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2 P. SOSNA

1. Very brief introduction

These are notes for a lecture (14 weeks, 2×90 minutes per week) held at the University
of Hamburg in the winter semester 2014/2015. The goal is to introduce and study
some basic concepts from commutative algebra which are indispensable in, for instance,
algebraic geometry. There are many references for the subject, some of them are in the
bibliography. In Sections 2-8 I mostly closely follow [2], sometimes rearranging the order
in which the results are presented, sometimes omitting results and sometimes giving
statements which are missing in [2]. In Section 9 I mostly rely on [9], while most of the
material in Section 10 closely follows [4]. Clearly, many topics, such as completions, are
missing from these notes. Another obvious shortcoming is the lack of examples in the
last two sections, which is due to lack of time.

Despite the lecturers’ personal bias and the occasional subsection with “geometry”
in the title, there is not much explicit algebraic geometry in these notes. For those
interested in these connections, [8] is a fairly concise source, while [4] is a more elaborate
treatise. Should other suitable references for these connections, and for commutative
algebra in general, be missing in the bibliography, my ignorance is to blame.

2. Rings and Ideals

Definition. A ring is a set A with two binary operations, the addition “+” and multi-
plication “·”, such that

1) The set A is an abelian group with respect to addition. This means that the
addition is associative, commutative, that there is a neutral element denoted by
0 and every element x has an inverse, denoted by −x;

2) The multiplication is associative and distributive over the addition.

A ring is called commutative if xy = yx for all x, y ∈ A. A ring is said to have an identity
element if there exists an element 1 ∈ A such that 1x = x1 = x for all x ∈ A.

Convention. In the following “ring” will mean a commutative ring with an identity
element.

Example 2.1. We do not exclude the possibility that 1 = 0 in a ring A. In this case,
x = x1 = x0 = 0, so A has only one element 0. We call this A the zero ring.

Another example is given by the integers Z with the usual addition and multiplication.
If A is any ring, then the set

A[X] =

{
n∑
i=0

aiX
i | ai ∈ A, n ∈ N

}
consisting of all polynomials with coefficients in A is a ring with respect to the usual
addition and multiplication of polynomials.

Definition. Let A and B be two rings. A ring homomorphism from A to B is a map
f : A //B such that
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i) f(x+ y) = f(x) + f(y) for all x, y ∈ A,
ii) f(xy) = f(x)f(y) for all x, y ∈ A,

iii) f(1) = 1.

A subring A′ of a ring A is a subset of A admitting a ring structure such that the inclusion
map A′ //A is a ring homomorphism. In other words, A′ is a subset of A which is closed
under addition and multiplication and contains the identity element of A.

Note that i) implies that f is a homomorphism of the abelian groups underlying the
rings.

Example 2.2. The inclusion Z //Q is a ring homomorphism.
The map A[X] //A sending a polynomial p to p(1) (or, more generally, p � // p(a) for

some a ∈ A) is a ring homomorphism.
The conjugation map of the complex numbers C is a ring homomorphism.

Definition. Let A be a ring. An ideal I of A is a subset which is an additive subgroup
and has the property that xi ∈ I for all x ∈ A and i ∈ I. We also write AI ⊆ I.

If I is an ideal, then the quotient group A/I inherits a uniquely defined multiplication
from A (given two cosets x + I and y + I, set (x + I)(y + I) = xy + I) which makes it
into a ring, called the quotient ring. The map A //A/I which sends x to its coset x+ I,
is a surjective ring homomorphism.

Example 2.3. If A = Z, then (n) (also written as nZ), the set of all integers divisible
by some fixed integer n, is an ideal. For instance, if we take n = 2, then the quotient
ring Z/2Z is a ring with two elements 0 and 1.

If f : A //B is a ring homomorphism, then ker(f) = f−1(0) is an ideal in A. As an
example let A = C[X], B = C and f : A //B the homomorphism sending p to p(1).
Then its kernel is the set of all polynomials which vanish in 1, or, to put it differently,
have 1 as a root.

Note that im(f) is always a subring of B but usually not an ideal (take, for instance,
A = Z, B = Q and f to be the inclusion). Using the homomorphism theorem, we see
that A/ ker(f) ' im(f).

We will now prove our first result, which is quite easy but very useful.

Proposition 2.4. There is a one-to-one order preserving correspondence between ideals
of A/I and ideals J of A containing I.

Proof. Given an ideal J of A which contains I, the quotient J/I is easily seen to be an
ideal of A/I. Conversely, if I ′ is an ideal in A/I, then its preimage under the projection
map is an ideal containing I. It is clear that these two maps are inverse to each other. �

We can perform certain operations on ideals.

Definition. Let A be a ring. If I and J are ideals, then the ideal I + J is the set of all
x+ y with x ∈ I and y ∈ J . Similarly one defines the sum of (possibly infinitely many)
ideals as the set of all finite sums as above.
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Given any family Iα of ideals, the intersection ∩αIα is again an ideal.
The product IJ of two ideals is the ideal generated by all products xy with x ∈ I and

y ∈ J , that is, the set of all finite sums
∑

k xkyk where each xk ∈ I and each yk ∈ J .
Similarly, we can define the product of any finite family of ideals.

Example 2.5. Let A = Z, I = (m) and J = (n). Then I ∩ J is the ideal generated
by the lowest common multiple of m and n; I + J is the ideal generated by the highest
common factor; and IJ = (mn).

For a different example, we can consider A = R[X1, . . . , Xk] and I = (X1, . . . , Xk).
Then Im = I · · · I is the set of all polynomials with no terms of degree < m.

Remark 2.6. It is clear that taking the sum, intersection and product of ideals are com-
mutative and associative operations. There is also a distributive law for the sum and
the product.

Definition. Let A be a ring. An element x 6= 0 in A is called a zero divisor if there
exists an element y 6= 0 such that xy = 0. A ring without any zero divisors is called an
integral domain, or simply domain.

An element x ∈ A is called nilpotent if there exists an integer n ∈ N>0 such that
xn = 0. In a non-zero ring, any nilpotent element is a zero divisor but the converse does
not hold in general.

A unit is an element x ∈ A such xy = 1 for some y ∈ A. One writes x−1 for this
so-called inverse y of x. Note that the set of all units is a multiplicative subgroup of A.

Given any element x ∈ A, the multiples of x form an ideal (x), called the principal
ideal generated by x. We will frequently write 0 for the zero ideal (0).

Example 2.7. The integers Z are a domain and so is Z[X]. The former being clear, let
us consider the latter case. If f =

∑n
k=0 αkX

k and g
∑m

l=0 βlX
l are in Z[X] such that

fg = 0, then, in particular, αk0βl0 = 0, where k0 and l0 are the minimal indices such
that αk0 6= 0 and βl0 6= 0. Since Z is an integral domain, this leads to a contradiction.

For an example of zero-divisors, consider the ring A = k[X, Y ]/(XY ) and the elements
X and Y . Note that A does not have any nilpotent elements, while in B = k[X]/(X2)
the element X is nilpotent.

Remark 2.8. First of all, the inverse of an element is uniquely determined, since if 1 =
xy = xy′, then

y = y1 = y(xy′) = (yx)y′ = (xy)y′ = y′.

A commutative ring with 1 is called a field if 1 6= 0 and for all 0 6= x ∈ A there exists
an element x−1 ∈ A such that xx−1 = x−1x = 1. In other words, every non-zero element
of A is a unit. Clearly, every field is an integral domain, but not conversely (e.g. Z).

Note that if x is a unit, then (x) = A = (1).
Also note that if x is nilpotent, then 1− x is a unit. Indeed, xn = 0 for some integer,

so (1− x)(1 + x+ . . .+ xn−1) = 1. It follows easily from this that the sum of a unit and
a nilpotent element is again a unit.
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Proposition 2.9. Let A 6= 0 be a ring. The following are equivalent:

a) A is a field,
b) the only ideals in A are 0 and (1);
c) every homomorphism f : A //B, where B 6= 0, is injective.

Proof. a)⇒b) Let 0 6= I ⊆ A be an ideal and let 0 6= i ∈ I be any non-zero element.
Since i is a unit, the ideal generated by i is A. But this ideal is contained in I, so I = A.

b)⇒c) Let f be a homomorphism to a non-zero ring. The kernel of f is an ideal of A.
Since A has only two ideals and the map f sends 1 to 1, f cannot be constant, hence
the kernel is 0.

c)⇒a) Let x be an element of A which is not a unit. Then (x) 6= (1), so B = A/(x) is
not the zero ring. Therefore, the projection f : A //A/(x) is injective. But the kernel
of f is (x), so (x) = 0, hence x = 0. �

We will now turn our attention to special types of ideals.

Definition. An ideal p 6= (1) in a ring A is prime if xy ∈ p implies that either x ∈ p or
y ∈ p. An ideal m is called maximal if m 6= (1) and there is no ideal I such that there
exists a strict inclusion of m in I.

Equivalently, an ideal p is prime if and only if A/p is an integral domain and an ideal
m is maximal if and only if A/m is a field. The second statement follows immediately
from Propositions 2.4 and 2.9. For the first note that A/p is an integral domain if and
only if x /∈ p and y /∈ p implies that xy /∈ p.

Remark 2.10. If f : A //B is a ring homomorphism and p is a prime ideal in B, then
f−1(p) is a prime ideal in A. Indeed, A/f−1(p) is isomorphic to a subring of B/p (the
induced map A/f−1(p) //B/p is injective) and the latter is an integral domain, hence
so is the former. The corresponding statement does not hold for maximal ideals, for
instance, take f : Z //Q and m = 0.

Our first major result below will use Zorn’s lemma which states that if S is a non-
empty partially ordered set, and any chain in S has an upper bound, then S has at least
one maximal element. Here, a partial order ≤ is a relation on S which is reflexive and
transitive and such that x ≤ y and y ≤ x imply that x = y. A subset T of S is a chain
if either x ≤ y or y ≤ x for any two elements x, y ∈ T . An upper bound of a subset T
is, of course, an element x such that t ≤ x for all t ∈ T .

Theorem 2.11. Every ring A 6= 0 has at least one maximal ideal.

Proof. Let Σ be the set of all ideals 6= (1) in A. The inclusion relation makes Σ into a
partially ordered set. Clearly, 0 ∈ Σ, so Σ is non-empty. Now let T be a chain in Σ,
that is, we are given a sequence of ideals Iα such that for any pair of indices α, β either
Iα ⊆ Iβ or vice versa. Let I = ∪αIα. Clearly, this is an ideal and 1 /∈ I, hence I ∈ Σ
and every chain in Σ has an upper bound. By Zorn’s lemma, Σ has a maximal element,
that is, there exists a maximal ideal in A. �
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Corollary 2.12. If I 6= (1) is an ideal in A, then there exists a maximal ideal containing
I.

Proof. Apply the theorem to A/I, using Proposition 2.4. �

Corollary 2.13. Every non-unit x of A is contained in a maximal ideal.

Proof. The element x is contained in (x) 6= (1). �

Example 2.14. Let A = Z. Every ideal in Z is of the form (n) with n ≥ 0. The ideal
(n) is prime if and only if n is a prime number or n = 0. In fact, all the ideals with
n prime are actually maximal. The corresponding quotient rings are the fields with n
elements. Of course, every integer is divisible by some prime number.

If A = k[X1, . . . , Xn] is the polynomial ring in n variables over a field k and f is an
irreducible polynomial, then (f) is a prime ideal. But for n > 1, not every ideal in
A is generated by one element. For example, the kernel of the map A // k sending a
polynomial f to its value at 0 is a maximal ideal but requires at least n generators.

A principal ideal domain is an integral domain in which every ideal is principal. In
such a ring every non-zero prime ideal is maximal. Indeed, if (x) 6= 0 is a prime ideal
and (y) ⊃ (x), then x ∈ (y), so x = yz, so yz ∈ x. Since (x) is prime and y /∈ (x),
z ∈ (x), so z = tx. Then x = yz = ytx, hence yt = 1 and (y) = (1).

Definition. A local ring is a ring with exactly one maximal ideal. A ring is called
semi-local if it has only finitely many maximal ideals.

Note that any field is a local ring and its maximal ideal is 0.

Proposition 2.15. Let A be a ring and m 6= (1) be an ideal in A with the property that
any element x ∈ A \ m is a unit. Then A is a local ring and m is its maximal ideal.
Furthermore, if A is a ring and m is a maximal ideal of A such that every element of
the form 1 +m with m ∈ m is a unit, then A is local.

Proof. Let I 6= (1) be an ideal. Since no unit is contained in I, I ⊆ m, hence the first
claim holds. To prove the second claim, let x ∈ A \m. The ideal generated by m and x
has to be (1), because m is maximal. Therefore there exist y ∈ A and t ∈ m such that
xy + t = 1, so xy = 1 − t ∈ 1 + m is a unit by assumption and then the second claim
follows from the first. �

Example 2.16. Let A[[X]] be the ring of formal power series, that is, elements of A[[X]]
are infinite sums

∑∞
k=0 akX

k with ak ∈ A for all k. A power series f = a0 + a1X + . . . is
a unit in A[[X]] if and only if a0 is a unit in A. Indeed, if f−1 = b0 + b1X + . . . exists,
then a0b0 = 1. Conversely, if a0 is a unit, the equation

1 = (a0 + a1X + . . .)(b0 + b1X + . . .) = a0b0 + (a0b1 + a1b0)X + . . .

is solvable by setting b0 = a−1
0 , then solving the equation a0b1 + a1b0 for b1 and so on.

It follows that an element in A[[X1, . . . , Xn]] is a unit if and only if a0 is a unit in A.
In particular, k[[X1, . . . , Xn]] is a local ring with maximal ideal (X1, . . . , Xn) if k is a
field. This does not hold for the polynomial ring, even if n = 1.
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Proposition 2.17. Let A be a ring. The set of all nilpotent elements in A, denoted
by rad(0) or

√
0 is an ideal, called the nilradical of A. The ring B = A/rad(0) has no

nilpotent elements.

Proof. Clearly, 0 ∈ rad(0). If x and y are in rad(0), then xn = 0 and ym = 0 for some
integers n,m. Then (x+ y)n+m+1 = 0 by the binomial formula. Next, if x ∈ rad(0) and
a ∈ A, then clearly ax ∈ rad(0) and so rad(0) is an ideal.

Now if x ∈ B is nilpotent, then xn = 0 in B, that is, for a representative x of the coset
x we have xn ∈ rad(0). But this just means that x is nilpotent, so x = 0 in B. �

Proposition 2.18. The nilradical rad(0) of A is equal to the intersection of all prime
ideals of A.

Proof. Let x ∈ rad(0), so xn = 0 for some integer n. In particular, xn is contained in
every prime ideal, and so x is indeed contained in the intersection of all the prime ideals
of A.

Conversely, let x be not nilpotent. Let Σ be the set of ideals I such that n > 0 ⇒
xn /∈ I. Then Σ 6= ∅ because 0 ∈ Σ. Applying Zorn’s lemma to Σ (which is a partially
ordered set with respect to inclusion), we get a maximal element p. We will show that
this is a prime ideal. To see this, let a, b /∈ p. Then (a) + p ) p and (b) + p ) p, so
(a) +p /∈ Σ and (b) +p /∈ Σ. Therefore, xn ∈ (a) +p and xm ∈ (b) +p for some n,m > 0.
It follows that xn+m ∈ (ab) + p, hence (ab) + p /∈ Σ, so ab /∈ p. Therefore, any element
which is not nilpotent is not contained in some prime ideal. �

We can also consider the intersection of all the maximal ideals Jac(A), which is called
the Jacobson radical.

Proposition 2.19. Let A be a ring. An element x is in the Jacobson radical Jac(A) if
and only if 1− xy is a unit for all y ∈ A.

Proof. “⇒” If 1−xy is not a unit, it is contained in some maximal ideal m. Since xy ∈ m,
it follows that 1 ∈ m, a contradiction.

“⇐” Assume x /∈ m for some maximal ideal m. Then x and m generate the unit ideal
(1), so u+xy = 1 for some u ∈ m and some y ∈ A. But then 1−xy cannot be a unit. �

Now recall that we defined several operations on ideals, namely sum, intersection and
product. Going back to the definition, it is clear that IJ ⊆ I ∩ J for any ideals I and J .
A little more difficult to see (write down the conditions) is the modular law which states
that if I ⊃ J or I ⊃ K, then

I ∩ (J +K) = I ∩ J + I ∩K.

Hence,

(I + J)(I ∩ J) ⊆ (I ∩ J)I + (I ∩ J)J ⊆ IJ.

We conclude that if I + J = (1), then IJ = I ∩ J . We therefore say that two ideals I, J
are coprime if I + J = (1).
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Definition. Let A1, . . . , Ak be rings. Their direct product A =
∏k

i=1Ai is the set A1 ×
. . . × Ak endowed with the componentwise addition and multiplication. The identity
element of A is (1, . . . , 1). We will denote the canonical projections A //Ai by pi. These
are ring homomorphisms.

Proposition 2.20. Let A be a ring and let I1, . . . , Ik be ideals of A. Let ϕ : A //
∏k

i=1A/Ii
be the canonical map. Then

i) If Ii and Ij are coprime whenever i 6= j, then
∏
Ii = ∩Ii.

ii) The map ϕ is surjective if and only if Ii and Ij are coprime whenever i 6= j.
iii) The map ϕ is injective if and only if ∩iIi = (0).

In particular, if Ii and Ij are coprime whenever i 6= j, then

ϕ : (A/ ∩i Ii) '
k∏
i=1

A/Ii.

Proof. To prove i), we will use induction. The case k = 2 was done above. So assume

k > 2 and set J =
∏k−1

i=1 Ii = ∩k−1
i=1 Ii. For 1 ≤ i ≤ k − 1 we have Ii + Ik = (1), hence

1 = xi + yi for xi ∈ Ii and yi ∈ Ik. Therefore

k−1∏
i=1

xi =
k−1∏
i=1

(1− yi)

and hence Ik + J = (1). It follows that

k∏
i=1

Ii = JIk = J ∩ Ik =
k⋂
i=1

Ii.

Let us now prove ii). First assume that ϕ is surjective and note that it is sufficient to
show that, for example, I1 and I2 are coprime. Let x be an element in A with ϕ(x) =
(1, 0, . . . , 0). This means that x ∈ I2 and 1−x ∈ I1. Therefore 1 = (1−x) +x ∈ I1 + I2.

Conversely, it is sufficient to show that (1, 0 . . . , 0) is in the image of ϕ. For every
i > 1 we have an equation ui + vi = 1 with ui ∈ I1 and vi ∈ Ii. Define x =

∏
i≥2 vi.

Then x =
∏

i(1 − ui) = 1 + y with y ∈ I1 and x = 0 in A/Ii for all i > 1. Therefore,
ϕ(x) = (1, 0, . . . 0).

Lastly, iii) is clear, because ∩Ii = ker(ϕ). �

Proposition 2.21. The following holds.

i) Let p1, . . . , pk be prime ideals and let I be an ideal contained in the union ∪ki=1pi.
Then there exists an index i0 such that I ⊆ pi0.

ii) Let I1, . . . , Ik be ideals and let p be a prime ideal containing ∩ki=1Ii. Then p ⊃ Ii0
for some i0. If p = ∩ki=1Ii, then p = Ii0 for some i0.
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Proof. i) We use induction on k in the form

I 6⊆ pi ∀1 ≤ i ≤ k ⇒ I 6⊆
k⋃
i=1

pi.

The case k = 1 is clear. If k > 1 and the result holds for k − 1, then for each i
there exists an element xi ∈ I such that xi /∈ pj for all j 6= i. If also xi /∈ pi, then
we are done. Otherwise, xi ∈ pi for all i and we define

y =
k∑
i=1

x1x2 · · ·xi−1xi+1 · · ·xk.

Then clearly y ∈ I and y /∈ pi for 1 ≤ i ≤ k (for example, consider i = 1 and
note that all the summands in y except the first one are in p1, so if y were in p1

the first summand x2 · · ·xk would also be in p1, contradiction). So, I 6⊆ ∪ki=1pi.
ii) Suppose that Ii 6⊆ p for all i. Then there exist xi ∈ Ii, xi /∈ p and therefore∏

xi ∈
∏
Ii ⊆ ∩Ii. Since p is prime,

∏
xi /∈ p. Hence ∩Ii 6⊆ p.

Finally, if p = ∩Ii, then p ⊆ Ii ∀i and hence p = Ii0 for some i0. �

Definition. Let I be an ideal. The annihilator of I, denoted by Ann(I) is the set of all
elements x ∈ A such that xI = 0. More generally, for ideals I, J we define their ideal
quotient (I : J) as

(I : J) = {x ∈ A | xJ ⊆ I} .
The radical of an ideal I is defined as

rad(I) = {x ∈ A | xn ∈ I for some n > 0} .
In the same vein, we can define the radical rad(E) of any subset E of A, which will not
be an ideal in general.

Proposition 2.22. The radical of an ideal I is the intersection of all prime ideals con-
taining I.

Proof. Apply Proposition 2.18 to A/I. �

Proposition 2.23. The set D of all zero divisors of A is equal to ∪06=x∈Arad(Ann(x)).

Proof. First note that for any family of subsets Eα of A we have rad(∪αEα) = ∪αrad(Eα)
and that D = ∪x 6=0Ann(x). Using this, we compute

D = rad(D) = rad(∪x 6=0Ann(x)) = ∪x 6=0rad(Ann(x)). �

We will now investigate the set of all prime ideals of a ring A a bit more thoroughly.

Definition. Let A be a ring. We define X = Spec(A), the spectrum of A, to be the set
of all prime ideals in A. For a subset E of A, denote by V (E) the set of all prime ideals
containing E.

Proposition 2.24. The following holds.



10 P. SOSNA

i) If I is the ideal generated by E, then V (E) = V (I) = V (rad(I)).
ii) V (0) = X and V (1) = ∅.

iii) If (Eα)α is any family of subsets of A, then V (∪αEα) = ∩αV (Eα).
iv) If I and J are ideals in A, then V (I ∩ J) = V (I) ∪ V (j).

Proof. i) Clearly, E ⊆ I, so V (E) ⊃ V (I). But since I is the smallest ideal con-
taining E, any prime ideal which contains E also has to contain I. Hence,
V (E) = V (I).

Now, V (I) ⊃ V (rad(I)). But if I ⊆ p and x ∈ rad(I), that is xn ∈ I ⊆ p, then
also x ∈ p, so V (I) ⊆ V (rad(I)).

ii) This is trivial.
iii) Let p be an ideal containing ∪αEα. Then p contains all the Eα and hence p is

contained in ∩αV (Eα). Conversely, a prime ideal containing all the Eα contains
their union.

iv) If p contains I or J , it also contains I ∩J . On the other hand, if p contains I ∩J ,
it contains one of the ideals by Proposition 2.21.ii). �

Example 2.25. If A is a field, then Spec(A) is a point which corresponds to the unique
maximal ideal (0).

If A = Z, then Spec(Z) consists of a countable number of points, namely one for each
prime number and the zero ideal. Note that the zero ideal is a point in Spec(Z) but
while V (n) = (n) for n prime, we have V (0) = Spec(Z).

If A = C[X]/(X2), then Spec(A) is again just a point corresponding to the unique
maximal ideal generated by the image of X under the quotient map. Hence, as a set the
spectrum of A is the same as the spectrum of a field, but since the underlying rings are
quite different, one might expect the spectra to reflect this difference. We might come
back to this observation later.

3. Modules

Definition. Let A be a ring. An A-module is an abelian group M together with a scalar
multiplication by A, that is, there is a map ρ : A ×M //M, (a,m) � // ρ(a,m) =: am
satisfying the following properties for a, a′ ∈ A and m,m′ ∈M : i) a(m+m′) = am+am′,
ii) (a+ a′)m = am+ a′m, iii) a(a′m) = (aa′)m and iv) 1m = m.

Example 3.1. If A = k is a field, then an A-module is simply a k-vector space.
Any ideal in a ring A is a module over A. In particular, A itself is an A-module.
If A = Z, then an A-module M is an abelian group and vice versa (if x ∈ M , then

define nx = x+ . . .+ x).
If A = k[X], then an A-module is a k-vector space endowed with a linear transforma-

tion which corresponds to the scalar multiplication by X. In a similar vein, a module
over k[X, Y ] is a k-vector space endowed with two commuting endomorphisms.

Definition. Let M and N be two A-modules. A map f : M //N is an A-module
homomorphism or A-linear if f(m + m′) = f(m) + f(m′) and f(am) = af(m) for all
a ∈ A, m,m′ ∈M .
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Equivalently, f is a homomorphism of abelian groups and commutes with the action
of A on M and N , respectively. Of course, if A is a field, then an A-linear map is simply
a linear map between vector spaces. Clearly, the composition of two A-linear maps is
again A-linear.

Example 3.2. Any homomorphism of abelian groups is a Z-linear map.

Remark 3.3. Let M and N be A-modules. The abelian group Hom(M,N) is an A-
module as follows. For f, g ∈ Hom(M,N) and a ∈ A we define f + g, af : M //N by
m � // f(m) + g(m) and m � // af(m). An easy computation shows that this definition
indeed endows Hom(M,N) with an A-module structure. One then writes HomA(M,N).
We will frequently omit the subscript when the ring will be clear from the context.

More specifically, we can consider the module Hom(M,M) =: End(M) for an A-
module M . This A-module is in fact a non-commutative ring, with multiplication given
by composition. Using this, an A-module M is an abelian group together with a ring
homomorphism A //End(M).

Remark 3.4. Let α : M //M ′ and β : N //N ′ be A-linear maps between A-modules.
Then we get induced A-linear maps

α : Hom(M ′, N) //Hom(M,N), f � // f ◦ α
and

β : Hom(M,N) //Hom(M,N ′), g � // β ◦ g.
Also note that for any A-module M there is an isomorphism

HomA(A,M) 'M

of A-modules given by sending a map f : A //M to f(1). Conversely, any A-linear map
from A to M is uniquely determined by its value at 1.

Definition. A submodule M ′ of M is a subgroup of M which is closed under multipli-
cation by elements of A, that is am′ ∈M ′ for all a ∈ A and all m′ ∈M ′.

If M ′ is a submodule of M , the quotient module is the abelian group M/M ′ with the
A-module structure given by a(m+M ′) = am+M ′.

If f : M //N is A-linear, then the kernel of f is the following submodule of M :
ker(f) = {m ∈M | f(m) = 0}. The image of f is the set im(f) = f(M) and is a
submodule of N . The cokernel of f is the module N/ im(f).

If M ′ is a submodule of M with the property that M ′ ⊆ ker(f), then f induces
a homomorphism f : M/M ′ //N whose kernel is ker(f) = ker(f)/M ′. In particular,
M/ ker(f) ' im(f).

Note that there is a one-to-one order-preserving correspondence between submodules
of M which contain M ′ and submodules of M/M ′.

Example 3.5. Any subgroup of an abelian group is a submodule.
If A is a ring, then it is a subring of the A-module A[X] and, in particular, a submodule.
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In the first section we have defined several operations on ideals. Some of them have
counterparts for modules.

Definition. If M is an A-module and (Mi)i∈I is a family of submodules, then their sum∑
iMi is the set of all sums

∑
imi where mi ∈Mi for all i ∈ I and all but finitely many

mi are zero. The sum is the smallest submodule of M containing all the Mi.

Given a family as above, the set-theoretic intersection ∩iMi is again a submodule of
M .

Proposition 3.6. If N ⊆M ⊆ L are A-modules, then

(L/N)/(M/N) ' L/M.

If M1 and M2 are submodules of M , then

(M1 +M2)/M1 'M2/(M1 ∩M2).

Proof. To prove the first claim, we define a map f : L/N //L/M by sending l + N to
l + M , that is, by sending a class of an element modulo N to its class modulo M . The
kernel of f is M/N and f is surjective and well-defined, hence the claim.

To prove the second claim, note that the map

M2
//M1 +M2

// (M1 +M2)/M1

is surjective and its kernel is precisely M1 ∩M2. �

Definition. If I is an ideal of A and M is an A-module, we define the module IM as
the set of all finite sums

∑
i aimi where ai ∈ I and mi ∈M . This is a submodule of M .

If N,P are submodules of a module M , define (N : P ) to be the set of all a ∈ A such
that aP ⊆ N . This is an ideal of A. Setting N = 0, gives the annihilator Ann(P ) of a
module P , namely the set of all a ∈ A such that aP = 0.

Note that if I ⊂ Ann(M) for a module M , then M is an A/I-module as follows:
am = am, where a is any representative of the class a ∈ A/I. This is well-defined by
our assumption.

Example 3.7. Let A = Z, M = Z[X] and I = (2). Then IM is the submodule
consisting of all polynomials whose coefficients are even.

If M = A = P , then Ann(P ) = 0. For a more interesting example, let A = k[X],
M = P = k[X]/(X2). Then Ann(M) = (X2).

