EXERCISES, COMPLEX GEOMETRY, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2015/2016

P. SOSNA

Sheet 2

Exercise 1. A topological space X is *connected* if it cannot be written as a disjoint union of two open non-empty subsets.

- (1) Let $\{A_n\}$, $n \in \mathbb{N}$, be a sequence of connected subspaces of X with the property that $A_k \cap A_{k+1} \neq \emptyset$ for all $k \in \mathbb{N}$. Show that $Y := \bigcup_{n \in \mathbb{N}} A_n$ is connected.
- (2) Let $f: X \longrightarrow Y$ be a continuous map between topological spaces. Let $A \subset X$ be a connected subset. Show that f(A) is connected.
- (3) Let $f: [0,1] \longrightarrow [0,1]$ be a continuous map, where we consider [0,1] with the subspace topology induced by the usual metric on \mathbb{R} . Show that there exists a point $x \in [0,1]$ such that f(x) = x.

Exercise 2. Recall that a differentiable map $f: M \to N$ between differentiable manifolds is an *immersion* if its differential is everywhere injective. Let $(x, y) \in \mathbb{R}^2$. In the following we write $\alpha = \alpha_{x,y}$ for the positive number $x^2 + y^2 + 1 = \|(x,y)\|^2 + 1$. Let $\varphi_{\pm} \colon \mathbb{R}^2 \to \mathbb{R}^3$ be given by $(x,y) \mapsto \frac{1}{\alpha}(2x,2y,\pm(\alpha-2))$. Show that both maps are immersions, whose image is contained in the two-dimensional sphere S^2 . Furthermore show the following: If $N^{\pm} = (0,0,\pm 1)$, then $\varphi_{\pm} \colon \mathbb{R}^2 \to S^2 \setminus \{N^{\pm}\}$ are homeomorphisms (in fact, they are even diffeomorphisms) with inverse maps $\psi_{\pm}(x,y,z) = (\frac{x}{1\mp z},\frac{y}{1\mp z})$

Exercise 3. [1, Ex. 2.1.1] Show that \mathbb{P}^1 is simply connected by proving that it is diffeomorphic to S^2 .

Exercise 4. [1, Ex. 2.1.2] Show that \mathbb{C}^n does not have any compact submanifolds of positive dimension.

Exercise 5. [1, Ex. 2.1.4] Show that any holomorphic map from \mathbb{P}^n to a complex torus is constant.

Hint: Use that \mathbb{P}^n is simply connected and the lifting property for continuous maps. You may assume that a lift is holomorphic.

References

- [1] D. Huybrechts, Complex geometry: An introduction, Springer, Berlin (2005).
- [2] M. Kashiwara and P. Shapira, Sheaves on manifolds, Springer, Berlin (1994).
- [3] C. Schnell, Complex manifolds, available at http://www.math.stonybrook.edu/~cschnell/.
- [4] C. Voisin, *Hodge theory and complex algebraic geometry*, Cambridge University Press, Cambridge (2002).