EXERCISES, COMPLEX GEOMETRY, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2015/2016

P. SOSNA

Sheet 11

Exercise 1. (compare [2, Ex. 3.1.8]) Using that on an *n*-dimensional compact Kähler manifold with Kähler form ω we have the equality $\int_X \omega^n = n! \cdot \operatorname{vol}(X)$, show that there is an injective ring homomorphism $\mathbb{R}[x]/x^{n+1} \longrightarrow H^*(X, \mathbb{R})$. Conclude that only the two-dimensional sphere admits a Kähler structure.

Exercise 2. [2, Ex. 3.2.1] Let X be a Kähler manifold. Show that the Kähler form ω is harmonic.

Exercise 3. [2, Ex. 3.2.6] Show that the odd Betti numbers of a Kähler manifold are even.

Exercise 4. [2, Ex. 3.2.10] Show that on a compact hermitian manifold any *d*-harmonic (p,q)-form is also $\overline{\partial}$ -harmonic.

Exercise 5. (compare [2, Ex. 3.2.11]) Use the ring isomorphism $H^*(\mathbb{P}^n, \mathbb{Z}) \simeq \mathbb{Z}[x]/x^{n+1}$ (where x has degree 2) to show that $H^{p,q}(\mathbb{P}^n) = 0$ except for $p = q \leq n$. Furthermore, prove that $H^{p,p}(\mathbb{P}^n)$ is one-dimensional for $p \leq n$ and deduce that $\operatorname{Pic}(\mathbb{P}^n) \simeq \mathbb{Z}$.

References

- [1] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
- [2] D. Huybrechts, Complex geometry: An introduction, Springer, Berlin (2005).
- [3] M. Kashiwara and P. Shapira, *Sheaves on manifolds*, Springer, Berlin (1994).
- [4] C. Schnell, Complex manifolds, available at http://www.math.stonybrook.edu/~cschnell/.
- [5] C. Voisin, Hodge theory and complex algebraic geometry, Cambridge University Press, Cambridge (2002).