Definition. If m ∈M , then the set {am | a ∈ A}, denoted by Am, is a submodule of M .
If M =

∑
i∈I Ami, then the elements mi are said to be generators of M . An A-module

M is said to be finitely generated if it has a finite set of generators.
If M,N are A-modules, their direct sum is the abelian group M × N endowed with

componentwise scalar multiplication. We will write M⊕N for the direct sum. Similarly,
given any family of modules Mi, i ∈ I, their direct sum ⊕i∈IMi is the set of all families
(mi)i∈I with mi ∈ Mi for all I ∈ I and all but a finite number of the mi are zero. If we
take all families, then we get the direct product

∏
i∈IMi.
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Example 3.8. Assume that a ring A is a product of finitely many rings A1, . . . , An.
Then A is, as an A-module, isomorphic to ⊕nj=1Ij, where Ij is the set of all elements
(0, . . . , 0, aj, 0, . . . , 0) with aj ∈ Aj. Conversely, if A = I1 ⊕ . . . ⊕ In is a direct sum of
ideals, define Jk = ⊕j 6=kIj and note that then A '

∏n
k=1(A/Jk).

Definition. An A-module M is free if it is isomorphic to ⊕iMi with Mi ' A for all
i ∈ I. Consequently a finitely generated free module is isomorphic to An for some n ∈ N.

Proposition 3.9. An A-module M is finitely generated if and only if it is isomorphic
to a quotient of the free module An for some n > 0.

Proof. “⇒” Let m1, . . . ,mn be a finite set of generators for M . Define a map f : An //M
by sending the i-th basis vector ei of An to mi. This is clearly an A-linear surjective
map, hence M ' An/ ker(f).

“⇐” Let f : An //M be a surjection. Set mi = f(ei). Then the mi are a finite set of
generators for M . �

Proposition 3.10 (Nakayama’s lemma). Let M be a finitely generated A-module and
let I be an ideal which is contained in the Jacobson radical Jac(A) of A. If IM = M ,
then M = 0.

Proof. Suppose M 6= 0 and let m1, . . . ,mn be a minimal set of generators of M . Since
IM = M , there exists an equation of the form mn = a1m1 + . . .+ anmn with aj ∈ I for
all j. Rewriting gives

(1− an)mn = a1m1 + . . .+ an−1mn−1.

Since I ⊆ Jac(A), 1 − an is a unit by Proposition 2.19, hence mn can be generated by
the first n− 1 elements, a contradiction. �

Corollary 3.11. Let M be a finitely generated A-module, N a submodule of M and
I ⊆ Jac(A) an ideal. Then M = IM +N implies that M = N .

Proof. Follows by applying Nakayama’s lemma to M/N and using that I(M/N) = (IM+
N)/N . �

Corollary 3.12. Let A be a local ring, m its maximal ideal, k = A/m the residue field
and M be a finitely generated A-module. Since M/mM is naturally a A/m = k-module,
let mi, 1 ≤ i ≤ n, be elements of M whose images in M/mM form a basis of this vector
space. Then the mi generate M .

Proof. Let N be the submodule of M generated by the mi. Consider the composition
N //M //M/mM which is clearly surjective, so N +mM = M . Since A is assumed to
be local, Jac(A) = m and it follows that M = N . �

Definition. A sequence of A-modules and A-linear maps

. . . // Mi−1

fi−1 // Mi
fi // Mi+1

// . . .
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is exact at Mi if ker(fi) = im(fi−1). It is exact if it is exact at Mi for all i ∈ Z.
A short exact sequence is an exact sequence of the form

0 // M ′ f // M
g // M ′′ // 0,

hence f is injective, g is surjective and ker(g) = im(f).

Example 3.13. The sequence

0 // Z ·2 // Z // Z/2Z // 0

is short exact, while the sequence

Z i1 // Z3 p3 // Z ,

where i1(x) = (x, 0, 0) and p3 = (x, y, z) = z, is not. Note that im(i1) ( ker(p3).

Proposition 3.14. A sequence M ′ f // M
g // M ′′ // 0 is exact if and only if for

all modules N the sequence

0 // Hom(M ′′, N)
g // Hom(M,N)

f // Hom(M ′, N)

is exact.

Similarly, a sequence 0 // N ′
f // N

g // N ′′ is exact if and only if for all modules
M the sequence

0 // Hom(M,N ′)
f // Hom(M,N)

g // Hom(M,N ′′)

is exact.

Proof. We only prove the second claim since the first is similar. Assume first that f is
injective and that ker(g) = im(f). Let ϕ : M //N ′ be a map. Then f(ϕ) = f ◦ ϕ. If
ϕ 6= 0, there is an element m ∈M such that ϕ(m) 6= 0. Then also f ◦ϕ(m) 6= 0, since f
is injective, so f is injective.

Now note that gf(ϕ) = g ◦ f ◦ ϕ = 0, since g ◦ f = 0. Therefore, im(f) ⊆ ker(g).
But if ψ ∈ ker(g), then g ◦ ψ = 0, so ψ maps to the kernel of g which is the image of f .
Hence, ψ = f ◦ ϕ for some ϕ ∈ Hom(M,N ′).

Now assume the second sequence to be exact. To show that f is injective, let n′ ∈
ker(f) and consider the submodule An′ and its embedding α into N ′. Then f(α) = 0,
hence α = 0, so n′ = 0. Next, since g ◦f = 0, we have, for any ϕ : M //N ′, g ◦f ◦ϕ = 0.
Taking M = N ′ and ϕ = id, we get g ◦ f = 0, so im(f) ⊆ ker(g). Lastly, if n ∈ ker(g),
take M = An and α ∈ Hom(M,N) the embedding. Then g(α) = 0, so α = f ◦ β for
some β ∈ Hom(An,N ′), hence n ∈ im(f). �
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Proposition 3.15. Let

0 // M ′ f //

α′

��

M
g //

α
��

M ′′ //

α′′

��

0

0 // N ′
f ′ // N

g′ // N ′′ // 0

be a commutative diagram of A-modules and A-linear maps. Assume that both rows are
exact. Then there exists an exact sequence

0 // ker(α′)
f // ker(α)

g // ker(α′′)
d //

// coker(α′)
f ′ // coker(α)

g′ // coker(α′′) // 0

in which f and g are the restrictions of f and g, while f ′ and g′ are induced by f ′ and
g′.

Proof. We will only give an outline of the proof since it is a good exercise. Since α ◦ f =
f ′ ◦ α′, any element in ker(α′) gets mapped by f to an element of ker(α). Now f is
injective, so its restriction to ker(α′) is of course still injective. The commutativity of
the diagram also implies, in particular, that im(α′) is mapped to im(α) by f ′. Therefore
im(α′) is contained in the kernel of the map N ′ //N // coker(α), hence there is an
induced map coker(α′) // coker(α) as claimed.

The most interesting part of the proof is the construction of the boundary map d. Let
x ∈ ker(α′′). Since g is surjective, there exists an m ∈ M mapping to x under g. Using
the equation α′′ ◦ g = g′ ◦ α, we see that α(m) ∈ ker(g′). By the exactness of the lower
row, there is an element n′ ∈ N ′ such that f ′(n′) = α(m). The map d is now defined by
sending x to the class of n′ ∈ coker(α′). Checking that this is a well-defined map and
the exactness of the sequence is left to the reader. �

3.1. Tensor product of modules.

Definition. Let M,N and P be A-modules. A map f : M ×N //P is called A-bilinear
if for every m ∈ M the map f(m,−) : N //P is A-linear and for every n ∈ N the map
f(−, n) : M //P is A-linear.

Proposition 3.16. Let M and N be A-modules. There exists a pair (T, g) consisting
of an A-module T and a bilinear map g : M ×N //T such that the following universal
property holds: Given any A-module P and any bilinear map f : M×N //P there exists
a unique linear map f ′ : T //P such that f = f ′ ◦ g. Moreover, if (T ′, g′) is a second
pair satisfying the universal property, then there is a unique isomorphism j : T //T ′ such
that j ◦ g = g′. The module T is called the tensor product of M and N and frequently
written as M ⊗N .
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Proof. We will first prove that if such a pair exists, it has to be unique. So, let (T, g) and
(T ′, g′) be two pairs satisfying the universal property. Choosing P = T and f = g′ we
get a unique linear map j : T //T ′ such that g′ = j ◦ g. Now setting P = T ′ and f = g
and using the universal property of the pair (T ′, g′), we get a unique map j′ : T ′ //T
such that g = j′ ◦ g′. Since the map j and j′ are unique, their compositions have to be
the respective identity, hence j is an isomorphism.

Now we will show that the tensor product indeed exists. Let C = A(M×N). Note
that the elements of C are formal linear combinations of M ×N with coefficients in A.
Consider the submodule D of C generated by all elements of the following types

(m+m′, n)− (m,n)− (m′, n)

(m,n+ n′)− (m,n)− (m,n′)

(am, n)− a(m,n)

(m, an)− a(m,n).

Define T = C/D. For each basis element (m,n) ∈ C we will write m ⊗ n for its image
in T . Clearly, T is generated by the elements of the form m⊗ n and we have

(m+m′)⊗ n = m⊗ n+m′ ⊗ n, m⊗ (n+ n′) = m⊗ n+m⊗ n′

(am)⊗ n = a(m⊗ n) = m⊗ (an).

To put it differently, the map g : M ×N //T , (m,n) � //m⊗ n is bilinear.
Given any map f : M × N //P , we get an induced map f : C //P . If f is bilinear,

then f vanishes on the generators of D, hence on D, so we get a linear map f ′ : T //P
such that f ′(m⊗ n) = f(m,n). The latter condition uniquely determines f ′, hence the
pair (T, g) satisfies the universal property. �

Example 3.17. If M ' Ak and N ' Al, then M ⊗AN ' Akl. The proof is the same as
for vector spaces.

Remark 3.18. We already noted above that the elements of the form m⊗n generate the
tensor product M ⊗N . It follows that if M and N are finitely generated, then the same
holds for M ⊗N (take the tensor products of the generators).

One has to be a bit careful when working with the tensor product. For example, let
A = Z, M = Z, N = Z/2Z, M ′ = 2Z ⊆ M and N ′ = N . Let x 6= 0 ∈ N and consider
2⊗ x. Then 2⊗ x = 1⊗ 2x = 1⊗ 0 = 0 ∈M ⊗N , but 2⊗ x 6= 0 ∈M ′ ⊗N ′.

Instead of working with bilinear maps, one can also start with a multilinear map
f : M1 × . . .×Mk

//P and appropriately changing the above construction then gives

Proposition 3.19. Let M1, . . . ,Mk be A-modules. Then there exists a pair (T, g) consist-
ing of an A-module T and an A-multilinear map g : M1×. . .×Mk

//T with the following
property: Given any A-module P and any A-multilinear map f : M1 × . . . ×Mk

//P ,
there exists a unique A-linear map f ′ : T //P such that f ′ ◦ g = f . Moreover, any two
modules satisfying this property are isomorphic. �



COMMUTATIVE ALGEBRA 17

The tensor product has several nice properties.

Proposition 3.20. Let M,N and P be A-modules. Then there exist unique isomor-
phisms

(1) M ⊗N //N ⊗N , m⊗ n � //n⊗ n;
(2) (M⊗N)⊗P //M⊗(N⊗P ) //M⊗N⊗P , (m⊗n)⊗p � //m⊗(n⊗p) � //m⊗n⊗p;
(3) (M ⊕N)⊗ P //M ⊗ P ⊕N ⊗ P , (m,n)⊗ p � // (m⊗ p, n⊗ p);
(4) A⊗M //M , a⊗m � // am.

Proof. The idea in all cases is to construct a suitable bilinear or multilinear mapping
and use the universal property to show the existence of the homomorphisms given in the
proposition. We will do this in the third case and leave the rest to the reader. Consider
the map f : (M ⊕ N) × P //M ⊗ P ⊕ N ⊗ P defined by (m,n) × p � // (m ⊗ p, n ⊗ p).
This map is clearly bilinear and hence induces the map described in the proposition. On
the other hand, the maps M × P // (M ⊕ N) ⊗ P and N × P // (M ⊕ N) ⊗ P given
by (m, p) � // (m, 0)⊗ p and (n, p) � // (0, n)⊗ p are both bilinear and hence induce maps
M ⊗ P // (M ⊕N)⊗ P and N ⊗ P // (M ⊕N)⊗ P . The direct sum of these maps is
the map g which sends (m⊗ p, n⊗ p) to (m,n)⊗ p and hence is the required inverse to
f . �

Definition. Let f : M //M ′ and g : N //N ′ be homomorphisms of A-modules. Define
the map h : M × N //M ′ ⊗ N ′, h(m,n) = f(m) ⊗ g(n). Since h is bilinear, it induces
an A-linear map f ⊗ g : M ⊗M ′ //N ⊗N ′, (f ⊗ g)(m⊗ n) = f(m)⊗ g(n).

Note that if f ′ : M ′ //M ′′ and g′ : N ′ //N ′′ are A-linear, then (f ′ ◦ f) ⊗ (g′ ◦ g) =
(f ′ ⊗ g′) ◦ (f ⊗ g).

Definition. Let f : A //B be a ring homomorphism and let N be a B-module. The
multiplication A×N //N defined by (a, n) � // f(a)n makes N into an A-module, some-
times denoted by NA. We say that NA is obained by restriction of scalars. Since, in
particular, B becomes an A-module through this procedure, we can, for any A-module
M consider the tensor product MB = B ⊗A M . This A-module has the structure of a
B-module via b′(b⊗m) = b′b⊗m. The B-module MB is said to be obtained from M by
extension of scalars.

Proposition 3.21. If N is a finitely generated B-module and B is finitely generated as
an A-module, then NA is finitely generated as an A-module.

Proof. If n1, . . . , nk generate N over B and b1, . . . , bl generate B over A, then nibj gen-
erate NA over A. �

Proposition 3.22. If M is a finitely generated A-module, then MB is a finitely generated
B-module.

Proof. If m1, . . . ,mk generate M over A, then the elements 1⊗m1, . . . , 1⊗mk generate
MB over B. �
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Proposition 3.23. Let M,N and P be A-modules. Then there exists a canonical iso-
morphism Hom(M ⊗N,P ) ' Hom(M,Hom(N,P )) of A-modules.

Proof. If f : M ×N //P is bilinear, then for any m ∈M the map n // f(m,n) is linear.
Therefore, we get a map M //Hom(N,P ) which is linear because f is linear in m. On
the other hand, if

ϕ : M //Hom(N,P )

is a linear map, it induces a bilinear map

M ×N //P, (m,n) � //ϕ(m)(n).

In conclusion, there is a one-to-one correspondence between bilinear maps from M ×N
to P and the linear maps Hom(M,Hom(N,P )). Since the first set is in one-to-one
correspondence with Hom(M ⊗N,P ), the claim follows. �

Proposition 3.24. Let

M ′ f // M
g // M ′′ // 0

be an exact sequence of A-modules and A-linear maps and let N be an arbitrary A-module.
Then the sequence

M ′ ⊗N f⊗id // M ⊗N g⊗id // M ′′ ⊗N // 0

is exact.

Proof. Denote the first sequence by ∆, the second by ∆⊗N and let P be any A-module.
Since ∆ is exact, by Proposition 3.14 the sequence Hom(∆,Hom(N,P )) is exact. By the
previous proposition the sequence Hom(∆⊗N,P ) is exact. By Proposition 3.14 again,
the sequence ∆⊗N is exact. �

Example 3.25. Let A = Z and consider the exact sequence 0 //Z //Z where the
second map is multiplication by 2. Tensoring this sequence with N = Z/2Z over Z,
gives the sequence 0 //N //N which is not exact because the second map is identically
zero. Here we used that N ⊗Z Z ' N , so the second map is x = x⊗ 1 � //x⊗ 2 = 0. In
particular, the tensor product in general does not respect exactness “on the left”.

3.2. Flatness.

Definition. An A-module N is called flat if for any exact sequence ∆ the sequence
∆⊗N is exact.

Proposition 3.26. If N is an A-module, then the following statements are equivalent:

(1) N is flat.
(2) If ∆ is a short exact sequence, then ∆ is a short exact sequence.
(3) If f : M ′ //M is injective, then f ⊗ id : M ′ ⊗N //M ⊗N is injective.
(4) If f : M ′ //M is injective and M,M ′ are finitely generated, then f ⊗ id : M ′ ⊗

N //M ⊗N is injective.
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Proof. “(1)⇒(2)” Clear.
“(2)⇒(1)” Any long exact sequence can be split up into short exact sequences. Indeed,

if a long exact sequence

. . . // Mi−1

fi−1 // Mi
fi // Mi+1

// . . .

is given, we get short exact sequences of the form

0 // im(fi−1) = ker(fi) //Mi
// im(fi) // 0.

“(2)⇔(3)” By Proposition 3.24.
“(3)⇒(4)” Clear.
“(4)⇒(3)” Let f : M ′ //M be injective and let

∑
m′i ⊗ ni ∈ ker(f ⊗ id). Let M ′

0 be
the submodule of M ′ generated by the m′i. Since the sum is finite, this module is finitely
generated. Denote by x the element

∑
m′i ⊗ ni ∈ M ′

0 ⊗ N . The image f(M ′
0) is also

finitely generated, so there exists a submodule M0 of M containing f(M ′
0) and such that∑

f(m′i) ⊗ ni = 0 in M0 ⊗ N . If we denote by f0 : M ′
0

//M0 the restriction of f , then
(f ⊗ id)(x) = 0. Our assumption gives that x = 0, so

∑
m′i ⊗ ni is 0 in M ⊗N . �

Example 3.27. It is easy to see that any free module Ak of finite rank is flat. However,
there are flat modules which are not free. For example, let A = Z and M = Q. Then M
is a flat Z-module (this follows for example from Proposition 4.7 below but can also be

shown directly) but is not free. Indeed, any two elements p
q

and p′

q′
are linearly dependent,

since 0 = p′q p
q
− pq′ p′

q′
.

We can also give the following characterisation of flatness which, in particular, shows
that Q is indeed a flat Z-module.

Proposition 3.28. An A-module M is flat if and only if for every ideal I of A the
canonical homomorphism I ⊗AM // IM is an isomorphism.

Proof. Assume that M is flat. Tensoring the canonical injection I //A with M gives an
injection I ⊗AM //A⊗AM 'M . The image of this map is clearly IM .

Conversely, assume that I ⊗AM // IM is an isomorphism for every ideal I. We need
to show that for any injective map N ′ //N the induced map N ′ ⊗A M //N ⊗A M is
still injective.

We will first assume that N is free of finite rank n and prove the claim by induction on
n. The case n = 1 is precisely our assumption. Let now N be of rank n ≥ 2. We can write
N as a direct sum of two non-trivial free submodules N1 and N2 for which the claim holds
since their rank is smaller than n. Setting N ′1 = N ′∩N1 and N ′2 = im(N ′ //N/N1 = N2),
we get a diagram

N ′1 ⊗M //

f

��

N ′ ⊗M //

��

N ′2 ⊗M //

g

��

0

0 // N1 ⊗M // N ⊗M // N2 ⊗M // 0
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Since f and g are injective by the induction hypothesis, it follows from a diagram chase
that N ′ ⊗M //N ⊗M is injective.

Next, we can show the claim for a free module N of arbitrary rank by using that any
element of N ′ ⊗M is in the image of (N ′ ∩ N0) ⊗M //N ′ ⊗M for some direct factor
N0 of N of finite rank.

Lastly, let N be arbitrary. There exists a surjection p : L //N from a free module
L (for instance, we can take L = AN). Set L′ = p−1N ′. We then get a commutative
diagram

ker(p)⊗M //

=

��

L′ ⊗M //

��

N ′ ⊗M //

��

0

ker(p)⊗M // L⊗M // N ⊗M // 0

and a diagram chase shows that the map N ′ ⊗M //N ⊗M is injective. �

The next result shows that over a principal ideal domain flatness is very easy to
characterise. Recall that if M is a module over an integral domain A, an element m ∈M
is torsion if there exists an a 6= 0 such that am = 0. A module M is torsion free if there
are no non-zero torsion elements in M .

Corollary 3.29. Let A be a principal ideal domain. An A-module M is flat if and only
if it is torsion free.

Proof. Let I be a non-zero ideal of A. Since A is a principal ideal domain, I = Aa for
some a 6= 0. The multiplication by a map ta : A // I, b � // ab, is an isomorphism. Denote
by ua the map M //M , m � // am. The diagram

A⊗AM = M
ta⊗id //

ua
��

I ⊗AM

f
tt

IM

is commutative.
If M is flat, then ta ⊗ id and f are isomorphisms, hence the same holds for ua which

is equivalent to saying that M is torsion free.
Conversely, if M is torsion free, then ua is an isomorphism. Therefore, ta ⊗ id is

injective, and hence an isomorphism, since it is surjective anyway. Therefore, f is an
isomorphism and we are done by the previous proposition. �

Another somewhat peculiar property of flat modules is the following.

Proposition 3.30. Let 0 //M ′ //M //M ′′ // 0 be an exact sequence of A-modules
and assume that M ′′ is flat. Then for any module P the sequence 0 //M ′ ⊗ P //M ⊗
P //M ′′ ⊗ P // 0 is exact.
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Proof. Take a projection F //P from a free module and denote by K the kernel of this
map. We therefore get a commutative diagram

0

��
K ⊗M ′ //

��

K ⊗M //

��

K ⊗M ′′ //

��

0

0 // F ⊗M ′ //

��

F ⊗M //

��

F ⊗M ′′ //

��

0

P ⊗M ′ //

��

P ⊗M //

��

P ⊗M ′′ //

��

0

0 0 0

A diagram chase shows that the map P ⊗M ′ //P ⊗M is injective. �

3.3. Algebras.

Definition. Let A be a ring. An A-algebra is a ring B together with a ring homomor-
phism f : A //B.

Example 3.31. If A is a field and B 6= 0, then f is injective, so any algebra over a field
contains the field as a subring. For a specific example consider the polynomial ring.

Also note that any ring A is a Z-algebra, since any ring homomorphism Z //A is
already determined by the requirement 1 � // 1.

Definition. If f : A //B and g : A //C are two A-algebras, an A-algebra homomor-
phism is a ring homomorphism h : B //C such that h ◦ f = g.

A ring homomorphism f : A //B is finite and B is then called a finite A-algebra if B
is finitely generated as an A-module. The homomorphism f is said to be of finite type
and B a finitely generated A-algebra if there exists an A-algebra homomorphism from
A[X1, . . . , Xk] //B for some k > 0.

Note that B is a finitely generated A-algebra if and only if there exists a finite set of
elements b1, . . . , bk such that any element of B can be written as a polynomial in the bi
with coefficients from f(A).

Now we want to define the tensor product of two algebras f : A //B and g : A //C.
Since B and C are in particular A-modules, the tensor product D = B ⊗A C = B ⊗ C
exists. Hence we only need to define a multiplication on it. For this, consider the map
B × C × B × C //D defined by (b, c, b′, c′) � // bb′ ⊗ cc′, note that it is linear in every
factor and hence we get an A-linear map B ⊗ C ⊗ B ⊗ C = D ⊗ D //D. The reader
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can easily check that the multiplication defined in this manner is given by

(
∑
i

bi ⊗ ci)(
∑
j

b′j ⊗ c′j) =
∑
i,j

(bib
′
j ⊗ cic′j).

The identity element is 1⊗1. The required map from A into D is given by a � // f(a)⊗1 =
1⊗ g(a).

4. Localisation

The purpose of this section is to explain the procedure of localisation in which one
formally adds inverses for some subset of a ring. As an example consider A = Z. The
passage to the rational numbers Q is a special instance of localisation since we basically
add an inverse for every non-zero integer.

Definition. Let A be a ring. A multiplicatively closed subset of A is a set S in A such
that 1 ∈ S and for any two elements s, s′ ∈ S, their product ss′ is also in S.

If S is a multiplicatively closed subset of A, define a relation ≡ on A× S by (a, s) ≡
(b, t) ⇐⇒ (at − bs)u = 0 for some u ∈ S. One sees immediately that this relation is
reflexive (take u = 1) and symmetric (if (at−bs)u = 0, then also (bs−at)u = 0). To show
that it is transitive, assume that (a, s) ≡ (b, t) and (b, t) ≡ (c, u), so there exist v, w ∈ S
such that (at− bs)v = 0 = (bu− ct)w. Hence, atv = bsv so au(tvw) = bsuvw = cs(tvw).
Since v, w, t ∈ S are in S, so is their product, hence (a, s) ≡ (c, u) and the relation is
transitive.

Definition. Let A be a ring, S a multiplicatively closed subset of A and ≡ the equiva-
lence relation defined above. Denote the set of equivalences classes A/ ≡ by S−1A and
write its elements as a

s
with a ∈ A and s ∈ S. This set becomes a ring, the ring of

fractions of A with respect to S or the localisation of A with respect to S as follows:

a

s
+
b

t
=
at+ bs

st
a

s

b

t
=
ab

st
.

Of course, we need to check that the above is well-defined and makes S−1A into a ring.
The latter is quite clear from the definition, compare with the rational numbers. Let us
give an example how to check that the addition is well-defined. Assume that a

s
= a′

s′
, so

there exists a u ∈ S with (as′ − a′s)u = 0. We need to show that at+bs
st

= a′t+bs′

s′t
which

amounts to showing the existense of an element v ∈ S such that ((at + bs)s′t − (a′t +
bs′)st)v = 0. Setting v = u our equation becomes (as′ − a′s)ttv = 0, and ttv ∈ S.

Remark 4.1. It is easy to check that the map f : A //S−1A which sends a to a
1

is a
ring homomorphism. However, it is not injective in general. It is injective when A is an
integral domain and0 /∈ S.

If A is an integral domain and S = A \ 0, then S−1A is called the field of fractions of
A.
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The localisation satisfies a universal property described in the following

Proposition 4.2. Let A be a ring, S a multiplicatively closed subset of A and S−1A the
localisation of A with respect to S. If g : A //B is a ring homomorphism such that g(s)
is a unit for all s ∈ S, then there exists a unique ring homomorphism h : S−1A //B
such that h ◦ f = g, where f : A //S−1A is the canonical map.

Proof. First we will show that there is at most one map h satisfying the conditions.
Note that h(a

1
) = h(f(a)) = g(a) and if s ∈ S, then h(1

s
) = h(( s

1
)−1) = h( s

1
)−1 = g(s)−1.

Therefore, h(a
s
) = g(a)g(s)−1, so h is uniquely determined by g.

To show existence, set h(a
s
) = g(a)g(s)−1. Let us show that this is well-defined, so

let a
s

= a′

s′
. Thus there exists an element u ∈ S such that (as′ − a′s)u = 0, hence

(g(a)g(s′) − g(a′)g(s))g(u) = 0. Since g(u) is a unit in B, it follows that g(a)g(s′) =
g(a′)g(s) or, equivalently, g(a)g(s)−1 = g(a′)g(s′)−1. Therefore, h is well-defined. On the
other hand, it is clearly a ring homomorphism so we are done. �

Corollary 4.3. If g : A //B is a ring homomorphism such that the following conditions
are satisfied:

(1) If s ∈ S, then g(s) is a unit in B;
(2) If g(a) = 0, then as = 0 for some s ∈ S;
(3) Every element of B is of the form g(a)g(s)−1.

Then there exists a unique isomorphism h : S−1A //B such that g = h ◦ f .

Proof. Using (1) we only need to check that h : S−1A //B defined by h(a
s
) = g(a)g(s)−1

is an isomorphism. By (3), h is surjective. Now let h(a
s
) = 0, then g(a) = 0, so by (2)

at = 0 for some t ∈ S. It follows that a
s

= 0
1

= 0 ∈ S−1A, so h is injective. �

Example 4.4. i) Let p be a prime ideal in A. Then S = A \ p is a multiplicatively
closed subset, since if s, s′ /∈ p, then also ss′ /∈ p (in fact, p prime ⇔ A \ p
is multiplicatively closed). In this case, we write Ap for S−1A. Note that the
elements of the form a

s
with a ∈ p form an ideal m in Ap by definition. On the

other hand, if b
t
/∈ m, then b /∈ p, so b ∈ S and b

t
is a unit in Ap. It follows that m

is the only maximal ideal in Ap so Ap is a local ring. We call Ap the localisation
of A at p.

ii) The ring S−1A is the zero ring if and only if 0 ∈ S (use that if S−1A = 0, then
1
1

= 0
1
).

iii) Let f ∈ A and define S = (fn)n∈N. We will write Af for S−1A in this case.
iv) If I is any ideal in A, the S = 1 + I = {1 + x | x ∈ I} is a multiplicatively closed

subset in A.
v) As special cases of i) and iii) consider A = Z and p = (p) where p is a prime

number. Then Ap is the set of all rational numbers whose denominator is not
divisible by p. If p = (0), then Ap = Q. If f ∈ Z, then Af is the set of all rational
numbers whose denominator is a power of f .
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Definition. Let M be an A-module and S be a multiplicatively closed subset of A. We
define the set S−1M as the quotient M × S/ ≡, where (m, s) ≡ (m′, s′) if and only if
there exists a u ∈ S such that (ms′ −m′s)u = 0 ∈ M . This is in fact an S−1A-module
with respect to the addition defined as in the ring case and scalar multiplication given
by a

s
m
t

= am
st

.
As before we will write Mp is S = A \ p for a prime ideal p and Mf if S = (fn)n≥1 for

an element f in A.
If f : M //N is A-linear, then

S−1f : S−1M //S−1N,
m

s
� // f(m)

s

is S−1A-linear.

Proposition 4.5. If the sequence M ′ f // M
g // M ′′ is exact at M , then the sequence

S−1M ′ S
−1f // S−1M

S−1g // S−1M ′′ is exact at S−1M .

