ for $i \in \mathbb{Z}$ such that $d^{i+1} \circ d^i = 0$ for all i. Write a complex as M^{\bullet} . A morphism of complexes $f^{\bullet}: M^{\bullet} \longrightarrow N^{\bullet}$ is given by maps $f^i: M^i \longrightarrow N^i$ for all $i \in \mathbb{Z}$ such that $d^i_{N^{\bullet}} \circ f^i = f^{i+1} \circ d^i_{M^{\bullet}}$ for all i.

The *i*-cycles of a complex are by definition $Z^i(M^{\bullet}) := \ker(d^i)$ and the *i*-boundaries are $B^i(M^{\bullet}) = \operatorname{im}(d^{i-1})$. Clearly, $B^i(M^{\bullet}) \subseteq Z^i(M^{\bullet})$ and we define the *i*-th cohomology of M^{\bullet} to be $H^i(M^{\bullet}) = Z^i(M^{\bullet})/B^i(M^{\bullet})$.

Show that any morphism of complexes f^{\bullet} induces a map $H^i(f^{\bullet}): H^i(M^{\bullet}) \longrightarrow H^i(N^{\bullet})$ for all $i \in \mathbb{Z}$.

A morphism f^{\bullet} is called a quasi-isomorphism if $H^i(f^{\bullet})$ is an isomorphism for all *i*. Show that the following conditions are equivalent: (1) M^{\bullet} is exact (that is, cycles and boundaries coincide) at every M^i , (2) $H^i(M^{\bullet}) = 0$ for all *i*, (3) the map $0 \longrightarrow M^{\bullet}$ is a quasi-isomorphism.

Exercise 5. Let $X = S^1$ be the unit circle and consider the constant sheaf \mathbb{Z}_X . Cover S^1 by open subsets U and V, where $U = X \setminus \{-1\}$ and $V = X \setminus \{1\}$. Compute the Čech cohomology of \mathbb{Z}_X with respect to this open covering.

Exercise 6. Compute the Čech cohomology of \mathcal{O}_X for $X = \mathbb{P}^1$ with respect to its standard open cover given in the lecture, that is, $\mathbb{P}^1 = U_0 \cup U_1$, where $U_0 = \{[z_0 : z_1] \mid z_0 \neq 0\} = \{[1 : u] \mid u \in \mathbb{C}\} \simeq \mathbb{C}$ and $U_1 = \{[z_0 : z_1] \mid z_1 \neq 0\} = \{[u : 1] \mid u \in \mathbb{C}\} \simeq \mathbb{C}$.

References

- [1] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
- [2] D. Huybrechts, Complex geometry: An introduction, Springer, Berlin (2005).
- [3] M. Kashiwara and P. Shapira, *Sheaves on manifolds*, Springer, Berlin (1994).
- [4] C. Schnell, *Complex manifolds*, available at http://www.math.stonybrook.edu/~cschnell/.
- [5] C. Voisin, *Hodge theory and complex algebraic geometry*, Cambridge University Press, Cambridge (2002).