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Exercise 1. (compare [2, Ex. 3.3.2]) Let X be the Hopf surface considered in the
lecture. Show that the Jacobian of X, that is, the quotient H1(X,OX)/H1(X,Z) is not
a compact torus in a natural way.

For the next two exercises you will need the following fact. On any complex manifold
X (in fact, the following statement holds far more generally), there is a bijection between
the space of complex line bundles and H2(X,Z).

Exercise 2. (compare [2, Ex. 3.3.7]) Show that any complex line bundle on Pn can be
endowed with a unique holomorphic structure. Give a sufficient condition for a compact
Kähler manifold to have a complex line bundle which does not admit any holomorphic
structure.

Exercise 3. [2, Ex. 3.3.8] Show that on a complex torus Cn/Γ the trivial complex line
bundle admits many non-trivial holomorphic structures. How many are there?

Exercise 4. Show that any map from a projective space to a complex torus is
constant.
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