Proof. Since g ◦ f = 0, also S−1g ◦ S−1f = S−1(g ◦ f) = 0, so im(S−1f) ⊆ ker(S−1g).

Now take m
s
∈ ker(S−1g), so g(m)

s
= 0 in S−1M ′′. By definition, this means that there

exists an element u ∈ S such that 0 = ug(m) = g(um). Therefore, um ∈ ker(g) = im(f),
so um = f(m′) for some m′ ∈M ′. So in S−1M we have the equalities

m

s
=
um

us
=
f(m′)

us
= S−1f(

m′

us
),

hence ker(S−1g) ⊆ im(S−1f) and the proposition is proved. �

In particular, S−1M ′ is a submodule of S−1M if M ′ is a submodule of M .

Corollary 4.6. If N and P are submodules of M , then

(1) S−1(N + P ) = S−1N + S−1P ,
(2) S−1(N ∩ P ) = S−1N ∩ S−1P ,
(3) S−1(M/N) ' S−1M/S−1N .

Proof. To see (3), apply S−1 to the sequence

0 //N //M //M/N // 0.

Item (1) being rather obvious, we will now prove (2). Clearly, S−1(N ∩ P ) ⊆ S−1N
and also S−1(N ∩ P ) ⊆ S−1P , so one inclusion is obvious. To see that S−1N ∩ S−1P ⊆
S−1(N ∩ P ), take an element n

s
= p

t
in S−1N ∩ S−1P . Then u(nt − ps) = 0 for some

u ∈ S, hence utn = usp = w ∈ N ∩ P , so n
s

= w
stu
∈ S−1(N ∩ P ). �

Proposition 4.7. If M is an A-module, then the map

f : S−1A⊗AM //S−1M,
a

s
⊗m � // am

s

is an isomorphism of S−1A-modules. In particular, S−1A is a flat A-module.
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Proof. The map S−1A×M //S−1M defined by (a
s
,m) � // am

s
is bilinear, hence induces

the map f described in the proposition. Clearly, f is surjective and uniquely defined.
Now let

∑
i
ai
si
⊗mi ∈ S−1A ⊗M be arbitrary. Setting s =

∏
i si ∈ S and ti =

∏
j 6=i sj,

we have ∑
i

ai
si
⊗mi =

∑
i

aiti
s
⊗mi =

1

s
⊗
∑
i

aitim.

It follows that any element of S−1A⊗M can be written in the form 1
s
⊗m. If such an

element is in the kernel of f , then m
s

= 0 in S−1M , hence um = 0 for some u ∈ S, so

1

s
⊗m =

u

us
⊗m =

1

us
⊗ um = 0.

Therefore, f is injective.
To prove the second claim, just use that S−1 is exact. �

Proposition 4.8. Let M and N be A-modules. There exists a unique isomorphism of
S−1A-modules f : S−1M ⊗S−1A S

−1N //S−1(M ⊗A N) defined by

f(
m

s
⊗ n

t
) =

m⊗ n
st

.

In particular, if p is a prime ideal, then Mp ⊗Ap Np ' (M ⊗A N)p.

Proof. We have

S−1M ⊗S−1A S
−1N ' (M ⊗A S−1A)⊗S−1A (S−1A⊗A N)

' S−1A⊗A (M ⊗A N) ' S−1(M ⊗A N). �

4.1. Local properties.

Definition. Let Pr be a property of a ring A or an A-module M . Then Pr is said to
be a local property if the following holds: A (or M) has Pr ⇐⇒ Ap (or Mp) has Pr for
each prime ideal p of A.

We will give some examples of local properties in the following.

Proposition 4.9. Let M be an A-module. Then the following are equivalent.

(1) M = 0.
(2) Mp = 0 for all prime ideals p of A.
(3) Mm = 0 for all maximal ideals m of A.

Proof. Clearly, (1) implies (2) and (2) implies (3). So suppose that (3) holds and assume
that M 6= 0. Take 0 6= x ∈ M and let I = Ann(x) 6= (1) be the annihilator of x. There
exists a maximal ideal m such that I ⊆ m. Since Mm = 0, the element x

1
∈ Mm has to

be zero, hence ux = 0 for some u ∈ A \m. But Ann(x) ⊆ m, a contradiction. �

Proposition 4.10. Let f : M //N be A-linear. Then the following are equivalent.

(1) The map f is injective.
(2) The map fp : Mp

//Np is injective for all prime ideals p of A.
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(3) The map fm : Mm
//Nm is injective for all maximal ideals m of A.

The same statements hold with “injective” replaced by “surjective”.

Proof. “(1)⇒(2)” Follows from exactness of S−1.
“(2)⇒(3)” Clear.
“(3)⇒(1)” If M ′ = ker(f), then the sequence

0 // M ′ // M
f // N

is exact. Localising at m gives the exact sequence

0 // M ′
m

// Mm
fm // Nm .

By assumption, M ′
m = 0, since fm is injective. Hence, M ′ = 0 by the previous proposition.

To prove the statements about surjectivity, reverse all the arrows. �

Proposition 4.11. Let M be an A-module. Then the following are equivalent.

(1) M is a flat A-module.
(2) Mp is a flat Ap-module for all prime ideals p of A.
(3) Mm is a flat Am-module for all maximal ideals m of A.

Proof. “(1)⇒(2)” By Proposition 3.26, the module M is flat if and only if for any injective
map f : N //N ′ the induced map N ⊗AM //N ′⊗AM is still injective. Then the claim
follows from the previous proposition and the exactness of S−1.

“(2)⇒(3)” Obvious.
“(3)⇒(1)” Let N //N ′ be an A-linear map between A-modules and let m be any

maximal ideal of A. If N //N ′ is injective, then Nm
//N ′m is injective by the previous

proposition. It follows that Nm ⊗Am Mm
//N ′m ⊗Am Mm is injective by the flatness of

Mm. By Proposition 4.8, the map (N ⊗AM)m // (N ′ ⊗AM)m is injective, hence N ⊗A
M //N ′ ⊗AM is injective by the previous proposition. �

Here is a description of flatness over a local ring.

Proposition 4.12. If M is a finitely generated flat module over a local ring A, then M
is free.

Proof. Let m be the maximal ideal of A and k = A/m the residue field. Let x1, . . . , xn
be a set of elements of M whose images in the vector space M/mM form a linearly
independent set. We want to show that the xi are linearly independent. Assume that∑

i aixi = 0 for elements a1, . . . , an ∈ A. These elements, written as a row vector, define
a linear map f : An //A. Tensoring the exact sequence 0 // ker(f) //An //A // 0
with M and using the flatness of M , we get an exact sequence

0 // ker(f)⊗M // Mn fM // M // 0,

where the map fM sends a tuple (m1, . . . ,mn) to
∑

i aimi. By our assumption,

(x1, . . . , xn) ∈ ker(fM) ' ker(f)⊗M,
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hence (x1, . . . , xn) =
∑r

j=1 bj ⊗ yj for some r ∈ N and elements bj = (b1j, . . . , bnj) ∈
ker(f), yj ∈ M . At least one of the elements bij is not in m (since the xi give a
linearly independent set in the quotient) and, without loss of generality, we can assume
that b11 /∈ m and hence is invertible. Denote the inverse by z. From the equation
f(b1) =

∑
i aibi1 = 0 we get, setting ci = bi1z,

a1 + a2b21z + . . .+ anbn1z = a1 + a2c1 + . . .+ ancn = 0.

If n = 1, then a1 = 0. If n ≥ 2, then rewriting the equation
∑

i aixi = 0 gives

a2(x2 − c2x1) + . . .+ an(xn − cnx1) = 0.

It follows by induction that the set {x1, . . . , xn} is lineary independent over A.
Now let {z1, . . . , zn} be a set of elements of M whose images in M/mM form a basis,

and let N be the submodule of M generated by the zi. Then N ⊗ k //M ⊗ k is an
isomorphism, hence M/N ⊗ k ' 0. Since P ⊗ A/I ' P/IP for any ideal I and any
module P (tensor the exact sequence 0 // I //A //A/I // 0 with P ), it follows that
(M/N) ' m(M/N), hence M/N ' 0 by Nakayama’s lemma. Therefore, M is a free
module. �

In a somewhat similar vein we can prove the following result.

Proposition 4.13. Let A be an integral domain and K its field of fractions. Then

A =
⋂
m∈Y

Am,

where Y is the set of all maximal ideals of A and we take the intersection inside K.

Proof. Since all the maps A //Am are injective, the inclusion ⊆ is clear. Conversely, let
x ∈ K, so x = a

s
for non-zero elements a, s in A (the case x = 0 is trivial). If x ∈ Am,

then s /∈ m, so x ∈ ∩mAm if and only if s /∈ m for all maximal ideals of A. This means
that s is a unit in A, so x = s−1a ∈ A. �

We will now study the connection between ideals in A and ideals in the ring of fractions
S−1A for some multiplicatively closed subset S. Denote by f : A //S−1A the canonical
map. We already noted before that for any ring homomorphism g : B //C the preimage
g−1I =: Ic of an ideal I of C is an ideal of B, called contracted ideal. On the contrary,
the image of an ideal J of B under g is not an ideal in general, but we can take the ideal
Je generated by it, called the extended ideal. It is clear that for any ideal I of C, we
have (g−1I)e = Ice ⊆ I.

Note that if I is an ideal in A, then Ie in S−1A is S−1I. Indeed, if y ∈ Ie, then,
by definition of Ie, y =

∑
i
ai
si

where ai ∈ I and si ∈ S. Bringing this to a common
denominator proves the claim.

Proposition 4.14. The following holds.

(1) Every ideal in S−1A is an extended ideal.
(2) If I is an ideal in A, then f−1(Ie) = Iec =

⋃
s∈S(I : s) (here we write (I : s) for

(I : (s))).
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(3) I = f−1J = J c ⇐⇒ no element of S is a zero-divisor in A/I.
(4) The prime ideals of S−1A are in one-to-one correspondence with the prime ideals

of A which do not meet S.

Proof. (1) Let J be an ideal in S−1A and a
s
∈ J . Then sa

s
= a

1
∈ J , so a ∈ f−1J and

hence a
s
∈ (f−1J)e. Since (f−1J)e ⊆ J in any case, we have proved the claim.

(2)

x ∈ f−1(Ie) = f−1(S−1I)⇐⇒ ∃a ∈ I, t ∈ S :
x

1
=
a

t
⇐⇒ ∃u ∈ S : (xt− a)u = 0

⇐⇒ xtu ∈ I

⇐⇒ x ∈
⋃
s∈S

(I : s)

(3)

I = f−1J ⇐⇒ f−1(Ie) ⊆ I ⇐⇒ (∃s ∈ S : sx ∈ I ⇒ x ∈ I)

⇐⇒ no element of S is a zero-divisor in A/I

(4) If q is a prime ideal in S−1A, then f−1q is a prime ideal in A. Conversely, if p is a
prime ideal in A, then A/p is an integral domain. Denoting by S the image of S

in A/p, we have S−1A/S−1p ' S
−1

(A/p). The latter ring is either 0 or contained

in the field of fractions of A/p. In the latter case, S
−1

(A/p) is an integral domain,

so S−1p is a prime ideal. Now S
−1

(A/p) = 0 if and only if S−1p is the unit ideal
if and only if p ∩ S 6= ∅ by (1).

�

Remark 4.15. We have proved earlier that if f ∈ A is not nilpotent, then there exists a
prime ideal which does not contain f . Let us given a new proof using localisation. If f is
not nilpotent, then S = (fn)n∈N does not contain 0, so S−1A = Af 6= 0. Therefore, there
exists a maximal ideal m of Af and takings its inverse image under the map A //Af
gives a prime ideal p which does not intersect S, hence f /∈ p.

Corollary 4.16. If rad(0) is the nilradical of A, then S−1(rad(0)) is the nilradical of
S−1A.

Proof. We use that S−1 commutes with intersections and that the nilradical is the inter-
section of all prime ideals. �

Corollary 4.17. The prime ideals of the local ring Ap are in one-to-one correspondence
with the prime ideals of A contained in p.

Proof. Use (4) of Proposition 4.14 with S = A \ p. �

Remark 4.18. Note that if p is a prime ideal in A, then the passage to A/p cuts out
all the prime ideals except for those containing p while the passage to Ap cuts out all
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the prime ideals not contained in p. Therefore, if we have two prime ideals p and q,
then localising with respect to p and taking the quotient with respect to q (these two
operations commute by Corollary 4.6) leaves us with the prime ideals between p and q.
Note that taking p = q, we get the residue field at p, which can be obtained as the field
of fractions of A/p or as the residue field of the local ring Ap.

Proposition 4.19. Let M be a finitely generated A-module and S be a multiplicatively
closed subset of A. Then S−1(Ann(M)) = Ann(S−1M).

Proof. We will first prove that if the statement holds for two modules M and N , then it
also holds for their sum M +N :

S−1(Ann(M +N)) = S−1(Ann(M) ∩ Ann(N))

= S−1(Ann(M)) ∩ S−1(Ann(N))

= Ann(S−1M) ∩ Ann(S−1N)

= Ann(S−1M + S−1N) = Ann(S−1(M +N)),

where we used the easy to prove equality Ann(P +P ′) = AnnP ∩AnnP ′ in the first step
and last step, Corollary 4.6 in the second step and the assumption in the third.

So we are reduced to proving the claim in the case where M is generated by a single
element, hence M ' A/I, where I = Ann(M). Then S−1M = S−1A/S−1I by Corollary
4.6 again, so Ann(S−1M) = S−1I = S−1Ann(M). �

Proposition 4.20. Let f : A //B be a ring homomorphism and let p be a prime ideal
of A. Then p is the contraction of a prime ideal of B if and only if pec = p.

Proof. If p = qc, then pec = qcec = qc, since for any ideal Icec = Ic. Conversely, if pec = p,
let S = f(A \ p) and note that pe ∩S = ∅, hence the extension of pe in S−1B is a proper
ideal and therefore contained in a maximal ideal m of S−1B. Defining q = mc in B, we
note that q is prime, contains pe, hence qc ⊇ pec ⊇ p, and satisfies the property that
q ∩ S = ∅, hence qc ⊆ p. The claim follows. �

5. Chain conditions, Noetherian and Artin rings

In order to get nicer results, we will usually restrict ourselves to rings and modules
satisfying some finiteness conditions.

To begin our discussion, let Σ be a set partially ordered by a relation ≤, that is, ≤ is
reflexive and transitive and if x ≤ y and y ≤ x, then x = y.

Proposition 5.1. The following conditions on a partially ordered set Σ are equivalent.

i) Every increasing sequence x1 ≤ x2 ≤ . . . in Σ is stationary, which means that
there is an index n such that xn = xn+1 = . . .

ii) Every non-empty subset of Σ has a maximal element.
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Proof. “i)⇒ii)”: If there were a non-empty subset T of Σ without a maximal element,
we could inductively construct an infinite strictly increasing sequence in T and hence in
Σ.

“ii)⇒i)”: The set T = {xi | i ∈ N} has a maximal element. �

Definition. If M is an A-module and Σ is the set of submodules of M ordered by the
relation ⊆, then i) is called the ascending chain condition (a.c.c.) and ii) the maximal
condition. If Σ is ordered by ⊇, then i) is called the descending chain condition (d.c.c.)
and ii) the minimal condition.

A module satisfying d.c.c. is called Artin and a module satisfying a.c.c. is called Noe-
therian.

Example 5.2. (1) Any finite abelian group, which is a Z-module, satisfies both d.c.c.
and a.c.c.

(2) The ring Z satisfies a.c.c. but not d.c.c. To see the latter statement consider the
sequence (a) ) (a2) ) (a3) ) . . . for any 0 6= a ∈ Z.

(3) If k is a field and A = k[X], then A satisfies a.c.c. but not d.c.c. on ideals (similar
proof as for Z, using, e.g., X).

(4) The polynomial ring k[X1, X2 . . .] satisfies neither a.c.c. nor d.c.c. The latter
statement is clear, while for the former consider the sequence (X1) ( (X1, X2) (
(X1, X2, X3) ( . . .

Proposition 5.3. Let 0 // M ′ f // M
g // M ′′ // 0 be an exact sequence of A-

modules. Then

(1) M is Noetherian if and only if both M ′ and M ′′ are Noetherian.
(2) M is Artin if and only if both M ′ and M ′′ are Artin.

In particular, the direct sum of finitely many Noetherian resp. Artin modules is again
Noetherian respectively Artin.

Proof. We will prove the second statement since the first is very similar.
“⇒” Any descending chain of submodules of M ′ or M ′′ gives a descending chain of

submodules of M which has to be stationary.
“⇐” If M1 ⊇ M2 ⊇ . . . is a descending chain of submodules of M , then (g(Mi))i is

a descending chain in M ′′ and (f−1(Mi))i is a descending chain in M ′. For some large
index both these chains are stationary, hence so is the original chain.

To prove the last claim, use induction to reduce to the case of two modules M and N
and then use the exact sequence 0 //M //M ⊕N //N // 0. �

Definition. A ring A is Noetherian respectively Artin if it is so as an A-module, that
is, it satisfies the a.c.c. respectively the d.c.c. condition on ideals.

Example 5.4. Any field is both Noetherian and Artin and so is any finite ring of the
form Z/nZ. We have already seen that the integers are Noetherian but not Artin. More
generally, any principal ideal domain is Noetherian, since every ideal is generated by one
element.
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The polynomial ring in a countable number of variables is neither Artin nor Noetherian.
But it is a subring of a Noetherian ring, namely of its field of fractions.

Proposition 5.5. Let A be a Noetherian (resp. Artin) ring. If M is a finitely generated
A-module, then M is Noetherian (resp. Artin).

Proof. If M is finitely generated, there exists a surjection from An, a Noetherian module,
to M , hence the claim holds. The same proof works in the Artin case. �

5.1. Noetherian rings and modules.

Proposition 5.6. A module M is Noetherian if and only if every submodule of M is
finitely generated.

Proof. Assume that M is Noetherian, let N be a submodule of M and Σ be the set of
all finitely generated submodules of N . Then 0 ∈ Σ, so Σ is non-empty and therefore Σ
has a maximal element N0. If N0 6= N , then for any x ∈ N \N0 the module N0 +Ax is
finitely generated and is strictly bigger than N0, a contradiction. Therefore, N0 = N .

Now assume that every submodule of M is finitely generated. Let M1 ⊆ M2 ⊆ . . .
be an ascending chain of submodules of M . Set N = ∪iMi. This is a submodule of M ,
hence finitely generated. Writing x1, . . . , xn for the generators, we have xi ∈ Mni

for
some indices ni. Taking n to be the maximum over all the ni, we get that N = Mn is
finitely generated. �

The statement of Proposition 5.6 can be strengthened for a ring A.

Proposition 5.7. If all prime ideals of a ring A are finitely generated, then A is Noe-
therian.

Proof. Let Σ be the set of ideals which are not finitely generated. If Σ 6= ∅, then it
has a maximal element I by Zorn’s lemma. Since I cannot be a prime ideal, there exist
elements x, y ∈ A such that xy ∈ I but x /∈ I and y /∈ I. Note that I + Ay is an ideal
which strictly contains I, hence is finitely generated, say by (u1 . . . , un, y) with ui ∈ I.
On the other hand, the ideal (I : y) = {a ∈ A | ay ∈ I} contains x and, of course, I itself,
hence is also bigger than I and therefore finitely generated with generators (v1, . . . , vm).
Now note that I = span(u1, . . . , un, v1y, . . . , vmy) (for instace, “⊇” is clear, since vjy ∈ I
for all j and ui ∈ I for all i), so I is finitely generated, a contradiction to the assumption.
Therefore, all ideals in A are finitely generated and hence A is Noetherian. �

Proposition 5.8. Let A be a Noetherian ring.

(1) If I is an ideal in A, then A/I is a Noetherian ring. In particular, if f : A //B
is a surjective ring homomorphism, then B is Noetherian.

(2) The ring S−1A is Noetherian for any multiplicatively closed subset S of A.
(3) If A is a subring of B and B is finitely generated as an A-module, then B is

Noetherian as a ring.

Proof. (1) Just note that A/I is Noetherian as an A-module, hence also as an A/I-
module. For the last statement use that B ' A/ ker(f).
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(2) By Proposition 4.14 the prime ideals in S−1A are in one-to-one correspondence
with the prime ideals of A which do not meet S. Hence, all prime ideals in
S−1A are finitely generated and therefore S−1A is Noetherian by Proposition
5.7. Alternatively use that all ideals in S−1A are extended ideals by Proposition
4.14 and that if a1, . . . , ak generate an ideal I in A, then their images under the
canonical map A //S−1A generate S−1I.

(3) We know that B is Noetherian as an A-module, hence it is also Noetherian as a
B-module. �

Sometimes taking a quotient of non-Noetherian ring produces a Noetherian ring.

Proposition 5.9. Let A be a ring and M be a Noetherian A-module. Then the ring
A/AnnM is a Noetherian ring.

Proof. Set AnnM = I, B = A/I and note that M is also Noetherian as a B-module.
Therefore, we can replace A by B and can assume that I = 0. Since M is finitely
generated by, say, (m1, . . . ,mk), we can define an A-linear map A //Mk by sending a
to (am1, . . . , amk), and this map is clearly injective. Therefore, A is a submodule of the
Noetherian module Mk, so itself Noetherian as an A-module. �

We now come to Hilbert’s Basis Theorem.

Theorem 5.10. If A is a Noetherian ring, then A[X] is a Noetherian ring.

Proof. Let I be any ideal in A[X]. Consider the set J of all leading coefficients of
polynomials in I and note that J is an ideal in A. Indeed, since I is an ideal, for every
polynomial f ∈ I the polynomial af is in I for any a ∈ A, so J is closed under scalar
multiplication. If a is the leading coefficient of f ∈ I and b is the leading coefficient of
g ∈ I, then, assuming without loss of generality that deg(f) ≥ deg(g), we see that a+ b
is the leading coefficient of f + gXdeg(f)−deg(g) ∈ I. As an ideal in a Noetherian ring J is
finitely generated, say by a1, . . . , ak. For any i consider a polynomial fi = aiX

ri+(terms
of lower degree) in I with leading coefficient ai. Clearly, the fi generate an ideal I ′ which
is contained in I. Set r = max

1≤i≤k
ri.

Now take any element f = aXm+(terms of lower degree) in I. Of course, a ∈ J , so

write a =
∑k

i=1 uiai with ui ∈ A. If m ≥ r, then f −
∑

i uifiX
m−ri is in I and has degree

< m. In this way we can subtract elements from I ′ from f to get a polynomial g of
degree < r. In other words, f = g + h with h ∈ I ′ and deg(g) < r.

Consider the submodule M of A[X] generated by X0, . . . , Xr−1. The above equation
f = g + h translates into I = (I ∩M) + I ′. Since M is a finitely generated A-module, it
is Noetherian and so is its submodule I ∩M . If I ∩M is generated by g1, . . . , gl, then I
is generated by g1, . . . , gl, f1, . . . , fk. Therefore, I is finitely generated. �

Corollary 5.11. If A is Noetherian, then A[X1, . . . , Xn] is Noetherian.

Proof. Use induction, the theorem and the isomorphism A[X1, X2] ' A[X2][X1]. �
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Corollary 5.12. If A is Noetherian, then every finitely generated A-algebra B is Noe-
therian. In particular, every finitely generated algebra over a field is Noetherian.

Proof. By assumption, B is a quotient of A[X1, . . . , Xn] for some n. The latter ring is
Noetherian by the previous corollary, and then so is B by Proposition 5.8. �

We can also say something about the ring of power series.

Theorem 5.13. If A is Noetherian, then A[[X]] is Noetherian.

Proof. The proof is somewhat similar to the one given for A[X]. Consider an ideal I of
B = A[[X]]. Define I(r) to be the ideal of all leading coefficients ar of f = arX

r + . . .
as f runs through I ∩XrB. Since for every f ∈ I ∩XrB, we have Xf ∈ I ∩Xr+1B, we
have a sequence

I(0) ⊆ I(1) ⊆ I(2) ⊆ . . .

Since A is Noetherian, there is an index s such that I(s + j) = I(s) for all j ≥ 0.
Furthermore, every I(i) is finitely generated, say by a finite set of elements aiν . For
every aiν there is an element giν ∈ I∩X iB having aiν as its leading coefficient. We claim
that the set of these finitely many elements giν generates I. To see this, let f ∈ I be
arbitrary. Then there exists a linear combination g0 of the g0ν such that f−g0 ∈ I∩XB.
Continuing this, we get

f − g0 − . . .− gs ∈ I ∩Xs+1B.

Since I(s+ 1) = I(s), there is a linear combination gs+1 of the elements Xgsν such that

f − g0 − . . .− gs − gs+1 ∈ I ∩Xs+2B.

Proceed in the same way for s + 2 etc. For each i ≥ s we can write gi =
∑
aiνX

i−sgsν .
Setting hν =

∑∞
i=s aiνX

i−s, we have

f = g0 + . . .+ gs−1 +
∑
ν

hνgsν . �

Definition. A chain of submodules of a module M is a finite sequence of submodules
of the form

0 = Mn (Mn−1 ( . . . (M1 (M0 = M.

The length of the chain is n. A composition series of M is a maximal chain, that
is, a chain where every quotient module Mi/Mi+1 is simple in the sense that its only
submodules are 0 and itself.

Remark 5.14. An A-module M is simple if and only if it is generated by any 0 6= m ∈M .
Indeed if M is simple, take any m 6= 0 and consider the submodule Am ⊆ M . Since
Am 6= 0, we have Am = M . Conversely, if 0 6= M ′ ⊆ M is a submodule, then take an
element m′ ∈M ′. Since this is a non-zero element of M , we have Am′ = M ⊆M ′.

Proposition 5.15. If a module M has a composition series of length n, then every
composition series has length n and every chain can be extended to a composition series.
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Proof. Write l(M) for the length of a composition series of a moduleM and set l(M) =∞
if no composition series exists.

We will first show that for a submodule N of M we have l(N) ≤ l(M) with equality if
and only if N = M . Indeed, if (Mi)i is a composition series of M , then (Mi)∩N = Ni is a
submodule in N for all i. Since N ⊆M , we also have Ni ⊆Mi for all i and consequently
Ni/Ni+1 ⊆ Mi/Mi+1. Since the latter module is simple, Ni/Ni+1 is either 0 or equal
to Mi/Mi+1. If there is an index i0 where the former occurs, hence Ni0 = Ni0+1, then
removing this factor (and others where repetition occurs) gives a composition series of
N such that l(N) < l(M). On the other hand, if Ni/Ni+1 ' Mi/Mi+1 for all i, then
Ml(M)−1 ' Nl(m)−1, Ml(M)−2 ' Nl(M)−2 and so forth, hence N 'M .

Using what we just proved, we can easily show that any chain in M has length at most
l(M). Indeed, if M = M1 )M2 . . . is a chain of length k, then l(M) > . . . > l(Mn−1) = 1.
Since the length of a non-zero module is at least 1, the claim is proved.

Now consider any composition series of M and note that its length k is at most l(M),
hence has to be equal to l(M). Therefore, all composition series have the same length.

Finally, consider any chain in M . If its length is l(M), it is a composition series; if its
length is strictly smaller than l(M), then it is not maximal, so we can insert new terms
to achieve length l(M). �

Proposition 5.16. A module M has a composition series if and only if it satisfies a.c.c.
and d.c.c.

Proof. “⇒”: By the previous result, all chains in M have finite length.
“⇐”: Since M satisfies a.c.c. it has a maximal submodule M1. We then take a maximal

submodule M2 of M1 and so forth. This gives a descending sequence M0 )M1 )M2 )
. . . which has to terminate by the d.c.c., so M has a composition series. �

Remark 5.17. The length has the following property: For any short exact sequence

0 // M ′ f // M
g // M ′′ // 0

of A-modules of finite length, we have l(M) = l(M ′)+ l(M ′′). Indeed, take a composition
series of M ′ and its image under f and combine it with the preimage of a composition
series of M ′′ to get a composition series of M .

Definition. Let A be a ring and M be an A-module. The support of M is defined to
be the following subset of Spec(A):

Supp(M) = {p ∈ Spec(A) |Mp 6= 0} .

See Exercise 15 (Sheet 4, Exercise 3) for some properties of the support.

Theorem 5.18. Let A be a ring and M be a module admitting a composition series.
Then

Supp(M) = {m ∈ Spec(A) | m = Ann(Mi−1/Mi) for some i} ,
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all the prime ideals in the support of M are in fact maximal and there is a canonical
isomorphism

ϕ : M ' //
∏

m∈Supp(M)

Mm.

The length l(Mm) of Mm is equal to the number of i with m = Ann(Mi−1/Mi).

Proof. Let p be an prime in A and

M = M0 )M1 ) . . . )Ml = 0

be a composition series of M . By exactness of localisation, we get

Mp = M0 ⊇ (M1)p ⊇ . . . ⊇ (Ml)p = 0.

Take any maximal ideal m. If p = m, then (A/m)p = A/m by Corollary 4.6. If p 6= m,
then there exists an element x ∈ m \ p, so (A/m)p = 0.

Now, for all i the module Mi−1/Mi is simple and therefore, by Exercise 22 (Exercise 2
on Sheet 6), it is of the form A/mi, where mi = Ann(Mi−1/Mi) is a maximal ideal. By
Proposition 4.5, we have

(Mi−1/Mi)p = (Mi−1)p/(Mi)p.

This term is zero if p 6= mi and isomorphic to A/mi if p = mi. It follows that (note that
an mi can appear multiple times)

Supp(M) = {m1, . . . ,mk}.
Looking at the localised filtration and omitting repeated terms, we get a composition
series for Mp. By the above arguments, its length is precisely the number of i with
Mi−1/Mi = A/p.

Finally, we investigate ϕ which clearly exists. It suffices to check that ϕp is an isomor-
phism for every maximal ideal p. Since localisation commutes with finite products, we
get

ϕp : Mp
//
∏
m

(Mm)p =
∏
m

(Mm)p = Mp,

because, again by the above arguments, (Mm)p = 0 if p 6= m and Mp is p = m. �

Proposition 5.19. If V is a vector space over a field k, then the following conditions
are equivalent.

(1) V is finite-dimensional.
(2) V has finite length.
(3) V satisfies a.c.c.
(4) V satisfies d.c.c.

Proof. “(1)⇒”(2): Use that a vector space is simple if and only if it is one-dimensional.
“(2)⇒”(3), “(2)⇒”(4): By Proposition 5.16.
“(3)⇒”(1), “(4)⇒”(1): If V is not finite-dimensional, there are at least countably

many linearly independent elements e1, e2, . . . in V . Consider, for n ∈ N, the spaces
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Un = span(e1, . . . , en) and Vn = span(en+1, en+2, . . .). Then the Ui form an infinite
ascending sequence and the Vi form an infinite decreasing sequence contradicting (3)
and (4), respectively. �

Corollary 5.20. Let A be a ring in which the zero ideal is the product m1 · · ·mk of
finitely many not necessarily distinct maximal ideals. Then A is Noetherian if and only
if A is Artin.

Proof. Consider the sequence A ) m1 ⊇ m1m2 ⊇ . . . ⊇ m1 · · ·mk = 0 and note that ever
factor m1 · · ·mi/m1 · · ·mi+1 is a vector space over the field A/mi+1. Therefore, a.c.c ⇔
d.c.c for each factor. Using Proposition 5.3, this implies that a.c.c ⇔ d.c.c. for A. �

Example 5.21. If M is a Noetherian A-module and f : M //M is a surjective A-
linear map, then f is an isomorphism. Indeed, note that there is an increasing sequence
ker(f) ⊆ ker(f 2) ⊆ . . . By a.c.c. there exists an index n such that ker(fn) = ker(fn+1) =
. . .

Let x ∈ ker(f). Since f is surjective, x = f(x1), x1 = f(x2) and so forth. Hence,
x = fn(y) for some y. But 0 = f(x) = fn+1(y) = f(fn(y)) and ker(fn) = ker(fn+1), so
fn(y) = x = 0 and f is injective.

Similarly, if M is Artin and f is injective, then it is an isomorphism. To see this, use
the quotient modules coker(fn).

5.2. Artin rings. We will now prove some results concerning Artin rings. Despite the
formally quite similar definition, Artin rings turn out to be much simpler than Noetherian
rings.

Proposition 5.22. If A is an Artin ring, then every prime ideal in A is maximal.

Proof. Let p be a prime ideal in A and recall that B = A/p is Artin by Proposition 5.5.
Furthermore, B is an integral domain. Let x ∈ B be a non-zero element. The descending
sequence of ideals (x) ⊇ (x2) . . . has to become stationary by d.c.c., hence there exists an
index n such that (xn) = (xn+i) for all i ≥ 0. In particular, xn = xn+1y for some y ∈ B.
Therefore, xn(1− xy) = 0, so 1− xy = 0, because B is an integral domain. Hence, x is
a unit, so B/p is a field, thus p is a maximal ideal. �

Proposition 5.23. An Artin ring has only finitely many maximal ideals.

Proof. Consider the set of all finite intersections m1 ∩ . . . ∩ mk of maximal ideals. This
set has a minimal element by d.c.c., say m1∩ . . .∩mn. Then for any maximal ideal m we
have m∩m1 ∩ . . .∩mn = m1 ∩ . . .∩mn, hence m contains m1 ∩ . . .∩mn. By Proposition
2.21, m ⊇ mi for some i. But both these ideals are maximal, so m = mi. �

Remark 5.24. Recall that the spectrum of a ring is the set of all prime ideals. The above
propositions in particular tell us that the spectrum of an Artin ring is a finite set.

Proposition 5.25. In an Artin ring A the nilradical
√

0 is nilpotent.
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Proof. By d.c.c. there exists an index k > 0 such that (
√

0)k = (
√

0)k+l = I for all l ≥ 0.
Suppose that I 6= 0 and consider Σ, the set of all ideals J such that IJ 6= 0. Then Σ is
not empty since I ∈ Σ, so ordering Σ with respect to inclusion, it has a minimal element
J0. There exists 0 6= x ∈ J0 such that xI 6= 0, that is, (x) ∈ Σ. Since the principal
ideal (x) is contained in J0, we have (x) = J0 by minimality. Then (xI)I = xI2 = xI, so
xI ∈ Σ and therefore xI = (x), because xI ⊂ (x) and (x) = J0 is minimal. We conclude
that there exists an element y ∈ I such that xy = x. Iterating we get xyn = x for all
n ≥ 1. But y ∈ (

√
0)k ⊆

√
0, hence y is nilpotent and x = 0. Therefore, I = 0. �

Proposition 5.26. Any Artin ring A is Noetherian.

Proof. There are only finitely many maximal ideals m1, . . . ,mn in A. Write k for an
index such that (rad0)k = 0. Then

n∏
i=1

mk
i ⊆ (

n⋂
i=1

mi)
k = (rad0)k = 0.

We conclude by Corollary 5.20 (recall that the maximal ideals whose product is the zero
ideal were not required to be distinct). �

For the following major result, we will need an easy lemma.

Lemma 5.27. Let A be an arbitrary ring and let I and J be ideals in A. Then

(1) radI = (1)⇐⇒ I = (1).
(2) rad(I + J) = rad(radI + radJ).
(3) If radI and radJ are coprime, then I and J are coprime.

Proof. (1) If I = (1), then of course rad(I) = (1). Conversely, 1 ∈ radI implies that
1 ∈ I.

(2) “⊆” is clear since I + J ⊆ radI + radJ . To see that “⊇” also holds, take an
element x in the left hand side, so xn = a + b with a ∈ radI and b ∈ radJ . By
definition ak ∈ I and bl ∈ J for some k, l > 0, so taking a sufficient power of both
sides shows that xm ∈ I + J for some m > 0.

(3) Using (1) and (2) we have rad(I + J) = rad(radI + radJ) = rad(1) = (1), so
I + J = (1). �

Proposition 5.28. If A is an Artin ring, then A is isomorphic to a finite direct product
of Artin local rings.

Proof. As above, we know that
∏n

i=1 m
k
i = 0 for some k > 0, where m1, . . . ,mn are the

distinct maximal ideals of A. Now note that the radical of the ideal mk
i is mi, so the

radicals of the ideals in the product are pairwise coprime by maximality. By the above
lemma, the ideals mk

i are pairwise coprime, hence
∏n

i=1 m
k
i = ∩ni=1m

k
i by Proposition

2.20. The same proposition shows that A '
∏n

i=1A/m
k
i . Every factor in the product is

an Artin local ring, hence the result. �
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Remark 5.29. We will see later that the converse of the statement in the proposition also
holds.

For future use, we recall the following notion.

Definition. Let X be a set. A topology on X is a collection of subsets σ = {Uj}j∈J
satisfying the following properties a) X ∈ σ, b) ∅ ∈ σ, c) any union of elements in σ is
an element of σ and d) every finite intersection of elements of σ is an element in σ.

The elements of σ are the open subsets of the topology given by σ. The pair (X, σ) is
called a topological space.

If Y ⊂ X is a subset, then Y becomes a topological space by declaring a subset V to
be open if V = Y ∩ U with U ∈ Σ.

Note that we can equivalently define a topology using closed subsets by taking com-
plements. That is, to define a topology we can specify a family of closed subsets such
that X and ∅ are closed, arbitrary intersections of closed subsets are closed and finite
unions of closed subsets are closed.

Example 5.30. The space Rn becomes a topological space if we define a subset U to
be open if for every x ∈ U there exists an r > 0 such that Br(0) ⊆ U .

Recall that X = Spec(A) is the set of all prime ideals in a ring A. Proposition 2.24
shows that the subsets V (E) satisfy the axioms of a topology, called the Zariski topology.

Every set X becomes a topological space by declaring only X and ∅ to be open. This
topology is usually called the trivial topology. The other extreme is obtained by declaring
every subset of X to be open (or closed). In this case the resulting topological space is
called discrete.

6. Primary decomposition

Definition. Let A be a ring. A proper ideal I in A is called primary if whenever xy ∈ I,
then either x ∈ I or yn ∈ I for some n > 0.

Remark 6.1. A prime ideal is primary.
A useful reformulation of the definition is the following: I is primary if and only if

A/I 6= 0 and every zero divisor in A/I is nilpotent.
Also note that if f : A //B is a ring homomorphism, then f−1I = Ic is primary if I

is primary.

Proposition 6.2. If I is a primary ideal in A, then radI is the smallest prime ideal
containing I.

Proof. Since the radical of I is the intersection of all prime ideals containing I, it is
enough to show that p = radI is a prime ideal. So let xy ∈ p. By definition, (xy)m ∈ I
for some m > 0, so either xm ∈ I or ymk ∈ I for some k > 0. Hence, either x ∈ p or
y ∈ p. �

Definition. If I is a primary ideal with radI = p, we will call I p-primary.
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Example 6.3. (1) If A = Z, then the primary ideals in A are (0) and (pn) for p a
prime number and n > 0.

(2) If A = k[X, Y ] and I = (X3, Y ). Then A/I ' k[X]/(X3) in which all zero
divisors are nilpotent because they are multiples of X. Therefore, I is primary.
Its radical is p = (X, Y ). Note that I is not a power of p.

(3) A power of a prime ideal need not be primary. Let A = k[X, Y, Z]/(XY − Z2).
Denote by X, Y and Z the images of X, Y and Z in A, respectively. The ideal
p = (X,Z) is prime in A, since A/p ' k[Y ] and the latter is an integral domain.

Note that XY = Z
2 ∈ p2, but X /∈ p2 and Y /∈ radp2 = p. Therefore, p2 is not

primary.

Proposition 6.4. If radI is a maximal ideal, then I is primary. In particular, the
powers of a maximal ideal are primary.

Proof. Since radI is the nilradical of A/I, every element of A/I is either a unit or
nilpotent, so the latter ring has only one prime ideal. �

Our next goal is to study the question when an ideal can be written as an intersection
of primary ideals. We will need the following results.

Lemma 6.5. If the ideals Ik are p-primary for 1 ≤ k ≤ n, then I = ∩kIk is p-primary.

Proof. We compute the radical: rad(I) = rad(∩kIk) = ∩kradIk = p. If xy ∈ I, y /∈ I,
then for some index k0 we have xy ∈ Ik but y /∈ Ik, hence x ∈ p = radIk = radI. �

Lemma 6.6. Let I be a p-primary ideal and let x ∈ A. Then the following holds.

(1) If x ∈ I, then (I : x) = (1).
(2) If x /∈ I, then (I : x) is p-primary and therefore rad(I : x) = p.
(3) If x /∈ p, then (I : x) = I.

Proof. (1) We recall that (I : x) = {a ∈ A | ax ∈ I}. Hence, 1 ∈ I.
(2) Consider an element y ∈ (I : x), so yx ∈ I. Since x /∈ I, we have y ∈ p = radI.

Therefore we have inclusions I ⊆ (I : x) ⊆ p. Taking radicals we see that
rad(I : x) = p. To check that (I : x) is p-primary, assume that yz ∈ (I : x) with
y /∈ p, so yzx ∈ I, hence zx ∈ I, thus z ∈ (I : x).

(3) Since I is p-primary, ax ∈ I and x /∈ p implies that a ∈ I. �

Definition. A primary decomposition of an ideal I in a ring A is an expression of I as
a finite intersection of primary ideals Jk:

I = ∩nk=1Jk.

If the radicals of the Jk are distinct and ∩k 6=lJk * Jl for 1 ≤ l ≤ n, the primary
decomposition is said to be minimal.

An ideal is said to be decomposable if it admits a primary decomposition.

In general, a primary decomposition need not exist. We will see below that it does
exist for ideals in Noetherian rings. Also note that by Lemma 6.5 we can achieve that
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all radicals are distinct and we can reduce any primary decomposition to a minimal one
by omitting superfluous terms.

Theorem 6.7. Let I be a decomposable ideal and let I = ∩nk=1Jk be a minimal primary
decomposition of I. Then the radicals pk = radJk for 1 ≤ k ≤ n are precisely the prime
ideals which occur in the set of ideals rad(I : x) (where x runs through all elements of
A) and hence the pk are independent of the particular decomposition of I.

Proof. Note that, for any x ∈ A, we have

(I : x) = (∩kJk : x) = {a | ax ∈ ∩kJk} = ∩k(Jk : x).

Therefore, rad(I : x) = ∩krad(Jk : x). By the items (1) and (2) of the previous lemma,
we then get rad(I : x) = ∩l : x/∈Jlpl. If rad(I : x) is prime, then rad(I : x) = pl for some l
by Proposition 2.21.

Conversely, for each index k0 there exists, by mimimality, an element x such that
x /∈ Jk0 but x ∈ ∩k 6=k0Jk. It follows that rad(I : x) = pk0 . �

Definition. Let I be a decomposable ideal and I = ∩nk=1Jk a minimal primary decom-
position of I. The radicals pk = radJk are called the AM-associated prime ideals of
I.

The minimal elements of the set of the AM-associated prime ideals are called the
minimal or isolated prime ideals; the others are called embedded prime ideals.

Clearly, an ideal I is primary if and only if it has only one AM-associated prime ideal,
namely its radical.

Example 6.8. Let A = k[X, Y ] and I = (X2, XY ). Setting p1 = (X) and p2 = (X, Y ),
we have p2

2 = (X2, XY, Y 2), so I = p1 ∩ p2
2. Since radp2

2 = p2 is maximal, the ideal p2 is
primary and so is the prime ideal p1. Here, p1 is minimal while p2 is an embedded prime
ideal. Note that I is not primary but its radical is p1, hence prime.

Proposition 6.9. If I be a decomposable ideal, then any prime ideal I ⊆ p contains a
minimal prime ideal AM-associated with I. Hence, the isolated prime ideals of I are the
minimal elements in the set of all prime ideals containing I.

Proof. Let I = ∩kJk, then rad(∩kJk) = ∩krad(Jk) ⊆ radp = p. Hence p contains one of
the rad(Jk) by Proposition 2.21. �

Proposition 6.10. If I is a decomposable ideal and I = ∩kJk a minimal primary de-
composition with radJk = pk, then⋃

k

pk = {a ∈ A | (I : a) 6= I} .

In particular, if the zero ideal is decomposable, then the set of all zero divisors of A is
precisely the union over the prime ideals AM-associated with the zero ideal.
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Proof. First note that if f : A //A/I is the canonical ring homomorphism and Jk =: J
in A appears in the primary decomposition of I, then f(J) is also primary. Indeed, let
f(a)f(a′) = f(j) with j ∈ J , then aa′ − j ∈ I, so aa′ ∈ J and hence either f(a) ∈ f(J)
or f(a′n) = f(a′)n ∈ f(J). Therefore, the zero ideal in A/I is decomposable and we
reduce to proving the last statement of the proposition.

Writing D for the set of zero divisors, we have, by Proposition 2.23,

D = ∪06=x∈Arad(Ann(x)) = ∪06=x∈Arad(0 : x).

On the other hand, we have seen above that for any x ∈ A we have rad(0 : x) =
∩k : x/∈Jkpk ⊂ pl for some l; hence, D ⊆ ∪nk=1pk. Conversely, each pk is of the form
rad(0 : x) for some x ∈ A, hence the other inclusion also holds. �

Corollary 6.11. If the zero ideal is decomposable, then the set of all zero divisors is the
union of all prime ideals AM-associated with 0 and the set of nilpotent elements is the
intersection of all minimal prime ideals AM-associated with 0. �

Proposition 6.12. Let S be a multiplicatively closed subset of A and let J be p-primary
ideal. Then the following holds:

(1) If S ∩ p 6= ∅, then S−1J = S−1A.
(2) If S ∩ p = ∅, then S−1J is S−1p-primary and its contraction in A is J .

Proof. (1) The condition S∩p 6= ∅ implies that p contains an element which becomes
a unit in S−1A. Since p = radJ , it follows that S−1J contains a unit.

(2) If s ∈ S and a ∈ (J : s), i.e. as ∈ J , then a ∈ J , since S∩p = ∅. Hence, Jec = J by
Proposition 4.14. By the same proposition, rad(Je) = rad(S−1J) = S−1rad(J) =
p. To show that S−1J is primary, we need to show that S−1A/S−1J ' S−1(A/J)
is non-zero and has the property that every zero divisor is nilpotent. But this
immediately follows from the corresponding statements for A/J .

�

Remark 6.13. Using Proposition 4.14(3), we see that primary ideals correspond to pri-
mary ideals under the correspondence between ideals in S−1A and contracted ideals in
A.

Proposition 6.14. Let S be a multiplicatively closed subset of A and let I be a decom-
posable ideal with a minimal primary decomposition I = ∩nk=1Jk. Write pk = radJk and
suppose that S does not meet p1, . . . , pm, but does meet pm+1, . . . , pn. Then we have the
minimal primary decompositions

S−1I =
m⋂
k=1

S−1Jk, (S−1I)c =
m⋂
k=1

Jk.

Proof. Since S−1 commutes with intersections, we have

S−1I = ∩nk=1S
−1Jk.
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By (1) of the previous proposition, S−1Jk = S−1A for all k > m. Therefore, S−1I =
∩mk=1S

−1Jk and the S−1Jk are S−1pk-primary by (2) of the previous proposition. The
decomposition is minimal because the pk are all distinct, hence so are the S−1pk for
1 ≤ k ≤ m. Taking the preimage under the canonical map A //S−1A we get

(S−1I)c = (
m⋂
k=1

S−1Jk)
c =

m⋂
k=1

(S−1Jk)
c =

m⋂
k=1

Jk,

where we one again used the previous proposition for the last equality. �

Definition. Let I be a decomposable ideal. A set Σ of prime ideals AM-associated with
I is called isolated if the following condition is satisfied: if p′ is AM-associated with I
and p′ ⊆ p for some p ∈ Σ, then p′ ∈ Σ.

For example, the set consisting of the isolated prime ideals is an isolated set.
Now, if Σ is an isolated set of prime ideals, set S = A \∪p∈Σp. Then S is a multiplica-

tively closed subset and we have the following statements

p′ ∈ Σ =⇒ p′ ∩ S = ∅
p′ /∈ Σ =⇒ p′ 6⊆ ∪p∈Σp =⇒ p′ ∩ S 6= ∅,

where we used Proposition 2.21 in the second line.

Theorem 6.15. Let I be a decomposable ideal and I = ∩nk=1Jk a minimal primary
decomposition. Furthermore, let {pi1 , . . . , pim} be an isolated set of prime ideals of I.
Then Ji1 ∩ . . . ∩ Jim is independent of the decomposition.

Proof. Setting S = A \ pi1 ∪ . . . ∪ pim , we have (S−1I)c = Ji1 ∩ . . . ∩ Jim by the previous
proposition. Since the pi depend only on I, so does this intersection. �

Corollary 6.16. The primary components corresponding to the isolated prime ideals are
uniquely determined by I. �

To summarise the two major results of this section: If I is decomposable, then the
radicals of the primary ideals appearing in a minimal primary decomposition, i.e. the
primes AM-associated with I, are uniquely determined. Furthermore, the primary ideals
belonging to an isolated set of AM-associated prime ideals are also uniquely determined.

Remark 6.17. Not all the primary components are uniquely determined. For example, let
A = k[X, Y ] and let I = (X2, XY ). Then I = (X, Y )2∩(X) = (X)∩(X2, Y ). Of course,
the radicals of both components, namely (X) and (X, Y ) are uniquely determined. But,
as we can see, only the primary component belonging to the isolated prime ideal (X) is
determined by I.

6.1. Primary decompositions in Noetherian rings. In the following we will apply
the above results to Noetherian rings.

Definition. An ideal I in a ring is called irreducible if I = J ∩K implies that I = J or
I = K.
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Lemma 6.18. Every ideal in a Noetherian ring is a finite intersection of irreducible
ideals.

Proof. If the set of all ideals for which the lemma does not hold is non-empty, then it
has a maximal element I. Since I cannot be irreducible, we can write it as I = J ∩K,
where I ( J and I ( K. By maximality, J and K can be written as a finite intersection
of irreducible ideals, hence the same holds for I, contradiction. �

Lemma 6.19. If A is a Noetherian ring, then every irreducible ideal I is primary.

Proof. We can reduce to proving the statement for the zero ideal by passing to the
quotient ring A/I. So, assume that xy = 0 with x 6= 0 and consider the chain of ideals
Ann(y) ⊆ Ann(y2) ⊆ . . . Since A is Noetherian, there is an index n such that Ann(yn) =
Ann(yn+j) for all j ≥ 0. Then (yn)∩(x) = 0. Indeed, any element z ∈ (x) satisfies zy = 0,
so if z is also in (yn), then z = ayn, so ayn+1 = 0, hence a ∈ Ann(yn+1) = Ann(yn), so
ayn = z = 0. By the irreducibility of the zero ideal, we must have (yn) = 0, hence y is
nilpotent and the zero ideal is primary. �

Theorem 6.20. If A is a Noetherian ring, then every ideal has a primary decomposition.

Proof. Any ideal is a finite intersection of irreducible ideals which are primary. �

Proposition 6.21. In a Noetherian ring every ideal I contains a power of its radical.
In particular, the nilradical is nilpotent.

Proof. Let J = radI be generated by x1, . . . , xk, hence there exist integers ni such that
xni
i ∈ I for 1 ≤ i ≤ k. Setting n =

∑k
l=1(nl − 1) + 1, it follows that Jn is generated by

the products xr11 · · ·x
rk
k with

∑
ri = n and by our choice of n there is at least one index

l0 such that rl0 ≥ nl0 (if rl < nl for all l, then rl ≤ nl − 1 for all l), hence every product
is contained in I, so (radI)n ⊆ I. �

Corollary 6.22. If A is a Noetherian ring, m a maximal ideal in A and I any ideal in
A, then the following conditions are equivalent

i) I is m-primary.
ii) radI = m.

iii) mn ⊆ I ⊆ m for some n > 0.

Proof. “i)⇒ii)”: Clear.
“ii)⇒i)”: Proposition 6.4.
“ii)⇒iii)”: Previous proposition.
“iii)⇒ii)”: Take radicals. �

6.2. Application to Artin rings. We can also use primary decompositions to prove a
structure theorem for Artin rings.

Theorem 6.23. An Artin ring A is, up to isomorphism, uniquely a finite direct product
of Artin local rings.
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Proof. The statement that an Artin ring is a finite product of Artin local rings is precisely
the statement of Proposition 5.28.

Conversely, suppose that A is a product of Artin local rings Ak for 1 ≤ k ≤ n. Note
that A is an Artin ring. Let Ik = ker(pk) where pk : A //Ak is the canonical projection.
Since A '

∏
k Ak, the ideals Ik are coprime and ∩kIk = 0. Since Ak is Artin and local

for each k, it possesses exactly one prime ideal, which we will call pk. Let qk = p−1
k (pk).

Since contractions of prime ideals are prime, qk is a prime ideal in A, hence maximal
because A is Artin. Furthermore, since Ak is Artin, it is also Noetherian, hence the
nilradical, which is pk, is nilpotent for all k. This implies that Ik is qk-primary for all k,
so ∩kIk = (0) is a primary decomposition of the zero ideal of A. Now the ideals Ik are
coprime, hence so are the qk, hence they are the isolated prime ideals of (0). It follows
that all the primary components Ik are isolated, hence uniquely determined by A, see
Theorem 6.15. Therefore, the rings Ak ' A/Ik are uniquely determined by A. �

6.3. Some geometry. We now want to interpret the results concerning primary decom-
positions geometrically. We will, in particular, require the following notion.

Definition. A topological space X is called irreducible if every pair of non-empty open
sets in X intersects.

Equivalently, X is irreducible if it cannot be written as a union of two proper closed
subsets.

Proposition 6.24. The topological space X = Spec(A) is irreducible if and only if rad(0)
is a prime ideal. In particular, if p ∈ Spec(A), then V (p) is an irreducible closed subset
of Spec(A).

Proof. “⇒” Assume that rad(0) is not a prime ideal, so there exist a, b ∈ A such that 1)
ab ∈ rad(0) and 2) a /∈ rad(0), b /∈ rad(0). The latter condition implies that there are
prime ideals pa, pb such that a /∈ pa and b /∈ pb, so V (a) ( X, V (b) ( X. Since rad(0) is
the intersection of all prime ideals in A, the first condition implies that X = V (a)∪V (b)
so X is not irreducible.

“⇐” Conversely, if X is not irreducible, then X = V (I) ∪ V (J) for some ideals I and
J and there exist prime ideals pI and pJ such that I * pI and J * pJ , so there are
elements i ∈ I, i /∈ pI and j ∈ J , j /∈ pJ . Therefore, i /∈ rad(0) and j /∈ rad(0). On the
other hand, the product ij is contained in IJ ⊆ I ∩ J , hence in every prime ideal, hence
in rad(0), which is therefore not a prime ideal. �

If V is any subset of a topological space X, we define its closure V as the smallest closed
subset containing V . Clearly, V is the intersection of all the closed subsets containing
V . Of course, V = V if and only if V is closed.

It is easily checked that a set V is irreducible if and only if its closure V is irreducible
(use that taking the closure commutes with finite unions).

Furthermore, it is an application of Zorn’s lemma that any irreducible subset of a
topological space is contained in a maximal irreducible subset.
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Combining the two facts we have: The maximal irreducible subsets of a topological
space X are closed and their union is X. The maximal irreducible subsets of X are
called the irreducible components of X.

Lemma 6.25. Let A be a non-zero ring. Then the set of prime ideals of A has minimal
elements with respect to inclusion. Furthermore, if I 6= (1) is any ideal in A, then the
set of primes containing I has minimal elements.

Proof. We want to apply Zorn’s lemma. Let (pi)i∈I be a chain of primes ordered by “⊇”.
Then ∩ipi is a prime ideal, hence an upper bound for the chain. Therefore, Zorn’s lemma
gives the existence of minimal prime ideals.

The second claim follows by applying the first to A/I. �

Proposition 6.26. The irreducible components of X = Spec(A) are the closed subsets
V (p), where p is a minimal prime ideal of A.

Proof. Note that any point y in a topological space Y is irreducible, hence so is its closure.
Also note that the closure of a point x ∈ X which corresponds to a prime ideal px is
precisely V (px). Indeed, let V (I) be any closed subset containing x. Then I ⊆ px, hence
V (px) ⊆ V (I), that is, V (px) is the smallest closed subset containing x. Combining the
statements we just proved, we see that V (p) is an irreducible closed subset for any prime
ideal. If p is minimal, then V (p) is a maximal irreducible subset, hence an irreducible
component, and conversely. �

Proposition 6.27. If an ideal I has a primary decomposition, then V (I) = Spec(A/I)
has only finitely many irreducible components. In particular, the statement holds for any
ideal in a Noetherian ring.

Proof. There are finitely many minimal primes AM-associated with I. �

6.4. Associated primes.

Definition. Let M be an A-module. A prime ideal p is associated with M if p =
Ann(m) = {a ∈ A | am = 0} for some 0 6= m ∈ M . The set of all associated primes of
M is denoted by AssM .

If I is an ideal in A, then the associated primes of I are defined to be the associated
primes of the module A/I.

Remark 6.28. Note that is follows from Theorem 6.7 that an AM-associated prime ideal
is one which is the radical of Ann(m) for some 0 6= m. Clearly, any associated prime
ideal is also AM-associated, since p = Ann(m) implies radp = p = radAnn(m). We
will see in Proposition 6.38 that for Noetherian rings the two notions “associated” and
“AM-associated” coincide.

Proposition 6.29. Let A be a Noetherian ring. Then an A-module M is zero if and
only if AssM = ∅.
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Proof. Clearly, if M = 0, then AssM = ∅.
Conversely, if M 6= 0, then consider the set F = {Ann(m) | m 6= 0} of all annihilators

of non-zero elements of M . If F has a maximal element p = Ann(m), then p is a prime
ideal. Clearly, p 6= A, since 1 /∈ p (m 6= 0). Assume that ab ∈ p, so abm = 0. If a /∈ p,
then am 6= 0. Hence, p ⊆ Ann(am). We have b ∈ Ann(am) and, by maximality, we have
p = Ann(am), so b ∈ p. We are now done, because A is Noetherian and, therefore, F
has at least one maximal element. �

Proposition 6.30. Let M be an A-module. Then p ∈ AssM ⇐⇒ ∃A/p� � //M . In
particular, if N is a submodule of M , then AssN ⊆ AssM .

Proof. If p ∈ Ass(M), then p = Ann(m) for some 0 6= m. Define f : A //M by a � // am.
Then p = ker(f), hence A/p�

� //M . Conversely, if f : A/p�
� //M is injective, setm = f(1),

then p = Ann(m). �

Proposition 6.31. If p is prime, then AssA/p = {p}.
Proof. By the previous proposition, p ∈ AssA/p. If Ann(m) = q ∈ AssA/p for some
0 6= m ∈ A/p, then m /∈ p, but for any x ∈ q we have xm ∈ p, so x ∈ p. Since clearly
p ⊆ q, we have equality. �

There is a connection between associated primes and the support of a module.

Proposition 6.32. Let M be an A-module. If p ∈ Ass(M), then p ∈ Supp(M). More
precisely, if p ∈ Ass(M), then V (p) ∈ Supp(M).

Proof. By definition, p = Ann(m) for some m ∈ M . Consider m
1
∈ Mp. This element

cannot be zero since no element in S = A \ p annihilates m. Therefore, Mp 6= 0, so
p ∈ Supp(M).

Now let q ∈ V (p), that is, q ⊇ p. Then 0 6= A/p ⊆ (A/p)q ⊆ Mq, hence q ∈
Supp(M). �

Definition. If M is an A-module, a zero divisor of M is an element a ∈ A such that
am = 0 for some 0 6= m ∈ M . The set of all zero divisors of M will be denoted by
ZD(M).

Proposition 6.33. For any A module M we have
⋃

p∈AssM p ⊆ ZD(M). The reverse
inclusion holds if A is Noetherian.

Proof. The first claim is obvious. For the second, let a ∈ ZD(M), so am = 0 for some
m 6= 0. If we denote by N the module generated by m, then AssN 6= ∅, so there exists
a prime ideal p such that p = Ann(bm) for some b ∈ A (and bm 6= 0). It follows that
a ∈ p. Since AssN ⊆ AssM , we have proved the second claim. �

Proposition 6.34. If 0 //M ′ //M //M ′′ // 0 is an exact sequence, then AssM ⊆
AssM ′ ∪ AssM ′′. Furthermore,

Ass(⊕j∈JMj) = ∪j∈JAssMj

for any family of modules (Mj)j∈J .
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Proof. First note that M ′′ ' M/M ′. Let p ∈ AssM , so we have a monomorphism
f : A/p�

� //M . Set N = M ′ ∩ im(f). If N ' 0, then p ∈ AssM ′′ because the composition
of f with the projection M //M/M ′ is injective. If N 6= 0, take a non-zero element
n ∈ N . Then 0 6= n ∈ im(f) ' A/p and since AssA/p = {p}, we have Ann(n) = p.
Since N is a submodule of M ′, we get p ∈ AssM ′.

To prove the second statement first note that the inclusion “⊇” is clear by Proposition
6.30. The inclusion “⊆” is OK for finite direct sums by induction and the first claim.
For an infinite direct sum, set M = ⊕jMj and let p ∈ AssM . Then A/p is a submodule
of M which is generated by the image of 1. Therefore, it lies in a finite direct sum. �

Proposition 6.35. If A is a Noetherian ring and 0 6= M a finitely generated A-module,
then

(1) There exists a chain of submodules

0 = M0 (M1 ( . . . (Mn = M

such that for all 1 ≤ i ≤ n there is a prime ideal pi with Mi/Mi−1 ' A/pi.
(2) For any such chain, AssM ⊆ {p1, . . . , pn}, hence AssM is a finite set.

Proof. (1) By Proposition 6.29, AssM 6= ∅. So let p1 = Ann(m1) ∈ AssM . Let M1 be
the submodule of M generated by m1. Considering the surjective map A //M1

given by a � // am1, we see that its kernel is p1, hence M1 ' A/p1. Now continue
with the module M ′ = M/M1 which has an associated prime p2 = Ann(m2)
and letting M2 ⊆ M be the submodule generated by m1 and m2 we see that
M2/M1 ' A/p2. We can continue this process which has to terminate since M is
finitely generated.

(2) By Proposition 6.34, we have AssMi/Mi−1 = AssA/pi = {pi} for all 1 ≤ i ≤ n
and from the exact sequences

0 //Mi−1
//Mi

//A/pi // 0

we get AssMi ⊂ AssMi−1 ∪ {pi} and hence the claim.
�

Proposition 6.36. Let A be a ring, M be an A-module, p be a prime ideal and S be
a multiplicatively closed subset. If p ∩ S = ∅ and p ∈ AssM , then S−1p = pS−1A ∈
Ass(S−1M). The converse holds if p is finitely generated (for example, if A is Noether-
ian).

Proof. If p ∈ AssM , thenA/p�
� //M . Localising this injection gives an injection S−1(A/p) =

S−1A/S−1p�
� //S−1M . If p∩S = ∅, then S−1p is a prime ideal in S−1A, so the first claim

holds.
To see the second, assume S−1p ∈ AssS−1M , so S−1p = Ann(m

t
) for some m ∈M and

s ∈ S. If p is generated by x1, . . . , xn, then xi
1
m
t

= 0 for all i, hence xisim = 0 for some
si ∈ S. If s :=

∏
i si, then xi ∈ Ann(sm). It follows that p ⊆ Ann(sm).
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Now any element b ∈ Ann(sm) satisfies bsm
st

= b
1
m
t

= 0, so b
1
∈ S−1p. It is easily seen

that b ∈ p, hence p = Ann(sm), so p ∈ AssM . To conclude, note that S−1p is prime, so
in particular a proper ideal, which implies that p ∩ S = ∅. �

Corollary 6.37. If A is a Noetherian ring and M an A-module, then

p ∈ AssAM ⇐⇒ pAp ∈ AssApMp.

�

Proposition 6.38. If M is an A-module and A is a Noetherian ring, then any AM-
associated prime ideal is also associated.

Proof. By the previous corollary, it is enough to show that any AM-associated prime
ideal p is an element of AssApMp. We can therefore assume that A is a Noetherian local
ring with maximal ideal p. Since p is AM-associated, we have p = radAnn(m) for some
0 6= m ∈ M . Since in a Noetherian ring every ideal contains a power of its radical,
see Proposition 6.21, there exists an n > 0 such that pn ⊆ Ann(m). Now consider
the set G = {Ann(a) | a ∈ A : Ann(m) ⊆ Ann(a)} which has to have a maximal element
since A is Noetherian. Calling this maximal element q, we note that this is a prime
ideal; compare the proof of Proposition 6.29. Hence, pn ⊆ Ann(m) ⊆ q ⊆ p (the last
containment holds since q is prime and p is maximal). By Corollary 6.22, we get that
radq = q = p, hence p ∈ AssM . �

Using the above, we can now prove the following statement, which can be seen as a
converse to Proposition 6.32.

Proposition 6.39. Let A be a Noetherian ring and M be an A-module. Then every
minimal element p ∈ Supp(M) is in Ass(M). In particular, if M is finitely generated,
then Supp(M) = ∪ni=1V (pi), where the pi are minimal primes containing Ann(M) and
all the pi are in Ass(M).

Proof. Let p ∈ Supp(M) be a minimal element. Then Mp 6= 0, but by minimality
Mq = 0 for any prime ideal q ( p. Now, Mp is a module over Ap. The latter ring is
Noetherian, hence Ass(Mp) 6= ∅. Let p′ ∈ Spec(Ap) be an ideal which is not the maximal
ideal in Ap. Then p′ is the extension of a prime ideal q ∈ Spec(A) with q ⊆ p. Since
(Mp)p′ = Mq = 0, we conclude that Supp(Mp) = {pAp} is the maximal ideal of Ap.
Therefore Ass(Mp) = {pAp} as well. Corollary 6.37 then gives p ∈ Ass(M).

To see the second claim, note that if M is finitely generated, then Supp(M) =
V (Ann(M)) by Exercise 15 (Exercise 3 on Sheet 4). By Propositions 6.26 and 6.27,
V (Ann(M)) = Spec(A/Ann(M)) = ∪ni=1V (pi), where the pi are minimal primes con-
taining Ann(M). By the above, they are contained in Ass(M). �

We conclude this section by briefly describing how primary decompositions of ideals
can be generalised to arbitrary modules. Until the end of this section, A will be a
Noetherian ring.
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Definition. Let M be an A-module and Q be a submodule of M . If Ass(M/Q) = {p},
we call Q p-primary in M .

A primary decomposition of N is a decomposition N = Q1∩. . .∩Qr with Qi pi-primary.
We call such a decomposition minimal if all the pi are distinct and ∩j 6=iQj * Qi for all
i.

Any decomposition can be made minimal. Indeed, if Q1 and Q2 are p-primary, then so
isQ = Q1∩Q2. To see this, considerM //M/Q1⊕M/Q2, note that the kernel isQ, hence
M/Q injects into the direct sum, and therefore, Ass(M/Q) ⊆ Ass(M/Q1)∪Ass(M/Q2) =
{p}. On the other hand, Ass(M/Q) is not empty by Proposition 6.29 (recall that A is
Noetherian).

Theorem 6.40. If M is a module over a Noetherian ring A and N is a submodule
having a minimal primary decomposition N = ∩ri=1Qi where the Qi are pi-primary, then
the prime ideals pi are uniquely determined.

Proof. First of all, Ass(M/N) ⊆ {p1, . . . , pr}. Indeed, the kernel of the map M // ⊕i
(M/Qi) is precisely N , so M/N injects into ⊕i(M/Qi), hence Ass(M/N) is a subset of
the union of the Ass(M/Qi), which is what we wanted to prove.

Now given i, let Pi = ∩j 6=iQj, hence Pi∩Qi = N and Pi/N 6= 0 since the decomposition
is minimal. The injection Pi/N

� � //M/Qi then shows that Ass(Pi/N) = {pi}, while the
injection Pi/N

� � //M/N shows that {p1, . . . , pr} ⊆ Ass(M/N). In particular, the pi are
just the distinct associated prime ideals of M/N and, therefore, uniquely determined. �

One can also show in this more general setting that the primary components corre-
sponding to the minimal associated primes of M/N are uniquely determined.

7. Ring extensions

Definition. Let A be a subring of a ring B. An element x ∈ B is called integral over A
if there is an equation of the form

xn + a1x
n−1 + . . .+ an = 0

with ai ∈ A for 1 ≤ i ≤ n.

We will give a characterisation of integral elements after the following

Lemma 7.1. Let M be a finitely generated module over a ring A, let I be an ideal of
A and let f : M //M be an A-linear map such that f(M) ⊆ IM . Then there exists an
n > 0 such that

fn + a1f
n−1 + . . .+ an = 0

with ak ∈ I for all k.
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Proof. Let x1, . . . , xn be a set of generators of M . Since f(xl) ∈ IM for all l, we have
f(xl) =

∑n
j=1 aljxj with alj ∈ I. Hence,

n∑
j=1

(δljf − alj)xj = 0.

Using that the well-known statement AdjA · A = det(A)idn for an n× n-matrix A over
a field also holds over any commutative ring, we can multiply the equation with the
adjoint matrix of (δljf − alj) to conclude that det(δljf − alj) kills all the xj, hence is the
zero map of M . Expanding the determinant gives the claim. �

Proposition 7.2. The following are equivalent.

(1) x ∈ B is integral over A.
(2) A[x] is a finitely generated A-module.
(3) A[x] is contained in a subring C of B which is a finitely generated A-module.
(4) There exists a faithful A[x]-module M which is finitely generated as an A-module

(a module M is faithful if Ann(M) = 0).

Proof. “(1)⇒(2)”: We have xn = −a1x
n−1 − . . . − an. By induction, every xm with

m ≥ n is a linear combination of 1, . . . , xn−1, hence A[x] is finitely generated.
“(2)⇒(3)”: Set C = A[x].
“(3)⇒(4)”: Set M = C; since C is a ring, a1 = 0 implies a = 0, so Ann(C) = 0.
“(4)⇒(1)”: Apply the above lemma to the case where f is the multiplication by x and

I = A. Since M is an A[x]-module, we indeed have f(M) ⊆M . Since M is faithful, the
above lemma gives the wanted equation. �

Remark 7.3. We can give an alternative proof of Nakayama’s lemma using the above
“determinant trick” 7.1. Namely, if M is a finitely generated A-module and IM = M
for an ideal I, then there exists x ≡ 1 modulo I such that xM = 0 by setting f = id.
Now if I is contained in the Jacobson radical of A, then x is a unit, so M = x−1xM = 0.

Corollary 7.4. Let A ⊆ B be rings. If xi ∈ B, 1 ≤ i ≤ n are integral over A, then
A[x1, . . . , xn] is a finitely generated A-module. Furthermore, the set of elements C which
are integral over A is a subring of B.

Proof. To prove the first claim, we use induction on n.
The case n = 1 is given by the previous proposition. Now use that A[x1, . . . , xn] '

A[x1, . . . , xn−1][xn]. By the induction hypothesis, the ring A[x1, . . . , xn−1] is finitely gen-
erated over A and xn is integral over this ring, hence A[x1, . . . , xn−1][xn] is a finitely
generated A[x1, . . . , xn−1]-module. Since being finitely generated is transitive by Propo-
sition 3.21, the claim holds.

To prove the second claim, note that if x, y are integral over A, then D = A[x, y] is
finitely generated over A, hence x+ y ∈ D and xy ∈ D are integral over A. �

Definition. Let A ⊆ B be rings. The set of elements C of B which are integral over A
is called the integral closure of A in B. If C = B, then we say that B is integral over A.
If C = A, then A is said to be integrally closed in B.
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If A is a domain, then we say that A is integrally closed (or normal) if it is integrally
closed in its field of fractions.

Example 7.5. The integers Z are integrally closed. Indeed, if x = r
s
∈ Q, with r and s

coprime, is integral over Z, then multiplying the equation

(
r

s
)n + a1(

r

s
)n−1 + . . .+ an = 0

by sn, we get rn + a1sr
n−1 + . . .+ ans

n = 0. Hence, s divides rn, so s = ±1.
More generally, any unique factorization domain is integrally closed. Here, we call an

integral domain A a unique factorization domain if every element x ∈ A can be uniquely
written as x = ua1 . . . an where u is a unit and the ak are irreducible, i.e. they cannot be
written as products of non-units.

Corollary 7.6. Let A ⊆ B be rings and let C be the integral closure of A in B. Then
C is integrally closed in B.

Proof. Every element of B which is integral over C is also integral over A, hence is in
C. �

Proposition 7.7. Let A ⊆ B and let B be integral over A. Then

(1) If J is an ideal of B and I = J ∩ A, then B/J is integral over A/I.
(2) If S is a multiplicatively closed subset of A, then S−1B is integral over S−1A.

Proof. (1) Since for every b inB there is an equation of the form bn+a1b
n−1+. . .+an =

0 with ak ∈ A for all k, we can reduce it modulo I.
(2) Let b

s
∈ S−1B and divide the above equation by sn to get

(
b

s
)n +

a1

s
(
b

s
)n−1 + . . .+

an
sn

= 0.

Hence, b
s

is integral over S−1A.
�

Proposition 7.8. Let A ⊆ B be integral domains and let B be integral over A. Then A
is a field if and only if B is a field.

Proof. Assume first that A is a field and let b ∈ B be an arbitrary non-zero element.
Since b is integral over A, we have an equation bn + a1b

n−1 + . . . + an = 0. Assume
that this equation is of minimal possible degree and note that an 6= 0, since otherwise
we would have b(bn−1 + a1b

n−2 + . . . + an−1) = 0, so b would be a zero divisor (by
minimality), a contradiction. Since A is a field and an 6= 0, its inverse exists, so bn +
a1b

n−1 + . . . + an−1b = −an, hence b(−a−1
n (bn−1 + a1b

n−2 + . . . + an−1)) = 1, so b−1 =
−a−1

n (bn−1 + a1b
n−2 + . . .+ an−1) ∈ B.

Now assume that B is a field. Let 0 6= x ∈ A be arbitrary. Then x−1 exists in B,
hence there is an equation

x−m + a′1x
−m+1 + . . .+ a′m = 0.
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Multiplying this equation with xm−1 gives x−1 = −a′1 − . . .− a′mxm−1 ∈ A, hence A is a
field. �

Corollary 7.9. Let A ⊆ B be rings, B integral over A. Let q be a prime ideal of B and
p = q ∩ A (which is prime since inverse images of prime ideals are prime). Then p is
maximal if and only if q is maximal.

Proof. By Proposition 7.7, the domain B/q is integral over the domain A/p. Hence the
former is a field if and only if the latter is a field, which is precisely our claim. �

Corollary 7.10. Let A ⊆ B be rings, B integral over A. Let q and q′ be prime ideals of
B satisfying q ⊆ q′ and q ∩ A = q′ ∩ A = p. Then q = q′.

Proof. By Proposition 7.7, Bp is integral over Ap. Denoting by m the extension of p in
Ap and by n, n′ the extensions of q, q′ in Bp, we have n ⊆ n′ and nc = n

′c = m. Since
m is maximal, the previous corollary shows that n = n′, hence q = q′ by Proposition
4.14. �

Theorem 7.11 (Going-up theorem). Let A ⊆ B be rings, B integral over A. Let
p1 ⊆ . . . ⊆ pn be a chain of prime ideals of A and let q1 ⊆ . . . ⊆ qm, m < n, be a chain
of prime ideals of B such that qi ∩A = pi for 1 ≤ i ≤ m. Then the chain q1 ⊆ . . . ⊆ qm
can be extended to a chain q1 ⊆ . . . ⊆ qn with qi ∩ A = pi for 1 ≤ i ≤ n.

Proof. Let us first show that if p is a prime ideal in A, then there exists an ideal q in B
such that q∩A = p. Indeed, Bp is integral over Ap and we have a commutative diagram

A //

f
��

B

��
Ap

// Bp.

If n is the maximal ideal of Bp, then m = Ap ∩ n is maximal by Corollary 7.9. The
preimage q of n under the canonical map B //Bp is a prime ideal and by commutativity
q ∩ A = f−1(m) = p.

Now note that by induction we can immediately reduce to the case m = 1, n = 2.
Let A = A/p1 and B = B/q1. Then A ⊆ B and the latter is integral over the former.
Denoting by p2 the image of p2 in A, by what we just proved there exists a prime ideal
q2 in B such that q2 ∩ A = p2. Taking the preimage of q2 in B gives us the required
prime ideal. �

It might be good to remember the short version of the theorem. Namely, if A ⊆ B,
B is integral over A and if p1 ⊆ p2 are prime ideals of A and there exists q1 such that
q1 ∩ A = p1, there also exists q2 with q2 ∩ A = p2. Perhaps in this formulation it is a
little easier to recognize the origin of the name of the theorem.

Our next goal is to prove the Going-down theorem. This will require us to prove some
preliminary results first.



COMMUTATIVE ALGEBRA 53

Proposition 7.12. Let A ⊆ B be rings and let C be the integral closure of A in B. If
S is a multiplicatively closed subset of A, then S−1C is the integral closure of S−1A in
S−1B.

Proof. We already know that S−1C is integral over S−1A. Let b
s
∈ S−1B be an element

integral over S−1A, so we have an equation

(
b

s
)n +

a1

s1

(
b

s
)n−1 + . . .+

an
sn

= 0.

Multiply this equation by (st)n, where t = s1 · · · sn, to get

(bt)n + a1ss2 · · · sn(bt)n−1 + . . .+ snant
n−1s1 · · · sn−1 = 0.

This is an equation of integral dependence for bt over A, hence bt ∈ C and bt
st

= b
s
∈

S−1C. �

We will next show that being interally closed is a local property.

Proposition 7.13. Let A be an integral domain. The following are equivalent.

(1) A is integrally closed.
(2) Ap is integrally closed for every prime ideal p.
(3) Am is integrally closed for every maximal ideal m.

Proof. Let K = A(0) be the field of fractions of A, C be the integral closure of A in K
and ι : A //C the canonical embedding. Then A is integrally closed if and only if ι is
surjective. Similarly, Ap resp. Am is integrally closed if and only if the map ιp resp. ιm is
surjective. But these two conditions are equivalent by Proposition 4.10. �

Definition. Let A ⊆ B be rings and let I be an ideal of A. An element b ∈ B is integral
over I if it is a root of a monic polynomial with coefficients in I. The integral closure of
I in B is the set of all elements of B which are integral over I.

Lemma 7.14. Let A ⊆ B be rings, let C be the integral closure of A in B and I be an
ideal in A. Furthermore, let Ie be the extension of I in C. Then the integral closure of
I in B is radIe.

Proof. If b ∈ B is integral over I, then bn +a1b
n−1 + . . .+an = 0 for some ak ∈ I. Hence,

bn ∈ Ie ⊆ C and consequently b ∈ radIe.
Conversely, if b ∈ radIe, then for some n > 0 we have bn =

∑m
k=1 akxk, where ak ∈ I

and xk ∈ C. By definition of C, the module M = A[x1, . . . , xm] is finitely generated over
A and bnM ⊆ IM . Applying Lemma 7.1 with f being the multiplication by bn gives
that bn is integral over I, hence so is b. �

Proposition 7.15. Let A ⊆ B be integral domains with A integrally closed and let b ∈ B
be integral over an ideal I of A. Then b is algebraic over the field of fractions K = A(0) of
A. Its minimal polynomial tn + a1t

n−1 + . . .+ an over K has the property that ak ∈ radI
for all 1 ≤ k ≤ n.
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Proof. Since b is integral over A, it is algebraic over K. Let χ be the minimal polynomial
of b over K and consider the splitting field L of χ. Denoting the other roots of χ by
x1, . . . , xm, we see that each xk is integral over I because it satisfies the same equation of
integral dependence as b does. Since the coefficients of χ are polynomials in the xk, they
are all integral over A by the previous proposition (the radical is closed under addition
and multiplication). Since A is integrally closed, A = C in Lemma 7.14, so all the
coefficients lie in radI. �

Theorem 7.16 (Going-down theorem). Let A ⊆ B be integral domains, let A be inte-
grally closed and B be integral over A. Let p1 ⊇ . . . ⊇ pn be a chain of prime ideals of
A and let q1 ⊇ . . . ⊇ qm, m < n, be a chain of prime ideals of B satisfying qk ∩ A = pk
for 1 ≤ k ≤ m. Then the chain q1 ⊇ . . . ⊇ qm can be extended to a chain q1 ⊇ . . . ⊇ qn
such that qk ∩ A = pk for all 1 ≤ k ≤ n.

Proof. Similar to the proof of the going-up theorem we can reduce to the case m = 1 and
n = 2. Since prime ideals in Bq1 correspond to prime ideals contained in q1, we have to
show that p2 is the contraction of a prime ideal in Bq1 . Since the latter is the case if and
only if p2Bq1 ∩ A = pec2 = p2 (the second equality is Proposition 4.20, while the first is
by definition), we need to show that pec2 = p2. Of course, “⊇” holds. So, let x ∈ p2Bq1 .
Then x = y

s
with y ∈ p2B and s ∈ B \ q1. By Lemma 7.14 y is integral over p2, so by

the previous proposition its minimal equation over K, the field of fractions of A, has the
form

yr + a1y
r−1 + . . .+ ar = 0

with ak ∈ p2 for all k.
If x ∈ p2Bq1 ∩ A, then s = yx−1 = y

x
with x−1 ∈ K. Dividing the previous equation

by xr we get

sr + a1y
r−1x−r + . . .+ arx

−r = sr + u1s
r−1 + . . .+ ur = 0

where uk = ak
xk

. It follows that

(7.1) ak = xkuk ∈ p2 ∀ 1 ≤ k ≤ r.

Since s is integral over A, we have uk ∈ A for all 1 ≤ k ≤ r by the previous proposition.
If x /∈ p2, then Equation (7.1) gives that uk ∈ p2 for all k, so sr ∈ p2B ⊆ p1B ⊆ q1,
which is a contradiction. Hence, x ∈ p2 and we are done. �

Below we will interpret the Going-up and Going-Down theorems geometrically. But
first we want to use some of the theory we have developed to prove a form of Hilbert’s
Nullstellensatz. We will need several preliminary results, starting with

Proposition 7.17. Let A ⊆ B ⊆ C be rings. Suppose that A is Noetherian, that C is a
finitely generated A-algebra and that C is either 1) finitely generated as a B-module or
2) integral over B. Then B is finitely generated as an A-algebra.
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Proof. Of course, 1) and 2) are equivalent, so we will prove 1). Assume that x1, . . . , xn
generate C as an A-algebra and y1, . . . , ym generate C as a B-module. We therefore have
expressions

xi =
∑
j

bijyj

yiyj =
∑
k

bijkyk

where bij ∈ B and bijk ∈ B.
Define B0 to be the algebra generated by the bij and the bijk over A. Since B0 is

finitely generated over a Noetherian ring, it is itself Noetherian.
Since any element in C is a polynomial in the xi with coefficients in A we conclude,

using both equations above, that C is finitely generated as a B0-module. Hence, B is
finitely generated as a B0-module, since it is a submodule of C. Therefore, we have the
chain of inclusions A ⊆ B0 ⊆ B, where B is a finitely generated B0-module and B0 is a
finitely generated A-algebra. It follows that B is a finitely generated A-algebra. �

Proposition 7.18. If E is a finitely generated algebra over a field k and E is itself a
field, then E is a finite algebraic extension of k.

Proof. We can assume that E = k[x1, . . . , xn]. Suppose that E is not an algebraic
extension of k. We then renumber the xi such that x1, . . . , xr are algebraically indepen-
dent over k, that is, F = k(x1, . . . , xr) is a a transcendental extension, and such that
xr+1, . . . , xn are algebraic over F . Applying the previous proposition to k ⊆ F ⊆ E and
using that E is finitely generated as an F -module (since it is an algebraic extension of
F ), we conclude that F is a finitely generated k-algebra. Therefore, F = k[y1, . . . , yr],
where the yi are quotients of polynomials in x1, . . . , xr. Write yi = fi

gi
.

Adapting the classical proof by Euclid that there exist infinitely many primes, we can
show that there are infinitely many irreducible polynomials in k[x1, . . . , xr]. In particular,
taking h = g1 · · · gr + 1, we see that h is prime to each of the gi. Its inverse h−1 exists
in F but it cannot be a polynomial in the yi, contradiction. Hence, E is algebraic over
k. �

Theorem 7.19 (Hilbert’s Nullstellensatz, weak form). Let k be a field and let A be a
finitely generated k-algebra. Let m be a maximal ideal in A. Then the field A/m is a
finite algebraic extension of k. In particular, if k is algebraically closed, then A/m ' k.

Proof. Apply the previous proposition to E = A/m. �

We can use the “weak” form to deduce the following statement.

Theorem 7.20 (Hilbert’s Nullstellensatz, strong form). Let k be an algebraically closed
field, A = k[T1, . . . , Tn] be the polynomial ring in n variables over k and let a be an ideal
in A. Consider

Z(a) = {x ∈ kn | g(x) = 0 ∀g ∈ a}
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and

I(Z(a)) = {f ∈ A | f(x) = 0 ∀x ∈ Z(a)} .
Then I(Z(a)) = rada.

Proof. One inclusion is easy. If g ∈ rada, then gm ∈ a and gm(x) = 0 for all x ∈ Z(a) by
definition. Hence also g(x) = 0 for all x ∈ Z(a), so g ∈ I(Z(a)).

For the converse, let f /∈ rada. Then there exists a prime ideal p containing a such that
f /∈ p. Consider B = A/p and C = Bf . Since C is a local ring, denote by m its maximal
ideal. Clearly, B, and therefore also C, is a finitely generated k-algebra and it follows
that C/m ' k. Denote by xi the image of Ti under the map A //B = A/p //C =
(A/p)f //C/m ' k for 1 ≤ i ≤ n. This defines a point x = (x1, . . . , xn) ∈ kn and since
a ⊆ p, we have g(x) = 0 for all g ∈ a, so x ∈ Z(a). On the other hand, by construction
f(x) 6= 0, so f /∈ I(Z(a)). �

7.1. More geometry. We now want to interpret some of the results of this section
geometrically. First a general

Definition. Let (X, σ) and (Y, τ) be topological spaces. We say that a map f : X //Y is
continuous if f−1(U) ∈ τ for all U ∈ σ. In other words, the preimage of any open/closed
subset is open/closed.

A homeomorphism is a continuous bijection f whose set-theoretic inverse f−1 is also
continuous.

Recall that for a ring A the spectrum Spec(A) of A is the set of all prime ideals
of A. Let f : A //B be a ring homomorphism. Since f−1(q) is a prime ideal for any
q ∈ Spec(B), the map f induces a map f ∗ : Spec(B) // Spec(A) defined by q � // f−1(q).

Also recall that Spec(A) is a topological space with closed subsets given by subsets of
the form V (I). Let us summarise some of the properties of the map f ∗ a ring homomor-
phism f induces.

Proposition 7.21. Let f : A //B be a ring homomorphism and

f ∗ : Y = Spec(B) // Spec(A) = X

be the induced map on spectra. Then

(1) f ∗−1(V (I)) = V (Ie) for any ideal I in A. In particular, f ∗ is a continuous map.
(2) If f is surjective, then f ∗ is a homeomorphism between Y and V (ker(f)).
(3) Let g : B //C be another ring homomorphism. Then (g ◦ f)∗ = f ∗ ◦ g∗.

Proof. (1) We have

f ∗−1(V (I)) =
{
q ∈ Spec(B) | f ∗(q) = f−1(q) ∈ V (I)

}
=
{
q ∈ Spec(B) | I ⊆ f−1(q)

}
= {q ∈ Spec(B) | Ie ⊆ q} = V (Ie).



COMMUTATIVE ALGEBRA 57

Let us give some details concerning the third equality. Clearly, if Ie ⊆ q, then
I ⊆ f−1(Ie) ⊆ f−1(q). Conversely, if I ⊆ f−1(q), then for all i ∈ I we have
f(i) ∈ q, so the ideal generated by I is also contained in q.

(2) We have B ' A/ ker(f) by assumption. Now V (ker(f)) are all the prime ideals of
A which contain ker(f). On the other hand, Spec(A/ ker(f)) are also the prime
ideals containing ker(f) by Proposition 2.4 and it is clear that the correspondence
given there is precisely f ∗ and the topologies also obviously coincide.

(3) If q ∈ Spec(C), then

(g ◦ f)∗(q) = (g ◦ f)−1(q) = f−1 ◦ g−1(q) = f ∗ ◦ g∗(q). �

Proposition 7.22. Let f : A //B be a ring homomorphism and assume B is integral
over f(A). Then f ∗ : Spec(B) // Spec(A) is a closed map, i.e., it sends closed subsets
to closed subsets.

Proof. Write f as α◦π where π : A //A/ ker(f) is the quotient map and α : A/ ker(f) //B
is the induced map. Then f ∗ = π∗ ◦ α∗ by item (3) of the previous proposition. Note
that α is injective, that B is integral over A/ ker(f) ' f(A) and that π∗ is a closed map
by item (2) of the previous proposition. Since the composition of closed maps is closed,
it suffices to prove the claim for α∗, so without loss of generality we may assume that
f : A ⊆ B is an integral extension.

First of all, if I is an ideal in B, it is clear that f ∗(V (I)) ⊆ V (f−1(I)). Clearly, the
claim is proved if we show the reverse inclusion.

By the first step in the proof of the Going-up theorem, for any p ∈ Spec(A) there exists
an element q ∈ Spec(B) with f−1(q) = f ∗(q) = p. So if f−1I = Ic ⊆ p′ = f−1(q′) = q′c

with p′ ∈ Spec(A), then I = Icec ⊆ q′cec = q′. Hence, any p′ ∈ V (f−1(I)) is of the form
f ∗(q′) for some q′ ∈ V (I). �

8. Dimension theory

The purpose of this section is to introduce and compare several notion of dimension
for (local) rings. We begin with the maybe easiest one.

Definition. Let A be a ring. Its Krull dimension is defined as the supremum over the
lenghts r taken over all strictly increasing chains of prime ideals p0 ⊂ . . . ⊂ pr. The
Krull dimension of A will be denoted by dimA.

Example 8.1. Any field has dimension 0. The same holds for any Artin ring by Proposi-
tion 5.22. For a more precise statement concerning Artin rings, see the next proposition.

Any principal ideal domain, for instance Z, has dimension 1 by Example 2.14.

Proposition 8.2. A ring A is Artin if and only if it is Noetherian and dim(A) = 0.

Proof. Any prime ideal in an Artin ring is maximal by Proposition 5.22, hence dim(A) =
0. By Proposition 5.26, A is Noetherian.

Conversely, if A is Noetherian, the zero ideal has a primary decomposition by Theorem
6.20. Therefore, A has only finitely many minimal prime ideals, which are all maximal,
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since dim(A) = 0. The nilradical of A is then the intersection of these finitely many
maximal ideals m1, . . . ,mn. On the other hand, the nilradical is nilpotent by Proposition
6.21. It follows that

n∏
i=1

mk
i ⊆

n⋂
i=0

mk
i = 0,

hence A is Artinian by Corollary 5.20. �

For our next notion we will need to work with graded rings and modules.

Definition. A ring A is a graded ring if A = ⊕∞n=0An for abelian subgroups (An)n∈N
such that AmAn ⊆ Am+n for all m,n ≥ 0.

If A is a graded ring, set A+ = ⊕n≥1An, which is easily seen to be an ideal of A.

Clearly, A0 is a subring of A and each An is a module over A0.
Similarly, one has

Definition. If A is a graded ring, a graded A-module is an A-module M together with
a family of subgroups Mn for n ∈ N such that M = ⊕∞n=0Mn and AmMn ⊆Mm+n for all
m,n ≥ 0.

An element x of M is homogeneous if x ∈ Mn for some n. This n is then called the
degree of x.

A homomorphism between graded A-modules M and N is an A-linear map f : M //N
such that f(Mk) ⊆ Nk for all k ≥ 0.

Note that any Mn is an A0-module and that any element in M can be uniquely written
as a finite sum of homogeneous elements.

Proposition 8.3. If A is a graded ring, then the following conditions are equivalent:

i) A is a Noetherian ring.
ii) A0 is a Noetherian ring and A is finitely generated as an A0-algebra.

Proof. ii)⇒ i): By Hilbert’s basis theorem.
i)⇒ ii): Since A0 ' A/A+, it is Noetherian as a quotient of a Noetherian ring.
Now, A+ is an ideal in A, hence is finitely generated by some elements x1, . . . , xt

which we can assume to be homogeneous of positive degrees k1, . . . , kt. Define A′ to be
the subring of A generated by the xi over A0. Clearly, A0 ⊆ A′. We will now show
by induction that An ⊆ A′ for all n ≥ 0. Let y ∈ An for some n > 0. We can write
y =

∑t
i=1 aixi for ai ∈ An−ki (here we set Am = 0 for m < 0). Since ki > 0, n− ki < n,

hence by the inductive hypothesis any ai can be written as a polynomial in the elements
xj with coefficients in A0, so the same holds for y. Therefore, A = A′. �

Let M be a finitely generated graded A-module, which, in particular, implies that M
is generated by a finite number of homogeneous elements mj, 1 ≤ j ≤ t with degrees
rj. It follows from this that any m ∈ Mn can be written as

∑
j fj(x)mj, where fj(x) is

homogeneous of degree n− rj. Therefore, Mn is finitely generated as an A0-module.
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Definition. Consider the category mod(A) of all finitely generated A-modules. A func-
tion λ from mod(A) to Z is called additive if for every short exact sequence of A-modules
of the form

0 //M ′ //M //M ′′ // 0

we have λ(M) = λ(M ′) + λ(M ′′).

Example 8.4. Let A = k be a field and consider the category of all finite-dimensional
vector spaces. Then λ = dimk is an additive function on this category.

Definition. Let A be a Noetherian graded ring and M a finitely generated graded A-
module. Let λ be an additive function on Mod(A0).

The Poincaré series P (M, t) of M with respect to λ is the following power series

P (M, t) =
∞∑
n=0

λ(Mn)tn ∈ Z[[t]].

Remark 8.5. Below we will frequently study the situation where A is an Artin ring and
λ(M) is the length of a finitely generated A-module M .

Theorem 8.6. The function P (M, t) is a rational function in t of the form

f(t)/(
s∏
i=1

(1− tki))

for some f ∈ Z[t], where A is a finitely generated A0-algebra in generators x1, . . . , xs
with deg(xi) = ki for all i.

Proof. We will prove the statement by induction over s, the number of generators of A
over A0.

First, if s = 0, then An = 0 for all n > 0, so A = A0 and M is a finitely generated
A0-module, hence Mn = 0 for all large n. It follows that P (m, t) is a polynomial.

Now assume that s > 0. Recall that A is finitely generated as an A0-algebra and
denote the generators by x1, . . . , xs and their degrees by k1 . . . , ks.

We have an exact sequence

0 // Kn
// Mn

xs // Mn+ks
// Ln+ks

// 0,

where Kn is the kernel of the multiplication by xs map and Ln+ks the cokernel. Since
this works for every n, we can set K = ⊕nKn and L = ⊕nLn and observe that both these
modules are finitely generated over A, because the former is a submodule of M and the
latter a quotient module of M . Furthermore, xs annihilates K and L, hence both are
modules over A0[x1, . . . , xs−1]. Since the above exast sequence can be split up into the
exact sequences

0 // Kn
// Mn

// Mn/Kn
// 0

and

0 // Mn/Kn
xs // Mn+ks

// Ln+ks
// 0,
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we get
λ(Mn) = λ(Kn) + λ(Mn/Kn) = λ(Kn) + λ(Mn+ks)− λ(Ln+ks).

Multiplying by tn+ks and summing with respect to n we get

(8.1) (1− tks)P (M, t) = P (L, t)− tksP (K, t) + g(t),

where g(t) is a polynomial. Applying the inductive hypothesis to the right-hand side
gives the result. �

Definition. Let A be a Noetherian graded ring and M a finitely generated graded A-
module. The order of the pole of P (M, t) at t = 1 will be denoted by d(M).

Corollary 8.7. If ki = 1 for all i, then, for sufficiently large n, λ(Mn) is a polynomial
in n with rational coefficients of degree d(M)− 1.

Proof. By the theorem, λ(Mn) is the coefficient of tn in f(t)(1− t)−s. We may therefore

assume that s = d = d(M) and f(1) 6= 0. Write f(t) =
∑N

k=0 akt
k. Since (1 − t)−1 =

1 + t+ t2 + . . . , differentiation of both sides gives

(1− t)−d =
∞∑
k=0

(
d+ k − 1

d− 1

)
tk.

Then

λ(Mn) = a0

(
d+ n− 1

d− 1

)
+ a1

(
d+ n− 2

d− 1

)
+ . . .+ aN

(
d+ n−N − 1

d− 1

)
,

where
(

b
d−1

)
= 0 if b < d − 1. The right-hand side is a polynomial in n with rational

coefficients and the leading term is

nd−1(
∑
ak)

(d− 1)!
6= 0.

�

Corollary 8.8. If a is an element of A such that am = 0 implies that m = 0, then
d(M/aM) = d(M)− 1.

Proof. Simply use Equation 8.1. �

Example 8.9. Let A0 be an Artin ring and A = A0[X1, . . . , Xn] be the polynomial ring
in n intedeterminates. Then Ak is a free A0-module of dimension

(
n+k−1
n−1

)
. It follows that

P (A, t) = (1− t)−n (note that N = 0 and a0 = 1 in the proof of Theorem 8.7).

In order to prove our next results, we first need the following

Definition. Let M be an A-module and I an ideal. A sequence of submodules

M = M0 ⊇M1 ⊇M2 ⊇ . . .

is called a filtration of M . It is an I-filtration if IMn ⊆ Mn+1 for all n and a stable
I-filtration if IMn = Mn+1 for all sufficiently large n.
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Example 8.10. Defining Mn = InM , gives a stable I-filtration.

Lemma 8.11. Any two stable I-filtrations (Mn) and (M ′
n) of a module M have bounded

difference, that is, there exists an integer n0 such that Mn+n0 ⊆ M ′
n and M ′

n+n0
⊆ Mn

for all n ≥ 0.

Proof. Without loss of generality we may assume that M ′
n = InM . Since IMn ⊆ Mn+1

for all n, we have M ′
n+n0

⊆M ′
n = InM ⊆Mn.

On the other hand, by stability, IMn = Mn+1 for all n ≥ n0, hence Mn+n0 = InMn0 ⊆
InM = M ′

n. �

Definition. Let A be a ring and I an ideal of A. The graded group

G(A) = GI(A) =
∞⊕
n=0

In/In+1

(where I0 = A) is a graded ring where the multiplication is defined in the obvious way.
If M is an A-module and (Mn) is an I-filtration of M , then

G(M) = GI(M) =
∞⊕
n=0

Mn/Mn+1

is a graded G(A)-module in a natural way.

Lemma 8.12. If A is Noetherian, then GI(A) is Noetherian for any ideal I of A. If M
is a finitely generated A-module and (Mn) is a stable I-filtration of M , then GI(M) is a
finitely generated graded GI(A)-module.

Proof. The ideal I is finitely generated by elements a1, . . . , ak. Denoting their images in
I/I2 by ai, we have

G(A) = A/I[a1, . . . , ak].

Since A/I is Noetherian, the first claim follows by Hilbert’s basis theorem.
Since the filtration of M is I-stable by assumption, Mn0+r = IrMn0 for all r ≥

0. Therefore, G(M) is generated by ⊕n≤n0Gn(M) = N , where we write Gn(M) for
Mn/Mn+1. Every such module is, of course Noetherian and annihilated by I, hence a
finitely generated A/I-module. It follows that N is a finitely generated A/I-module, so
G(M) is a finitely generated G(A)-module. �

Proposition 8.13. Let A be a Noetherian local ring, m its maximal ideal, q an m-
primary ideal, M a finitely generated A-module and (Mn) a stable q-filtration of M .
Then

(1) For every n ≥ 0, M/Mn is of finite length.
(2) for all sufficiently large n this length is a polynomial g(n) in n of degree ≤ s,

where s is the least number of generators of q.
(3) the degree and leading coefficient of g(n) depend only on M and q and not the

filtration chosen.
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In particular, if M = A, the length l(A/qn) is a polynomial χq(n) of degree at most s,
where s is the smallest number of generators of q.

Proof. (1) First, note that A/q is Noetherian, local and has dimension 0, hence is
Artin. By the previous lemma, the graded ring Gq(A) = G(A) is Noetherian and
Gq(M) = G(M) is finitely generated over G(A). Every component Mn/Mn+1

is a Noetherian A-module and annihilated by q. Therefore, it is a Noetherian
A/q-module, hence of finite length. Therefore, M/Mn is of finite length and

l(M/Mn) =
n∑
r=1

l(Mr−1/Mr).

(2) If the ideal q is generated by elements x1, . . . , xs, then their images xi in q/q2

generate G(A) as an algebra over A/q and each of the elements xi has degree 1.
By Corollary 8.7, for all large n, the length l(Mn/Mn+1) = f(n) is a polynomial
in n of degree at most s−1. Using that l(M/Mn+1)− l(M/Mn) = f(n), it follows
that g(n) is a polynomial of degree at most s for all large n.

(3) Let (M̃n) be another stable q-filtration of M and let g̃(n) = l(M/M̃n). These two

filtrations have bounded differences by Lemma 8.11. Therefore, Mn+n0 ⊆ M̃n and

M̃n+n0 ⊆Mn for some index n0 and all n ≥ 0. It follows that g(n+n0) ≥ g̃(n) and
g̃(n+n0) ≥ g(n). For large n, g and g̃ are polynomials and the limes of g(n)/g̃(n)
for n //∞ is 1, hence g and g̃ have the same degree and leading coefficient, say
by L’Hospital.

�

Definition. The polynomial g(n) belonging to the stable filtration (qnM) is denote by
χMq (n). If M = A, we will write χq(n) for χAq (n).

Proposition 8.14. For any Noetherian local ring A with maximal ideal m and any
m-primary ideal q, we have

degχq(n) = degχm(n).

Proof. By Corollary 6.22, we have mr ⊆ q ⊆ m for some r, hence mrn ⊆ qn ⊆ mn, so

χm(n) ≤ χq(n) ≤ χm(rn)

for all large n. Taking the limit n //∞ and using that the terms involved are polyno-
mials, gives the result. �

Definition. If A is a Noetherian local ring with maximal ideal m and q any m-primary
ideal, then the degree of χq(n) will be denoted by d(A).

The least number of generators of an m-primary ideal will be denoted by δ(A).

The main result of this section will be the equality d(A) = δ(A) = dim(A).

Proposition 8.15. For any Noetherian local ring we have δ(A) ≥ d(A).

Proof. Combine Proposition 8.13 with Proposition 8.14. �
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The next step will be to prove that d(A) ≥ dim(A). We will need some preliminary
results. To formulate them, if A is a ring and I an ideal of A, we can define a graded
ring

A∗ =
∞⊕
i=0

In.

Similarly, if M is an A-module and Mn is an I-filtration of M , then

M∗ =
∞⊕
i=0

Mn

is a graded A∗-module, because IkMn ⊆Mn+k.
Note that if A is Noetherian, then A∗ is a quotient of A[x1, . . . , xr], where the xi are

the generators of I. In particular, A∗ is Noetherian.

Lemma 8.16. If A is a Noetherian ring, I an ideal in A, M a finitely generated A-
module and (Mn) an I-filtration of M , the following statements are equivalent:

(1) The module M∗ is finitely generated over A∗.
(2) The filtration (Mn) is stable.

Proof. Since M is finitely generated, the same holds for all its submodules Mn, hence
the modules Nk = ⊕i≤kMi are finitely generated. Clearly, for any k this is a subgroup
of M∗, albeit not a submodule. Now consider

M∗
k = Nk ⊕ IMk ⊕ I2Mk ⊕ . . .

Since Nk is a finitely generated A-module, M∗
k is a finitely generated A∗-module. Clearly,

all the M∗
k are submodules of M∗ and they form an ascending chain whose union is M∗.

Using the Noetherianity of A∗, we now have the following chain of equivalent statements:
M∗ is finitely generated as an A∗-module ⇐⇒ the chain becomes stationary, that is,

M∗ = M∗
k0

for some k0 ⇐⇒ Mk0+r = IrMk0 for all r ≥ 0 ⇐⇒ the filtration (Mn) is
stable. �

The following result is usually called the Artin-Rees lemma.

Proposition 8.17. If A is a Noetherian ring, I an ideal in A, M a finitely generated
A-module and (Mn) a stable I-filtration of M , then, for any submodule M ′ ⊆ M , the
chain (M ′ ∩Mn) is a stable I-filtration of M ′.

In particular, taking Mn = InM , there exists an integer k such that

(InM) ∩M ′ = In−k((IkM) ∩M ′) ∀n ≥ k.

Proof. Clearly,

I(M ′ ∩Mn) ⊆ IM ′ ∩ IMn ⊆ IM ′ ∩Mn+1 ⊆M ′ ∩Mn+1,

so (M ′ ∩Mn) is indeed an I-filtration of M ′. This filtration defines a graded A∗-module
which by construction is a submodule of M∗. Since A∗ is Noetherian, this submodule is
finitely generated. By the lemma, the filtration is stable. �
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We can now take the first step towards proving the inequality d(A) ≥ dim(A).

Proposition 8.18. Let A be a Noetherian local ring with maximal ideal m, q be any
m-primary ideal, M be a finitely generated A-module and a a non zero-divisor for M ,
that is, am = 0 implies m = 0. Setting M ′ = M/aM , we have

degχM
′

q (n) ≤ degχMq (n)− 1.

In particular, if x is not a zero-divisor, then d(A/x) ≤ d(A)− 1.

Proof. By assumption, the modules M and N = aM are isomorphic. Define a filtration
on N by setting Nn = N ∩ qnM . Dividing the exact sequence

0 // N // M // M ′ // 0

by qn gives

0 // N/Nn
// M/Mn

// M ′/qnM ′ // 0.

Setting g(n) = l(N/Nn), we get, by the additivity of the length, for all large n

g(n)− χMq (n) = −χM ′q (n).

By the Artin-Rees lemma, (Nn) is a stable q-filtration of N and since N ' M , the
polynomials g(n) and χMq (n) have the same degree and leading term by item (3) of
Proposition 8.13. The result follows. �

Proposition 8.19. With A,m, q as above, we have d(A) ≥ dim(A). In particular, the
dimension of a Noetherian local ring is finite.

Proof. We will use induction on d = d(A). If d = 0, then l(A/mn) is constant for all large
n, hence mn = mn+1 for all large n, so mn = 0 by Nakayama’s lemma and, therefore, A
is an Artin ring and dim(A) = 0.

Suppose that d > 0 and let
p0 ( p1 ( . . . ( pr

be any chain of prime ideals in A.
Take any element x ∈ p1 \ p0. Its image x′ in the ring A′ = A/p0 is non-zero and the

latter ring is an integral domain, hence

d(A′/x′) ≤ d(A′)− 1

by Proposition 8.18.
Note that A′ is still a local ring. Denoting its maximal ideal by m′, we have, for all

n ≥ 1, a surjection A/mn // //A′/m′n. Therefore, l(A/mn) ≥ l(A′/m′n), hence d(A) ≥
d(A′). This implies that

d(A′/x′) ≤ d(A′)− 1 ≤ d(A)− 1 = d− 1.

By the induction hypothesis, the length of any chain of prime ideals in A′/x′ is at most
d − 1. Now note that the images of the prime ideals p1, . . . , pr under the quotient map
A //A′/(x′) form a chain of prime ideals of length r−1, so r−1 ≤ d−1 or, equivalently,
r ≤ d. Therefore, dim(A) ≤ d. �
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Definition. Let A be a ring and p be a prime ideal in A. The height of p, denoted by
height(p) is the supremum of the length of chains of prime ideals

p0 ( p1 ( . . . ( pn = p

which end at p.

Example 8.20. The height of p is equal to the dimension of Ap.
Every prime ideal in Z except for the zero ideal has height 1.

Corollary 8.21. In a Noetherian ring every prime ideal has finite height, so the set of
prime ideals in a Noetherian ring satisfies the descending chain condition. �

Proposition 8.22. If A is a Noetherian local ring of dimension d, there exists an m-
primary ideal generated by d elements. Therefore, dim(A) ≥ δ(A).

Proof. We will produce the generating set inductively such that every prime ideal con-
taining (x1, . . . , xi) has height at least i for each i. Of course, this is possible if i = 0.

Assume that i > 0 and x1, . . . , xi−1 have been constructed. Denote the minimal
prime ideals of (x1, . . . , xi−1) which have height exactly i− 1 (if they exist) by pj, where
1 ≤ j ≤ r. Now dim(A) is the height of the maximal ideal m and i − 1 < d = dim(A),
hence m 6= pj for all j. Therefore, m 6= ∪rj=1pj by Proposition 2.21. Hence, there exists
an element xi ∈ m, xi /∈ ∪rj=1pj and we take any prime ideal q containing the ideal
(x1, . . . , xi). This ideal q has to contain some minimal prime p of (x1, . . . , xi−1). If
p = pj for some j, then p ( q, hence the height of q is at least i. If p 6= pj for all j, then
the height of p is already at least i, hence the same holds for q. Therefore, every prime
ideal containing (x1, . . . , xi) has height at least i.

Now assume that p is a prime ideal containing (x1, . . . , xd). By construction, the height
of p is at least d, hence p = m, since if p ( m, then height(p) < height(m). Therefore,
rad(x1, . . . , xd) = m, hence the ideal (x1, . . . , xd) is m-primary. �

Theorem 8.23. If A is a Noetherian local ring, then the following three integers are
equal.

(1) dim(A), that is, the maximum length of chains of prime ideals in A.
(2) d(A), the degree of the polynomial χm(n) = l(A/mn).
(3) δ(A), the least number of generators of an m-primary ideal of A.

Proof. We have shown that δ(A) ≥ d(A) ≥ dim(A) ≥ δ(A). �

Example 8.24. Let A = k[X1, . . . , Xn] and Am be the localisation of A at the maximal
ideal m = (X1, . . . , Xn). Then Gm(A) is a polynomial ring in n indeterminates, hence its
Poincaré series is (1− t)−n and dimAm = n.

Corollary 8.25. If A is a local Noetherian ring with maximal ideal m, then dim(A) ≤
dimkm/m

2.

Proof. Pick elements x1, . . . , xk in m such that their classes in m/m2 form a basis. Then
they generate m, which of course is an m-primary ideal, hence k ≥ δ(A) = dim(A). �
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Corollary 8.26. Let A be a Noetherian ring and x1, . . . , xk be elements in A. Then
every minimal prime p belonging to I = (x1, . . . , xk) has height ≤ k.

Proof. In the localised ring Ap the ideal I is pe-primary by Proposition 6.14 and the
fact that p is minimal. Since pe is the maximal ideal in Ap, we have k ≥ dim(Ap) =
heightp. �

Corollary 8.27. If A is a Noetherian ring and x an element in A which is neither a
zero-divisor nor a unit, then every minimal prime p belonging to I = (x) has height 1.

Proof. By the previous corollary, height p ≤ 1. On the other hand, if height p = 0 (so p
is a minimal prime of A), then p is a minimal prime belonging to 0, hence every element
of p is a zero-divisor by Proposition 6.10, which contradicts the fact that x ∈ p. �

Corollary 8.28. If A is a Noetherian local ring and x an element in m which is not a
zero-divisor, then dim(A/(x)) = dim(A)− 1.

Proof. By Proposition 8.18 we have the inequality ≤. Now let x1, . . . , xd be elements in
m whose images in A/(x) generate an m/(x)-primary ideal. Then the ideal (x, x1, . . . , xd)
in A is m-primary, hence d+ 1 ≥ dim(A). �

8.1. Regular rings.

Definition. A system of parameters is a sequence of elements x1, . . . , xd generating an
m-primary ideal in a Noetherian local ring A, where d = dim(A).

Proposition 8.29. Let x1, . . . , xd be a system of parameters and let q = (x1, . . . , xd) be
the m-primary ideal generated by these elements. Let f(T1, . . . , Td) ∈ A[T1, . . . , Td] be a
homogeneous degree s polynomial with the property that f(x1, . . . , xd) ∈ qs+1. Then all
the coefficients of f lie in m.

Proof. Recall that Gq(A) = ⊕i≥0q
i/qi+1. We have a map of graded rings

ϕ : (A/q)[T1, . . . , Td] //Gq(A), Ti
� //xi,

where xi is xi modulo q2. Clearly, this map is surjective and f , the reduction of f modulo
q is in the kernel of ϕ. Assume that some coefficient of f is not in m, hence a unit, so f
is easily seen to not be a zero-divisor. This gives

d(Gq(A)) ≤ d((A/q)[T1, . . . , Td]/(f)) = d((A/q)[T1, . . . , Td])− 1

= d− 1,

where we used Proposition 8.18 for the second equality and the last follows from Example
8.9. But d(Gq(A)) = d by the main theorem of this section, which gives the wanted
contradiction. �

Theorem 8.30. Let A be a Noetherian local ring of dimension d with maximal ideal m
and let k = A/m. Then the following conditions are equivalent.

(1) dimk(m/m
2) = d.
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(2) m can be generated by d elements.
(3) Gm(A) ' k[T1, . . . , Td].

Proof. Clearly, (3) implies (1). The implication “(1)⇒(2)” is provided by Corollary 3.12.
Lastly, if (2) holds, then, setting m = (x1, . . . , xd), the map ϕ of the previous proposition
is an isomorphism of graded rings, hence (2) implies (3). �

Definition. A Noetherian local ring A satisfying one of the equivalent conditions of
Theorem 8.30 is called a regular local ring.

The first thing we can say about regular local rings is the following

Proposition 8.31. Any regular local ring is an integral domain.

Proof. We will show the following claim: If A is a ring, I an ideal such that ∩nIn = 0
and GI(A) is an integral domain, then A is an integral domain.

The claim implies the proposition by setting I = m and using (3) of Theorem 8.30.
So let us prove the claim. Take 0 6= x, 0 6= y in A. Since ∩nIn = 0, there exist indices

rx, ry such that x ∈ Irx , x /∈ Irx+1 and y ∈ Iry , y /∈ Iry+1. This implies that x and y
are non-zero in GI(A), hence their product is also non-zero in GI(A). Then xy 6= 0 in
A. �

Example 8.32. Theorem 8.30 in particular tells us that the only local regular rings of
dimension 0 are fields. The previous proposition can be used to conclude that an Artin
ring which is not a field is not an integral domain.

In the following we want to study an example of regular rings in dimension 1. We
begin with the following

Definition. Let K be a field. A surjective map v : K∗ //Z is called a discrete valuation
if the following conditions are satisfied: 1) v(xy) = v(x) + v(y) for all x, y ∈ K∗ and 2)
v(x+ y) ≥ min{v(x), v(y)} if x 6= −y.

As a convention, we set v(0) =∞. Note that condition 1) just means that v is a group
homomorphism, hence v(1) = 0 and v(x−1) = −x for all x ∈ K∗.
Definition. The discrete valuation ring of v is the set

A = {x ∈ K∗ | v(x) ≥ 0} ∪ {0}.
Note that A is indeed a subring of K∗, hence in particular a domain.

Proposition 8.33. Let A be a discrete valuation ring. Then A is a local ring with
maximal ideal

m = {x ∈ K∗ | v(x) > 0}.
In particular, A∗ = {x ∈ K∗ | v(x) = 0} and A is a local domain which is not a field.

Proof. If y is in A \m, then v(y) = 0. The element y has an inverse in K∗. Since v is a
valuation, we have v(y−1) = −v(y) = 0, hence y−1 ∈ A. Therefore, A is a local ring by
Proposition 2.15. �



68 P. SOSNA

Definition. A uniformizing parameter is an element t of a discrete valuation ring A
such that v(t) = 1.

Note that any uniformizing parameter is an irreducible element of A. Indeed, if t = xy
in A, then 1 = v(x) + v(y), hence v(x) = 0 or v(y) = 0, since v(x) ≥ 0 and v(y) ≥ 0 in
any case. Therefore, either x or y is a unit in A.

Let x ∈ K∗ be arbitrary. Set n = v(x), then v(xt−n) = v(x) + v(t−n) = v(x)− n = 0,
hence u = xt−n is a unit in A∗ and we have a unique factorization x = utn. In particular,
if t′ is another uniformizing parameter, then t′ = u′t for some u′ ∈ A∗. The same
argument shows that A is a unique factorization domain.

Furthermore, A is a principal ideal domain. Indeed, let I be a non-zero ideal in
A and let y ∈ I. Then y = utn for some u ∈ A∗, where n = v(y). If we define
m = min{v(x) | x ∈ I}, then n ≥ m, and setting w = utn−m ∈ A, we have y = utn−mtm,
hence I ⊆ (tm). On the other hand, any x ∈ I such that x = utm, satisfies (x) = (tm),
so (tm) ⊆ I. Therefore, we get

Proposition 8.34. Let A be a discrete valuation ring. Then A is a regular local ring of
dimension 1. Furthermore, A is normal.

Proof. Since A is a domain, (0) is a prime ideal and (0) ( m. It follows from the
above discussion that m = (t) and there are no prime ideals between (0) and m, hence
dim(A) = 1. The ring A is regular since it satisfies condition (2) of Theorem 8.30.

Since A is a unique factorization domain, it is normal. �

Example 8.35. Let k be a field and let K = k((X)) be the field of formal power series
in X whose elements are of the form f(X) =

∑
i≥n aiX

i, ai ∈ k, where n ∈ Z and an 6= 0.
Set v(f) = n. Then v is a discrete valuation, k[[X]] the associated DVR and m = (X)
the maximal ideal.

Remark 8.36. In fact, any regular local ring of dimension 1 is a discrete valuation ring.

9. Homological methods

9.1. Recollections. We begin by recalling some facts from homological algebra. When-
ever we will consider a module in this section, we will for simplicity assume that it is
non-zero and leave it to the reader to figure out which of the statements do not hold for
the zero module.

Definition. Let A be a ring and M be an A-module. We call M projective if the functor
Hom(M,−) is exact.

With this definition, the following statements are equivalent:

(1) M is projective.
(2) For any surjection f : N //N ′ and any map g : M //N ′ there exists a map

h : M //N such that f ◦ h = g.
(3) M is a direct summand of a free module.
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Since Hom(M,−) is left exact in any case, it is clear that (1) and (2) are equivalent.
To see that (2) implies (3), note that taking for N any free module surjecting onto M ,
N ′ = M and for g the identity, we get a map splitting the identity, thus establishing M
as a direct summand of N . Conversely, any free module is easily seen to be projective.
So, if M ⊕N ' F , then Hom(M,−)⊕Hom(N,−) ' Hom(F,−) and the right hand side
is exact, hence the same holds for the left hand side.

Proposition 9.1. A finitely generated projective module P over a local ring A is free.

Proof. Choose elements m1, . . . ,mn ∈ P whose classes form a basis of the A/m = k-
vector space P/mP . By Nakayama’s lemma, the elements m1, . . . ,mn generate P , hence
the map

α : An //P, (a1, . . . , an) � //
∑
i

aimi

is surjective. Now P is projective, so An ' P ⊕ ker(α). Since kn ' An/mAn ' P/mP ,
we have ker(α) ⊆ mAn. Considering P as a submodule of An, we conclude that An =
P + mAn, hence An ' P by Nakayama’s lemma. �

Dually, a module M is called injective if Hom(−,M) is an exact functor or, equiv-
alently, if for any injection f : N //N ′ and any map g : N //M , there exists a map
h : N ′ //M making the appropriate diagram commutative.

An important fact concerning injective modules is

Proposition 9.2 (Baer’s criterion). A module E is injective if and only if for every ideal
I of A any map I //E can be extended to A //E.

Proof. Of course, the only if direction follows immediately from the definition of being
injective.

Suppose 0 //M //N is exact and a map α : M //E is given. We need to show that
α can be extended to a map N //E. Consider the partially ordered set of intermediate
extensions α′ : M ′ //E, where M ⊆ M ′ ⊆ N . Any chain in this set has of course
an upper bound, namely N , so by Zorn’s lemma, there exists a maximal extension
α′ : M ′ //E and we will show that M ′ = N . Assume that there exists an element
n ∈ N \M ′. The set J = {a ∈ A | an ∈M ′} is an ideal in A. Therefore, the map

J
n // M ′ α′ // E

extends to a map f : A //E. Let M ′′ = M ′ + An ⊆ N and define α′′ : M ′′ //E by

α′′(m′ + an) = α′(m′) + f(a).

Since α′(an) = f(a) for an ∈ M ′ ∩ An, α′′ is well-defined and extends α′. Therefore,
M ′ = N . �

Notation. We will write ModA for the category of A-modules and modA for its sub-
category of finitely generated A-modules.
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Remark 9.3. Since every free module is projective, the category of A-modules has enough
projectives meaning that for every module M there exists a projective module P sur-
jecting onto M . This implies that any module has a projective resolution, that is, there
exists an exact sequence

. . . // Pi // Pi−1
// . . . // P0

// M // 0,

where every Pk is projective.
Indeed, take any surjection P = P0

//M and its kernel K. Now take a projective
module P1 surjecting onto K and consider the sequence P1

//P0
//M , where the first

map is the composition of the surjection P1
//K and the inclusion K //P0. Clearly,

this sequence is exact and we can continue this process inductively.

Dually, we say that ModA has enough injectives if every module embeds into an
injective module. If this holds, then every module has an injective resolution defined in
the obvious way. It is a fact that ModA does have enough injectives.

We also need to recall derived functors in a special case. Firstly, recall that a sequence
of A-modules

. . . // M i−1 di−1
// M i di // M i+1 // . . .

is a complex if di ◦ di−1 = 0 for all i. The i-th cohomology of the above complex M• is
H i(M•) := ker(di)/ im(di−1).

Now let M be an A-module and let F : ModA //ModA be the functor Hom(M,−).
For any module N , take an injective resolution of N , written as N //E•. The i-th Ext-
group Exti(M,N) is the module H i(Hom(M,E•)), that is, we take the i-th cohomology
of the complex with objects Hom(M,Ek).

It is a fact that this definition does not depend on the injective resolution chosen
and that Ext0(M,N) = Hom(M,N). Another fact is that the Ext-groups can also
be computed by taking a projective resolution P• of M and taking cohomology of the
complex Hom(P•, N).

Another fact is that if 0 //N ′ //N //N ′′ // 0 is a short exact sequence, we get a
long exact sequence

0 //Hom(M,N ′) //Hom(M,N) //Hom(M,N ′′) //Ext1(M,N ′) // . . .

Similarly, if 0 //M ′ //M //M ′′ // 0 is a short exact sequence, we get a long exact
sequence

0 //Hom(M ′′, N) //Hom(M,N) //Hom(M ′, N) //Ext1(M ′′, N) // . . .

A similar thing can be done for the tensor product functor G(−) = M ⊗ − which is
right exact. Namely, take a projective resolution P• of any module N and define the i-th
Tor-group Tori(N,M) as the i-th cohomology of the complex with objects M ⊗ Pk.

Once again, it can be checked that we get the same result by taking a projective
resolution of M and taking cohomology after we tensor this resolution with N . In fact,
one can reduce to taking flat resolutions. Note that this is indeed a reduction since every
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projective module is flat (use that a projective module is a direct summand of a free
module and the latter is of course flat).

In this case, we also get a long exact sequence involving the Tor-groups starting from
a short exact sequence.

9.2. Global dimension.

Definition. Let M be an A-module.

(1) The projective dimension pdim(M) of M is the minimum integer n, if it exists,
such that there exists a projective resolution of M of length n

0 // Pn // . . . // P0
// M // 0.

(2) The injective dimension idim(M) of M is the minimum integer n, if it exists,
such that there exists an injective resolution of M of length n

0 // M // E0 // . . . // En // 0.

In both cases, we set the respective dimension to be ∞ if no n exists.

Lemma 9.4. The following statements are equivalent for an A-module M .

i) pdim(M) ≤ d.
ii) Extk(M,N) = 0 for k > d and all modules N .

iii) Extd+1(M,N) = 0 for all modules N .
iv) If

0 // Sd // Pd−1
// . . . // P0

// M // 0

is any resolution with all the Pi projective, then the so-called syzygy Sd (the kernel
of the map Pd−1

//Pd−2) is also projective.

Proof. We know that Ext∗(M,N) can be computed by using a projective resolution of M ,
hence iv)⇒i)⇒ii)⇒ii). By dimension shifting (Exercise 2 on Sheet 12), Extd+1(M,N) '
Ext1(Sd, N) and Sd is projective if any only if Ext1(Sd, N) ' 0, hence iii) implies iv). �

The same arguments also prove

Lemma 9.5. The following statements are equivalent for an A-module N .

i) idim(N) ≤ d.
ii) Extk(M,N) = 0 for k > d and all modules M .

iii) Extd+1(M,N) = 0 for all modules M .
iv) If

0 // N // E0 // . . . // Ed−1 // Sd // 0

is any resolution with all the Ei injective, then the so-called syzygy Sd (the cok-
ernel of the map Ed−2 //Ed−1 is also injective.

�
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Lemma 9.6. A module M is injective if and only if Ext1(A/I,M) = 0 for all ideals I
of A.

Proof. Applying Hom(−,M) to the exact sequence

0 // I // A // A/I // 0

we get

Hom(A,M) // Hom(I,M) // Ext1(A/I,M) // 0.

By Baer’s criterion, M is injective if and only if the first map is surjective, that is, if and
only if Ext1(A/I,M) = 0. �

Theorem 9.7. Let A be a ring. The following numbers are equal:

(1) sup{idim(M) |M ∈ Mod(A)}.
(2) sup{pdim(M) |M ∈ Mod(A)}.
(3) sup{pdim(A/I) | I ⊆ A ideal}.
(4) sup{d : Extd(M,N) 6= 0 for some M,N ∈ Mod(A)}.

This number is called the global dimension of A and denoted by gdim(A).

Proof. Lemmas 9.4 and 9.5 show that the numbers in (1), (2) and (4) are equal. Obvi-
ously, the number in (2) is at least the number in (3). So, assume that d = sup{pdim(A/I) | I ⊆
A ideal} < ∞ and that there exists a module M such that idim(M) > d. Choose an
injective resolution

0 // M // E0 // . . . // Ed−1 // N // 0

with all Ei injective. By dimension shifting we have, for any ideal I of A and by definition
of d,

Ext1(A/I,N) ' Extd+1(A/I,M) ' 0.

By the previous lemma, N is injective, hence idim(M) = d, a contradiction. Therefore,
the numbers in (2) and (3) also coincide and the theorem is proved. �

Our next goal will be to relate the global dimension to the other notions of dimension
we had before. This will take a lot of preparation.

Proposition 9.8. Let x be a non zero-divisor in a ring A. If M 6= 0 is an A/x-module
such that pdimA/x(M) <∞, then

pdimA(M) = 1 + pdimA/x(M).

Proof. Since M is an A/x-module, we have xM = 0, so M cannot be a projective A-
module. Indeed, otherwise M ⊕N ' F would be a free module; but multiplication with
x is injective on F , while M is in the kernel of this map, a contradiction. Therefore,
pdimA(M) ≥ 1. Note that pdimA(A/x) = 1, since

0 // A
·x // A // A/x // 0
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is a projective resolution. If pdimA/x(M) = 0, so M is a projective A/x-module, then
M is a direct summand of a free A/x-module, hence pdimA(M) = pdimA(A/x) = 1.

Assume that pdimA/x(M) ≥ 1 and consider an exact sequence

0 //N //P //M // 0

with P a projective A/x-module. By dimension shifting, pdimA/x(M) = pdimA/x(N)+1.
By induction on projective dimension, the proposition holds for N , hence pdimA(N) =
1+pdimA/x(N) ≥ 1. Considering the above sequence as a sequence of A-modules, we note
that pdimA(P ) = 1. There are two possibilities: either, a) pdimA(M) = pdimA(N) + 1
and we are done, or b) 1 = pdimA(P ) = sup{pdimA(N), pdimA(M)}. We will exclude
the latter possibility.

Let F be a free A-module surjecting onto M and K be the kernel of the surjection, so
we have an exact sequence

0 //K //F //M // 0.

If pdimA(M) = 1, then K has to be projective. Tensoring this sequence with A/xA =
A/x yields

0 //TorA1 (M,A/x) //K/xK //F/xF //M // 0.

If pdimA/x(M) ≥ 2, then TorA1 (M,A/x) has to be a projective A/x-module, because the
modules K/xK and F/xF are of course projective over A/x. But, as can be easily seen
from the definition of Tor by resolving A/x, we have

TorA1 (M,A/x) ' {m ∈M | xm = 0} 'M,

hence pdimA/x(M) = 0, a contradiction, since we have seen above that M is not a
projective A/x-module. Therefore, pdimA(M) 6= 1, we excluded b) above and the proof
is complete. �

Example 9.9. The conclusion of the theorem fails if pdimA/x(M) =∞, but pdimA(M) <
∞. For instance, pdimZ(Z/2Z) = 1, since

0 // Z ·2 // Z // Z/2Z // 0

is a projective resolution of length 1.
On the other hand, pdimZ/4Z(Z/2Z) =∞, since

. . . // Z/4Z ·2 // Z/4Z ·2 // Z/4Z // Z/2Z // 0

is a projective resolution of infinite length and one can easily check that no syzygy (that
is, Z/2Z) of this resolution is projective.

Proposition 9.10. Let x be a non zero-divisor in a ring A. If M is an A-module and
x is a non zero-divisor on M , then pdimA(M) ≥ pdimA/x(M/xM).
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Proof. Clearly, there is nothing to prove if pdimA(M) = ∞, so let us assume that
pdimA(M) = n. We will use induction on n. If M is a projective A-module, then
M/xM is a projective A/xA-module, so the result is true for n = 0. If pdimA(M) 6= 0,
consider an exact sequence

0 //K //F //M // 0,

where F is a free module and K is the kernel of the surjection F //M . By dimension
shifting, pdimA(K) = n− 1 and by induction

pdimA/x(K/xK) ≤ n− 1.

Tensoring the above sequence with A/x yields

0 //TorA1 (M,A/x) //K/xK //F/xF //M/xM // 0.

Since TorA1 (M,A/x) ' 0, either M/xM is projective or we have

pdimA/x(M/xM) = 1 + pdimA/x(K/xK) ≤ 1 + (n− 1) = pdimA(M).

�

Corollary 9.11. Let A be a ring, A[X] the polynomial ring over A, M be an A-module
and M [X] be the A[X]-module M ⊗A A[X]. Then

pdimA[X](M [X]) = pdimA(M).

Proof. Note that X is a non zero-divisor on M [X], that A[X]/X ' A and M [X]/X 'M ,
hence pdimA[X](M [X]) ≥ pdimA(M) by the previous proposition.

On the other hand, take any projective resolution P• //M over A and note that
A[X] ⊗ P• //M [X] is a projective resolution of M [X], because Hom(A[X] ⊗ N,−) '
Hom(A[X],Hom(N,−)) for any A-module N and A[X] is a free A-module. Therefore,

pdimA[X](M [X]) ≤ pdimA(M)

as well and the corollary is proved. �

Proposition 9.12. If A is a ring, then gdim(A[X1, . . . , Xr]) = n+ gdim(A).

Proof. By induction over r, we are reduced to prove the claim for A[X]. Of course,
if gdim(A) = ∞, then gdim(A[X]) = ∞ by the previous corollary, so assume that
gdim(A) = n <∞. By Proposition 9.8, gdim(A[X]) ≥ 1 + gdim(A) = 1 + n.

To prove the other inequality, consider any A[X]-module M . Of course, M can be
considered as an A-module, which we will write as MA. Let

β : A[X]⊗AMA
//A[X]⊗AMA, t⊗m � // t(X ⊗m− 1⊗Xm),

where t ∈ A[X] and m ∈ M , and let µ : A[X] ⊗A MA
//M be the multiplication map.

Note that every nonzero element f ∈ A[X]⊗MA can be written as

f = Xk ⊗mk + . . .+X ⊗m1 + 1⊗m0,
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where mi ∈ M and mk 6= 0. This implies that β is injective, since the leading term of
β(f) = Xk+1 ⊗mk. It is also clear that µ ◦ β = 0. Hence, to see that the sequence

(∗) 0 // A[X]⊗AMA
β // A[X]⊗AMA

µ // M // 0

is exact, we need to show that if f ∈ ker(µ), then f ∈ im(β). We will do this by induction
on k, the degree of f . The case k = 0 is trivial, since µ(1 ⊗ f) = f . If k > 0, then
µ(f) = µ(g), where g = f − β(Xk−1 ⊗mk). Since deg(g) < deg(f), if f ∈ ker(µ), then
g ∈ ker(µ), so g = β(h) for some h and therefore, f = β(h + Xk−1 ⊗ mk). We thus
proved that (∗) is exact, which yields

pdimA[X](M) ≤ 1 + pdimA[X](A[X]⊗AMA) = 1 + pdimA(MA) ≤ 1 + n.

Since M was arbitrary, we conclude that gdim(A[X]) ≤ 1 + n. �

Lemma 9.13. If A is a commutative Noetherian local ring, M a finitely generated A-
module and if x ∈ m is a non zero-divisor on both A and M , the following holds: If
M/xM is a free A/x-module, then M is a free A-module.

Proof. Choose elementsm1, . . . ,mn mapping onto a basis ofM/xM . Since (m1, . . . ,mn)A+
xM = M , Nakayama’s lemma shows that M = (m1, . . . ,mn)A, hence we have a gener-
ating set.

Now suppose that
∑

i aimi = 0 for some ai ∈ A. Since the images of the mi give a
basis of M/xM , we have ai ∈ xA for all i. By assumption on x, we can divide to get
ai/x ∈ A such that

∑
i(ai/x)mi = 0. We can continue this process to get a sequence

of elements ai, ai/x, ai/x
2, . . . and this sequence generates a strictly ascending chain of

ideals of A. Since A is Noetherian, we have ai = 0 for all i. �

Proposition 9.14. If A is a Noetherian local ring with maximal ideal m, M is a finitely
generated A-module and x ∈ m is a non zero-divisor on both A and M , then pdimA(M) =
pdimA/x(M/xM).

Proof. Proposition 9.10 gives the inequality ≥. We will prove equality by induction on
n = pdimA/x(M/xM). If n = 0, then M/xM is projective, hence free by Proposition
9.1. By the previous lemma, M is also free, hence projective. Therefore, the claim holds
when n = 0.

Assume now that n > 0. Consider an exact sequence

0 //K //F //M // 0

with F a free module and K the kernel of the map F //M . As before, TorA1 (M,A/x) '
0, so we can tensor this sequence with A/x to get

0 //K/xK //F/xF //M/xM // 0.

As F/xF is free, pdimA/x(K/xK) = n−1. Since A is Noetherian, K is finitely generated,
so, by induction, pdimA(K) = n− 1. This implies that pdimA(M) = n. �
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Corollary 9.15. Let A be a commutative Noetherian local ring, M be a finitely generated
A-module with pdimA(M) <∞. If x ∈ m is a non zero-divisor on both A and M , then
pdimA(M/xM) = 1 + pdimA(M).

Proof. Proposition 9.8 gives pdimA(M/xM) = 1 + pdimA/x(M/xM) and the previous
proposition gives pdimA(M) = pdimA/x(M/xM). �

Remark 9.16. One can show that Propositions 9.8, 9.10 and 9.14 hold with pdim substi-
tuted by idim.

9.3. Regular sequences, global dimension and regular rings.

Definition. Let A be a Noetherian local ring and M be a finitely generated A-module.
A regular sequence on M , or an M-sequence, is a sequence (x1, . . . , xn) of elements in the
maximal ideal m such that x1 is a non zero-divisor on M and each xi is a non zero-divisor
on M/(x1, . . . , xi−1)M for i > 1. The depth depth(M) of M is the length of the longest
regular sequence on M . In particular, the depth of A is defined.

Remark 9.17. For any local Noetherian ring A we have depth(A) ≤ dim(A). Indeed,
recall that the set of zero-divisors is the union of the associated primes ofA by Proposition
6.33. By Proposition 6.39, every minimal prime of A is associated, hence any non zero-
divisor is not contained in the union of the minimal primes of A. Induction then gives
0 ≤ dim(A/xA) = dim(A)− n, where x = (x1, . . . , xn) is a regular sequence.

Here is one simple result concerning regular sequences.

Proposition 9.18. Let A be a local Noetherian ring, M be an A-module and x1, . . . , xn
be elements in m. For any i < n, the following statements are equivalent.

(1) x1, . . . , xn is a regular sequence on M .
(2) x1, . . . , xi is a regular sequence on M and xi+1, . . . , xn is a regular sequence on

M/(x1, . . . , xi)M .

Proof. This follows from the easily proved fact that if I and J are ideals in any ring A
and N is any A-module, then N ′/JN ′ ' N/(I + J)N , where N ′ = N/IN . �

Another simple statement is

Proposition 9.19. If (x1, . . . , xn) is a regular sequence on M , then the chain of ideals
(x1), (x1, x2), . . . is strictly ascending.

Proof. Assume the converse, so there exists an i such that (x1, . . . , xi) = (x1, . . . , xi+1).
This implies xi+1 ∈ (x1, . . . , xi), hence xi+1 is a zero-divisor on M/(x1, . . . , xi)M , a
contradiction. �

In view of Remark 9.17, the following definition is reasonable.

Definition. A local Noetherian ring A is called Cohen-Macaulay if depth(A) = dim(A).
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Example 9.20. Every zero-dimensional local Noetherian ring A is Cohen-Macaulay, but
by Proposition 8.31 A is not regular unless it is a field.

Unless the maximal ideal consists entirely of zero-divisors, any 1-dimensional local
Noetherian ring A is Cohen-Macaulay. However, A is regular only if A is a discrete
valuation ring. For example, k[[x2, x3]] is Cohen-Macaulay but not regular.

Convention. Until the end of this section we will always assume that our rings are
Noetherian.

Proposition 9.21. Any regular local ring A is Cohen-Macaulay and any set of elements
x1, . . . , xd ∈ m mapping to a basis of m/m2 is an A-sequence.

Proof. We already know that depth(A) ≤ dim(A). If x1 ∈ A is not a zero-divisor on A,
it suffices to prove that x2, . . . , xd form a regular sequence on A/x1A. This follows by
induction on d and Proposition 9.18. �

For the following result we recall some of the facts proved before. If every element in
the maximal ideal m of a local ring A is a zero-divisor on a finitely generated A-module
M , then m = Ann(m) for some 0 6= m ∈M . Indeed, by Proposition 6.33 the zero-divisors
of M coincide with the union of all primes associated with M , hence m is contained in
this union and, therefore, has to be one of the associated primes by Proposition 2.21i).
If this is the case, then k = A/m ' Am ⊆ M . In particular, if depth(M) = 0 (so every
element of m is a zero-divisor on M), then HomA(k,M) 6= 0.

If depth(M) 6= 0 and depth(A) 6= 0, then some element of m \m2 must be a non zero-
divisor on both A and M . First of all, note that if p1, . . . , pi are the associated primes
of A and q1, . . . , qj are the associated primes of M , then the assumptions give that m (
p1∪· · ·∪pi and m ( q1∪· · ·∪qj, hence by prime avoidance m ( p1∪· · ·∪pi∪q1∪· · ·∪qj.
Hence, there exists an element x ∈ m which is a non zero-divisor on both A and M . One
can then argue that we can achieve that x ∈ m \m2.

Furthermore, recall that if x ∈ m is a non zero-divisor onA, then dim(A/x) = dim(A)−
1 by Corollary 8.28.

Theorem 9.22. If A is a local ring and M is a non-zero finitely generated A-module,
then every maximal M-sequence has the same length depth(M). Moreover, depth(M) is
the smallest n such that ExtnA(k,M) 6= 0, where k = A/m.

Proof. We will use induction on the length n of a maximal M -sequence.
We have already argued that if depth(M) = 0, then HomA(k,M) 6= 0. Conversely, if

HomA(k,M) 6= 0, then for some 0 6= m ∈ M we have Am ' k, hence xm = 0 for all
x ∈ m. Therefore, depth(M) = 0 in this case.

Now assume n ≥ 1 and x1, . . . , xn is a maximal M -sequence. Since x = x1 is a non
zero-divisor on M , the sequence

0 // M
·x // M // M/xM // 0
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is exact and x2, . . . , xn is a maximal regular sequence on M/xM . Applying Hom(k,−)
to the above exact sequence, we get

. . . // Exti−1(k,M)
·x // Exti−1(k,M) // Exti−1(k,M/xM) //

// Exti(k,M)
·x // Exti(k,M) // . . .

Since xk = 0, Exti(k,M) is a module over A/xA and the first and last maps in the
previous exact sequence are zero. By induction, Exti(k,M) = 0 for 0 ≤ i < n and
Extn(k,M) 6= 0. �

Lemma 9.23. Let (A,m) be a local Noetherian ring, p 6= m be a prime ideal and let M
be a finitely generated A-module. If Exti+1(A/q,M) = 0 for every prime ideal q properly
contaning p, then Exti(A/p,M) = 0.

Proof. Let x ∈ m \ p and write B = A/p. Note that x is not a zero-divisor on B and we
have an exact sequence

0 // B
·x // B // B/xB // 0

which induces

(∗) Exti(B,M)
·x // Exti(B,M) // Exti+1(B/xB,M).

Note that B/xB is a finitely generated A-module, so applying Proposition 6.35(1) we
see that this module admits a filtration with quotients of the form A/q with q properly
contaning p. It follows that the last term in (∗) vanishes, so the first map is surjective.
Since M is finitely generated, Nakayama’s lemma implies that Exti(B,M) = 0. �

Proposition 9.24. If A is a local ring and M a finitely generated A-module, then

idim(M) ≤ d⇐⇒ ExtnA(k,M) = 0 ∀n > d.

Hence, the injective dimension of a module M is the largest integer n such that Extn(k,M) 6=
0.

Proof. Only one direction needs a proof. So assume that ExtnA(k,M) = 0 ∀n > d and
let p be any prime ideal. If p = m, there is nothing to prove. Otherwise, p is strictly
contained in m. If m is the only prime ideal containing p, then Exti(A/p,M) = 0 for
appropriate i by the previous lemma. If there is a prime ideal q strictly containing p and
strictly contained in m, then Exti(A/q,M) = 0 by the previous lemma and induction
on l = height(m) − height(q). Hence, Exti(A/p,M) = 0 for all prime ideals p and all
i ≥ d. Using Proposition 6.35(1) again, this implies that Exti(N,M) = 0 for any finitely
generated A-module N , which is enough to conclude that idim(M) ≤ d. �

Definition. A local ring A is called Gorenstein if idimA(A) <∞.
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Theorem 9.25. Any Gorenstein ring A is Cohen-Macaulay and

depth(A) = idimA(A) = dim(A).

In particular,
Extq(k,A) 6= 0⇐⇒ q = dim(A),

since depth(A) is the smallest q such that the Ext-group does not vanish and idim(A)
the largest q.

Proof. Theorem 9.22 shows that depth(A) is the smallest q such that ExtqA(k,A) 6= 0.
Combined with the previous proposition this shows that depth(A) ≤ idim(A).

Suppose that depth(A) = 0 but idim(A) 6= 0. For each a ∈ A and n ≥ 0 we have an
exact sequence

Extn(A,A) // Extn(aA,A) // Extn+1(A/aA,A)

Note that the left term is zero, since A is free. For n = idim(A) > 0, the right term
is also zero, so Extn(aA,A) = 0 as well. But choosing a such that aA = k shows that
Extn(k,A) 6= 0. Therefore, if depth(A) = 0, then also idim(A) = 0.

Now assume that depth(A) = d > 0. Choose a non zero-divisor x ∈ m and set
B = A/xA. By the injective dimension version of Proposition 9.14 we have idimB(B) =
idimA(A) − 1, hence B is still Gorenstein. By induction, B is Cohen-Macaulay and
depth(B) = idimB(B) = dim(B) = dim(A) − 1. Therefore, idimA(A) = dim(A). If
x2, . . . , xd are elements of m mapping onto a maximal B-sequence in mB, then x1, . . . , xd
form a maximal A-sequence, hence depth(A) = depth(B) + 1 = dim(A). �

Remark 9.26. If M is a module over an arbitrary ring, then, substituting projective
resolutions by flat resolutions leads to the notion of flat dimension of M , denoted by
fdim(M). Since every projective module is flat, we have fdim(M) ≤ pdim(M). Further-
more, it is easy to see that fdim(M) ≤ d if and only if Tord+1(M,N) = 0 for all modules
N . Since Tor is symmetric, the last condition is equivalent to Tord+1(N,M) = 0.

Proposition 9.27. If A is local with residue field k and M is a finitely generated A-
module, then for every integer d we have

pdim(M) ≤ d⇐⇒ Tord+1(M,k) = 0.

In particular, pdim(M) is the largest d such that Tord(A, k) 6= 0.

Proof. Since fdim(M) ≤ pdim(M), the implication “⇒” is clear by the previous remark.
We will prove the converse by induction on d. By Nakayama’s lemma, the module M

can be generated by n = dimk(M/mM) elements, so let {m1, . . . ,mn} be a minimal set
of generators. Consider the surjection

ε : An //M, (a1, . . . , an) � //
∑
i

aimi

and its kernel K = ker(ε). If d = 0, then Tor1(M,k) = 0, so we get an exact sequence

0 // K ⊗ k // Am ⊗ k // M ⊗ k // 0.
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Note that K ⊗ k ' K ⊗ A/m ' K/mK, Am ⊗ k ' kn and M ⊗ k ' M/mM . By
construction, the map Am //M⊗k is just ε⊗k and an isomorphism, henceK/mK = 0, so
K = 0 by Nakayama’s lemma and thus M ' An is free and, in particular, pdim(M) = 0.

The inductive step is relatively easy. Namely, if d > 0, then

Tord+1(M,k) = Tord(K, k)

and pdim(M) ≤ 1 + pdim(K). �

Corollary 9.28. If A is a local ring, then gdim(A) = pdimA(A/m).

Proof. By the proposition, pdim(A/I) ≤ fdim(A/m) for any ideal I, hence

pdim(A/m) ≤ gdim(A) = sup{pdim(A/I)} ≤ fdim(A/m)

≤ pdim(A/m).

�

Corollary 9.29. If A is a local ring and x ∈ m is a non zero-divisor on A, then either
gdim(A/x) =∞ or gdim(A) = 1 + gdim(A/x).

Proof. Set B = A/x, note that B is still local and assume gdim(B) = d is finite. Applying
Proposition 9.8 with M = k = A/m, we get

gdim(A) = pdimA(k) = 1 + pdimB(k) = 1 + gdim(B) = 1 + d.

�

Lemma 9.30. If A is local and depth(A) = 0, then for any finitely generated A-module
M we have either pdim(M) = 0 or pdim(M) =∞.

Proof. Assume for the converse that 0 < pdim(M) < ∞. In this case an appropriate
syzygy N of M will be finitely generated (as a submodule of a finitely generated module)
and have pdim(N) = 1 (by dimension shifting). Using Nakayama’s lemma we see that N
can be generated by n = dimk(N/mN) elements, so choose a minimal set of generators
{u1, . . . , un} of N . As before, let ε : An //N be the natural projection and consider its
kernel P . By dimension shifting, pdim(P ) = 0, so P is projective. Since An/mAn ' kn '
N/mN by assumption, we have P ⊆ mAn. Choosing any a ∈ A such that m = Ann(a)
shows that aP = 0. But P is projective over a local ring, hence free by Proposition 9.1,
so a = 0, a contradiction. �

Theorem 9.31 (Auslander-Buchsbaum formula). Let A be a local ring and M be a
finitely generated A-module. If pdim(M) <∞, then depth(A) = depth(M) + pdim(M).

Proof. If depth(A) = 0 and pdim(M) <∞, then M is projective by the previous lemma,
hence free, so M ' An. In particular, pdim(M) = 0 and depth(A) = depth(M).

Now suppose depth(A) 6= 0 but depth(M) = 0. The latter statement implies that
every element of m is a zero-divisor on M , hence m is an associated prime of M . Choose
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x ∈ m and 0 6= m ∈ M such that x is not a zero-divisor on A and m = Ann(m). As
before, resolve M

0 // K // An
ε // M // 0

and choose an element u ∈ An with ε(u) = m. It follows that um ⊆ K, hence xu ∈ K
and m(xu) ⊆ xK. However, since u /∈ K, xu /∈ xK, because otherwise xu = xl for
some l ∈ K, hence x(u − l) = 0, but x is not a zero-divisor on An. Given any y ∈ m,
the multiplication by y on K/xK is not injective (so y is a zero-divisor on K), because
yxu = 0 but xu 6= 0 ∈ K/xK. To put it differently, depth(K/xK) = 0. Since K is a
submodule of the free module An, x is still not a zero-divisor on K. As by assumption
0 < depth(A) 6= depth(M) = 0, so M is not free, Proposition 9.14 gives

pdimA/x(K/xK) = pdimA(K) = pdimA(M)− 1.

Using that depth(A/x) = depth(A)− 1, induction on depth(A) gives

depth(A) = depth(A/x) + 1 = 1 + depth(K/xK) + pdimA/x(K/xK)

= 1 + 0 + pdimA(M)− 1 = pdimA(M).

From now on we assume that the statement holds for any depth of A.
Next, consider the case depth(A) 6= 0, depth(M) 6= 0. Pick x ∈ m which is not a

zero-divisor on both A and M . Considering a maximal M -sequence starting with x, we
have depth(M/xM) = depth(M)− 1. Induction on depth(M) and Corollary 9.15 give

depth(A) = depth(M/xM) + pdimA(M/xM)

= (depth(M)− 1) + (1 + pdimA(M))

= depth(M) + pdimA(M).

�

We now come to the main result of this section.

Theorem 9.32. A local ring A is regular if and only if gdim(A) <∞. In this case

depth(A) = dim(A) = gdim(A) = pdimA(k) = dimk(m/m
2),

where k = A/m. In particular, any regular ring is Gorenstein.

Proof. First of all note that the third equality holds for any local ring by Corollary 9.28,
that A is regular if and only if dim(A) = dimk(m/m

2) and the regularity of A also implies
that depth(A) = dim(A) by Proposition 9.21.

Suppose that A is regular. We will perform induction on the dimension of A. If
dim(A) = 0, then A is a field, hence gdim(A) = 0 as claimed.

If dim(A) = d > 0, choose an A-sequence x1, . . . , xd generating the maximal ideal
m and set B = A/x1. Then x2, . . . , xd is a B-sequence generating the maximal ideal
m′ of B, hence B is regular of dimension d − 1. We have gdim(A) = pdimA(k) and
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gdim(B) = pdimB(B/m′) = pdimB(k). By Proposition 9.8, pdimB(k) + 1 = pdimA(k),
so by induction on d, we have

gdim(A) = 1 + gdim(B) = 1 + (d− 1) = d.

Thus, if A is regular, then dim(A) = gdim(A) <∞.
In the other direction we will also use induction, this time on the global dimension of

A. If gdim(A) = 0, then every module over A is projective, hence free, so A must be a
field, so it is regular of dimension 0.

If 0 < gdim(A) <∞, then Lemma 9.30 tells us that depth(A) 6= 0, hence m contains
a non zero-divisor x. We can assume that x = x1 /∈ m2. Our strategy to establishing the
regularity of A is to prove that B = A/x is regular. Indeed, dim(B) = dim(A) − 1, so
the maximal ideal mB of B is generated by a B-sequence y2, . . . , yd and lifting the yi to
elements xi ∈ m gives an A-sequence x1, . . . , xd generating m, proving that A is regular.

Applying Proposition 9.14 with A = B and M = m (here we use that x /∈ m2) we get

pdimB(m/xm) = pdimA(m) = pdimA(k)− 1 = gdim(A)− 1,

where the second equality stems from the exact sequence

0 //m //A //A/m = k // 0

and the third is Corollary 9.28.
Clearly, the image of m/xm in B is the maximal ideal m′ = m/Ax of B, so we have

exact sequences
0 //Ax/xm //m/xm //m′ // 0

and
0 //m′ //B // k // 0.

By definition and symmetry of Tor,

Ax/xm ' TorA1 (A/x, k) ' TorA1 (k,A/x) ' {a ∈ k | xa = 0} = k.

Furthermore, the image of x in Ax/xm is not zero. We will show that m/xm ' m′ ⊕ k
as B-modules, which will give

gdim(B) = pdimB(k) ≤ pdimB(m/xm) = gdim(A)− 1,

hence by induction on the global dimension we can then conclude that B is regular.
So we only need to show that m/xm ' m′ ⊕ k as B-modules. Set r = dimk(m/m

2)
and choose elements x2, . . . , xr in m such that the images of x = x1, . . . , xr give a basis
of m/m2. Set I = (x2, . . . , xr)A+xm and note that I/xm ⊆ m/xm maps onto mB = m′.
Since we have seen above that the kernel Ax/xm of the map m/xm //m′ = mB is
isomorphic to k and contains x /∈ I, it follows that

(xA/xm) ∩ (I/xm) = 0.

Thus, I/xm ' mB and k ⊕mB ' m/xm finishing the proof of the theorem. �

Corollary 9.33. If A is a regular local ring, and p ∈ Spec(A), then Ap is a regular local
ring.
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Proof. We will show that if S is any multiplicatively closed subset of A, then S−1A has
finite global dimension. To see this, let M be any S−1A-module. Considering M as
an A-module, we can choose a projective resolution P• //M which is of finite length
bounded by gdim(A). Note that if P is a projective A-module, then S−1P is a projective
S−1A-module (use that a projective module is the direct summand of a free module).
Since S−1A is flat over A, and S−1M = M , the localised sequence S−1P• //M is a
projective resolution of M of finite length. �

Example 9.34. We have seen that any regular ring is Gorenstein and any Gorenstein
ring is Cohen-Macaulay. These implications are strict. For example, it can be shown
with Baer’s criterion that A = C[X]/(X2) is a Gorenstein ring, but it is clearly not
regular. To show that the other inclusion is also strict, we first need to recall that for a
Gorenstein ring we have

Extq(k,A) =

{
0 q 6= dim(A)

6= 0 q = dim(A).

In fact, in this case Extdim(A)(k,A) ' k. Let us prove the last statement by induction on
idim(A). If idim(A) = depth(A) = 0, then m is an associated prime, hence m = Ann(x)
for some 0 6= x ∈ A, so there exists an injection A/m = k //A. Since A is injective,
any map k //A can be lifted to a map from A to A, so there is a surjection A =
Hom(A,A) //Hom(k,A). Hence, the latter module can be generated by one element
and since we already know that it is non-trivial, it is isomorphic to k. Now, A is injective,
so all the higher Ext-groups vanish in this case. To conclude the proof, we use induction.
Let y be a non zero-divisor on A and set B = A/y. Then dim(B) = dim(A)− 1. A part
of the long exact Ext-sequence of the exact sequence

0 // A
·y // A // B // 0

then reads

Exti(k,A) //Exti(k,A) //Exti(k,B) //Exti+1(k,A) // . . .

and induction gives the claim.
Now, to see that there are Cohen-Macaulay rings which are not Gorenstein, one can

consider, for example, A = C[X, Y ]/(X2, Y 2, XY ). Note that this is a 0-dimensional
local ring, hence Cohen-Macaulay. However, it is not Gorenstein by the above criterion,
since mapping 1 to X or to Y gives a two-dimensional space of A-linear maps from C to
A. One can also check that A does not satisfy Baer’s criterion (take I = (X, Y ) and the
map I //A given by sending X to Y and Y to X; this map cannot be lifted), hence is
not injective.

10. Differentials

10.1. Construction and some properties.
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Definition. Let B be a ring and M be a B-module. A derivation is a map of abelian
groups d : B //M which satisfies the Leibniz rule

d(ab) = d(a)b+ ad(b)

for all a, b ∈ B.
If B is an algebra over a ring A, then we say that the derivation d is A-linear if d is a

map of A-modules.
The set DerA(B,M) of all A-linear derivations B //M is a B-module with scalar

multiplication defined by

bd : a � // b(d(a)).

Example 10.1. Let B = k[x, y]. The partial derivative d = ∂/∂x is a derivation from
B to itself. Obviously, d is k-linear, but, in fact, it is even k[y]-linear.

Remark 10.2. If d : B //M is a derivation, then d(1) = 0, since d(1 · 1) = d(1)1 + 1d(1).
In particular, d is A-linear if and only if da = 0 for all a ∈ A. Indeed, if d is A-

linear, then da = d(a · 1) = ad(1) = 0. Conversely, if da = 0 for all a ∈ A, then
d(ab) = d(a)b+ ad(b) = ad(b), so d is A-linear.

Definition. Let B be an A-algebra. The module of Kähler differentials of B over A,
denoted by ΩB/A, is the B-module generated by {d(b) | b ∈ B} subject to the following
relations

d(bb′) = d(b)b′ + d(b′)b

d(ab+ a′b′) = ad(b) + a′d(b′),

where a, a′ ∈ A and b, b′ ∈ B. The map d : B //ΩB/A, b � // db := d(b) is an A-linear
derivation, called the universal A-linear derivation.

Remark 10.3. Note that the second class of relations corresponds to A-linearity, or, by
Remark 10.2 to demanding that da = 0 for all a ∈ A.

Proposition 10.4. The pair (ΩB/A, d) defined above satisfies the following universal
property: For any B-module M and any A-linear derivation e : B //M , there is a
unique B-linear map e′ : ΩB/A

//M such that e = e′d, that is, the following diagram
is commutative

B
e //

d ""

M

ΩB/A.

e′

OO

Hence, DerA(B,M) ' HomA(ΩB/A,M).

Proof. We define e′(db) = e(b). This defines a B-linear map which completes the diagram
as desired. The rest of the proof proceeds along the same lines as in the case of the tensor
product and is therefore omitted. �
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Remark 10.5. The proposition says that ΩB/A “linearises” derivations, in the same sense
as the tensor product linearises bilinear maps.

Remark 10.6. If B is generated by the set {bi | i ∈ I} as an A-algebra, then ΩB/A is
generated by {dbi | i ∈ I} as a B-module. Indeed, any element b in B is a polynomial
in the bi with coefficients in A, so applying d and using the Leibniz rule allows us to
express db as a B-linear combination of the dbi (da = 0 for all a ∈ A). In particular, if
B is a finitely generated A-algebra, then ΩB/A is a finitely generated B-module.

Example 10.7. If B = A[x1, . . . , xr], then ΩB/A = ⊕ri=1Bd(xi). The previous remark
shows that Br surjects onto ΩB/A. On the other hand, the partial derivative ∂/∂xi is
an A-linear derivation from B to B, hence we get a map ∂i : ΩB/A

//B for all i and
∂i(dxj) = δij. In other words, the direct sum of the maps ∂i is a map from ΩB/A to Br

which is inverse to the above surjection.

Proposition 10.8. Let A //B //C be ring homomorphisms, then there is a right exact
sequence of C-modules

C ⊗B ΩB/A
//ΩC/A

//ΩC/B
// 0,

where the first map takes c⊗ db to cdb (we are being slightly sloppy here, since cdb really
means cdϕ(b), where ϕ : B //C is the given map) and the second map takes dc to dc.

Proof. Clearly, the second map is surjective since the generators of both modules are the
same, but in the right-hand module we factor out more relations, namely db = 0 for all
b ∈ B (use Remark 10.3). But these relations are precisely the images of the generators
1⊗ db of the module on the left. �

Note that if B //C is surjective, then ΩC/B = 0. The next result gives us more
information about this case.

Proposition 10.9. If π : B //C is an epimorphism of A-algebras and I = ker(π), then
there is an exact sequence, called the conormal sequence, of C-modules

I/I2 d // C ⊗B ΩB/A
Dπ // ΩC/A

// 0,

where the left hand map takes the class of f to 1⊗df and the right hand map maps c⊗db
to cdb.

Proof. We have the universal derivation B //ΩB/A and can consider its restriction
I //ΩB/A, which we will denote by d. If b ∈ B and x ∈ I, then

(∗) d(bx) = xd(b) + bd(x).

Note that the first summand on the right is in IΩB/A. Noting that B/I ' C and for any
B-module M we have M/IM ' B/I ⊗B M , we conclude that

ΩB/A/IΩB/A ' ΩB/A ⊗B C,
hence d induces a B-linear map I //ΩB/A/IΩB/A. By (∗), I2 gets mapped to 0 in
ΩB/A ⊗B C, hence we get a map of C-modules as claimed, yet again denoted by d.
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To understand the cokernel of this d, note that ΩB/A⊗BC is generated, as a C-module,
by elements of the form db ⊗ 1 for b ∈ B subject to the Leibniz rule and the relations
of A-linearity. On the other hand, the generators of ΩC/A are the same, satisfy these
relations as well, but in addition elements of the form df for f ∈ I are 0 in ΩC/A. This
shows that ΩC/A is the cokernel of d as claimed. �

Differentials behave well with respect to base change.

Proposition 10.10. Let A′ and B be A-algebras. There exists a commutative diagram
of the form

A′ ⊗A ΩB/A

'

��

A′ ⊗A B

1⊗d
55

d ))
Ω(A′⊗AB)/A′ .

Proof. By construction, d : B //ΩB/A is an A-linear derivation, hence 1 ⊗ d is an A′-
linear derivation, so the universal property gives us a map Ω(A′⊗AB)/A′

//A′ ⊗A ΩB/A

sending d(a′ ⊗ b) to a′ ⊗ d(b).
On the other hand, the map

B ' A⊗A B //A′ ⊗A B //Ω(A′⊗AB)/A′

is an A-linear derivation, hence we get a map ΩB/A
//Ω(A′⊗AB)/A′ sending db to d(1⊗ b).

Since the target is a module over A′ ⊗A B, this latter map induces an A′ ⊗A B-linear
map

A′ ⊗A ΩB/A
//Ω(A′⊗AB)/A′

sending a′⊗db to a′d(b) = d(a′⊗b), which is the inverse of the map constructed above. �

Our next goal is to study when the sequence in Proposition 10.9 is exact on the left.
For this we first need a

Lemma 10.11. Let ϕ : B //B′ be a morphism of A-algebras and let δ : B //B′ be a
map of abelian groups. If δ(B)2 = 0, then ϕ+ δ is a homomorphism of A-algebras if and
only if i) δ is A-linear and (∗) δ(b1b2) = ϕ(b1)δ(b2) + ϕ(b2)δ(b1).

Proof. By definition,

(ϕ+ δ)(b1b2) = ϕ(b1b2) + δ(b1b2),

while

(ϕ+ δ)(b1) · (ϕ+ δ)(b2) = ϕ(b1)ϕ(b2) + ϕ(b1)δ(b2)

+ δ(b1)ϕ(b2) + δ(b1)δ(b2).
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The last summand vanishes by our assumption. Therefore, the two expressions are equal
if and only if (∗) holds. Furthermore, since ϕ commutes with the structure maps from
A, ϕ+ δ does so iff δ(A) = 0 (equivalently, δ is A-linear), finishing the proof. �

Proposition 10.12. If π : B //C is an epimorphism of A-algebras with I = ker(π),
then in the sequence

I/I2 d // C ⊗B ΩB/A
Dπ // ΩC/A

// 0,

the left hand map is a split injection if and only if there is a map of A-algebras τ : C //B/I2

splitting the projection map B/I2 //B/I = C.

Proof. First we will reduce to the case I2 = 0. Considering the exact sequence of
Proposition 10.9 for B //B/I2, we conclude that Ω(B/I2)/A is obtained from ΩB/A by
factoring out I2ΩB/A and d(I2). Now, if x, y ∈ I, then d(xy) = xd(y) + yd(x) ∈ IΩB/A,
so d(I2) ⊆ IΩB/A and, therefore, C ⊗B Ω(B/I2)/A ' C ⊗B ΩB/A.

In the following we will write d′ : B //ΩB/A to avoid confusion.
First assume that d : I //C ⊗B ΩB/A is split by a map σ : C ⊗B ΩB/A

// I. Consider
the map

γ = π ⊗ id : ΩB/A = B ⊗B ΩB/A
//C ⊗B ΩB/A.

Going back to the definition of d we see that it is the restriction of γd′ to I. Set
δ = σγd′ : B // I. Since d′ is an A-linear derivation and σ, γ are A-linear, δ is an
A-linear derivation, hence we can apply the previous lemma with ϕ = id (note that
δ(B)2 = 0 since I2 = 0) to conclude that 1− δ : B //B is an A-algebra homomorphism.
If x ∈ I, then σd(x) = x, so δ(x) = σγd′(x) = σd(x) = x, so (1− δ)(I) = 0 and (1− δ)
induces an algebra homomorphism τ : C = B/I //B. By construction, πτ = idC .

Conversely, suppose τ : C //B is a map ofA-algebras splitting the morphism π : B //C.
The map δ = 1− τπ : B //B maps to the kernel of π (since πτ = id), hence δ(B) ⊆ I.
Since I2 = 0, the previous lemma shows that δ is an A-linear derivation from B to I.
By the universal property of ΩB/A, δ corresponds to a homomorphism σ′ : ΩB/A

// I.
Now I2 = 0, so this homomorphism factors through σ : C ⊗ ΩB/A

// I. If x ∈ I, then
σd(x) = σ′d′(x) = δ(x). But δ(x) = x− τπ(x) = x, hence σ splits d. �

To conclude this subsection, we will give a different description of differentials.

Theorem 10.13. Let B be an A-algebra, µ : B ⊗A B //B be the multiplication map
and let I = ker(µ). If e : B // I/I2 is the map defined by b � // 1 ⊗ b − b ⊗ 1, then there
is an isomorphism ϕ : ΩB/A

// I/I2 of B-modules such that ϕd = e, that is, the pairs
(ΩB/A, d) and (I/I2, e) are naturally isomorphic.

Proof. The first step is to show that e is a derivation. Consider the sequence

I/I2 // (B ⊗A B)/I2 //B // 0

and note that the maps B // (B ⊗A B)/I2 defined by b � // 1 ⊗ b and b � // b ⊗ 1 are
algebra maps splitting this sequence. By Lemma 10.11, the difference e of these two
algebra homomorphisms is a derivation.
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By the universal property of ΩB/A we get a unique map

ϕ : ΩB/A
// I/I2, ϕ(db) = 1⊗ b− b⊗ 1,

that is, ϕd = e. In the following we will understand the inverse of ϕ.
Consider the ring C which, by definition, is the direct sum of B and ΩB/A with

multiplication given by

(b, u) · (b′, u′) = (bb′, bu′ + b′u)

for b, b′ ∈ B and u, u′ ∈ ΩB/A.
Define

ψ1 : B //C, b � // (b, db) ∀b ∈ B
ψ2 : B //C, b � // (b, 0) ∀b ∈ B.

Clearly, ψ2 is a homomorphism of A-algebras. The same statement holds for ψ1, since d
is an A-linear derivation. Therefore, we get an A-algebra homomorphism

ψ : B ⊗A B //C, b⊗ b′ � // (bb′, bd(b′)).

Note that ψ(1⊗ b− b⊗ 1) = (0, db), so the restriction of ψ to I is the desired inverse of
ϕ. �

10.2. Connection to regularity. The purpose of this subsection is to establish a con-
nection between modules of differentials and regular rings (of course, this only works
in certain cases). We will have to assume some results, since their proofs need more
category theory than we want to use. The proofs can be found in Section 16 of [4].

Convention. In this subsection any field will be of characteristic zero.

The following statement is a simplified version of [4, Lem. 16.15].

Proposition 10.14. If B is an A-algebra and S a multiplicatively closed subset of B,
then

ΩS−1B/A ' S−1B ⊗B ΩB/A,

that is, taking differentials commutes with localisation. �

The following result is [4, Prop. 16.9].

Proposition 10.15. Let A //B ⊆ C be morphisms of rings. If B and C are fields and
C is algebraic over B, then

ΩC/A = C ⊗B ΩB/A.

�

Proposition 10.16. If B ⊆ C are fields and {xλ}λ∈Λ ⊆ C is a collection of elements,
then {dxλ}λ∈Λ is a basis of ΩC/B as a C-vector space if and only if {xλ}λ∈Λ is a tran-
scendence basis of C over B.
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Proof. First assume that {xλ}λ∈Λ is a transcendence basis of C over B. Then C is
algebraic over B′ = B({xλ}λ∈Λ). By the previous proposition, ΩC/B = C⊗B′ΩB′/B. Now
B′ is the localisation of the polynomial ring B[{xλ}λ∈Λ] at the 0-ideal, so by Proposition
10.14 and (an infinite version of) Example 10.7 the module ΩB′/B has {dxλ}λ∈Λ as a
basis, hence the claim holds.

Conversely, suppose that {dxλ}λ∈Λ is a basis of ΩC/B. Let C ′ = B({xλ}λ∈Λ) be the
subfield of C generated by {xλ}λ∈Λ. The sequence

C ⊗C′ ΩC′/B
//ΩC/B

//ΩC/C′
// 0

is exact and 1 ⊗ dxλ ∈ C ⊗C′ ΩC′/B gets mapped to dxλ ∈ ΩC/B. Since these elements
generate the latter vector space, wee see that ΩC/C′ = 0. If C were not algebraic over C ′,
then it would have a transcendental basis whose differentials would be a basis of ΩC/C′ .
Hence C is algebraic over C ′.

The next step is to show that the elements xλ are algebraically independent over B.
Assuming that x1 is algebraically dependent on {xλ}λ∈Λ,λ 6=1, we see that C is algebraic
over C ′ = B({xλ}λ∈Λ,λ 6=1). By the above argument, dx1 would be in the submodule
generated by {dxλ}λ∈Λ,λ 6=1, contradicting the assumption that the set {dxλ}λ∈Λ is linearly
independent. �

Corollary 10.17. Suppose B ⊆ C are fields and assume C is finitely generated over B
of transcendence degree r. Then dimC ΩC/B = r. �

We also quote the following result without a proof (see Section 13 of [4] for it). Recall
that the dimension of an ideal I is dim(A/I). The codimension of a prime ideal p in A
is the dimension of Ap. If I is any ideal, then its codimension codimI is defined to be
the minimum of the codimensions of all the primes containing I.

Proposition 10.18. If A is a finitely generated k-algebra which is an integral domain,
then dim(A) = trdegkA(0). If I ⊆ A is an ideal, then dim I + codimI = dimA. �

In order to state the main result of this subsection, we need some preparation first.
Let B = A[x1, . . . , xr] and C = B/I for some ideal I. Since the projection π : B //C is
surjective, we have the conormal sequence I/I2 //C⊗BΩB/A

//ΩC/A
// 0. By Example

10.7, ΩB/A ' ⊕ri=1Bdxi, so

C ⊗B ΩB/A ' ⊕ri=1Cdxi

is a free C-module. Assuming I = (f1, . . . , fs), there is a projection Cs // I/I2 which
sends the i-th basis vector to the class of fi. The composition

Cs // I/I2 // ⊕ri=1 Cdxi = C ⊗B ΩB/A

is represented by the Jacobian matrix J , that is, J = (∂fi/∂xj)i,j. Therefore, ΩC/A is
the cokernel of J . For example, if r = 1 and C = B/f for some polynomial f , then

ΩC/A = Cdx/df = Cdx/(Cf ′dx) ' C/f ′.
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Theorem 10.19. Let B = k[x1, . . . , xr] be a polynomial ring over a field k, let I =
(f1, . . . , fs) be an ideal and set C = B/I. Let p ∈ Spec(C) and let c be the codimension
of Ip in Bp (of course, here we abuse notation by writing p for the preimage under the
projection map). Then

(1) The Jacobian matrix J = (∂fi/∂xj)i,j taken modulo p has rank at most c.
(2) The ring Cp is regular if and only if the rank of J modulo p is precisely c.

Proof. (1) Let I ⊆ q ⊆ p be a prime containing I which has codimension c. If we
can show that the rank of J modulo q is at most c, then the same will hold for
the rank modulo p, so we can assume q = p. By the same reasoning, we can also
assume that I = q = p. Note that under this assumption C is a domain. Localise
the conormal sequence for the epimorphism B //C at q to get

(I/I2)q //Cq ⊗ (ΩB/k)q // (ΩC/k)q // 0.

By Proposition 10.14, the last term, which by the reasoning above is the cokernel
of J regarded as a matrix over the field Cq = C(0), is isomorphic to Ω(Cq)/k.
By Corollary 10.17, the latter vector space has dimension ≥ r − c (since the
transcendence degree of B is r and taking the quotient by I diminishes it by at
most c), so the rank of the Jacobian matrix modulo q is at most c.

(2) Set κ(p) := Cp/pp. The map Cp
//κ(p) is surjective, hence we can consider its

conormal sequence, which in this case is

pp/p
2
p

//κ(p)⊗ Ω(Cp)/k
//Ωκ(p)/k

// 0.

Applying Proposition 10.12, the first map is an injection so we have the following
equality

dimκ(p)(pp/p
2
p) + dimκ(p)(Ωκ(p)/k) = dimκ(p)(κ(p)⊗ Ω(Cp)/k).

We already know that dimκ(p)(pp/p
2
p) ≥ dimCp with equality if and only if Cp is

a regular local ring. By Corollary 10.17, dimκ(p)(Ωκ(p)/k) = trdegκ(p)/k and by
Proposition 10.18, trdegκ(p)/k = dim(C/p). By the same proposition applied to
p ⊆ B and using that dim(B/p) = dim(C/p) + dim(Cp) (since Cp = (B/p)p is a
field), we have dim(C/p) + dimCp = r − c, hence

dimκ(p)(κ(p)⊗ Ω(Cp)/k) ≥ r − c

with equality if and only if Cp is regular.
For the last statement just note that, as argued above, ΩC/k is the cokernel

of the Jacobian matrix, so κ(p) ⊗ ΩCp/k is the cokernel of J taken modulo p,
hence the dimension of this module is r−c if and only if the rank of the Jacobian
matrix is precisely c.

�

Lemma 10.20. Let J : Am //An be a map of free modules over a ring A, assume that
rk(J) ≤ c and set M = coker(J). Let p ∈ Spec(A). Then Mp is free of frank n − c if
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and only if the matrix J , taken modulo p has rank exactly c (hence, some c× c-minor of
J is outside p).

Proof. Localising the situation, we may assume that A is local and p is the maximal
ideal of A. Suppose that M is free. Tensoring the sequence Am //An //M with A/p
we may assume that A is a field. In this case, the rank of the vector space M/pM is
precisely n− c because M was supposed to be free. It follows that the rank of J ⊗ A/p
is c, which is what we wanted.

Conversely, suppose the rank of J taken modulo p is c. Multiplying J by invertible
matrices on the right and left, an operation which does not change the cokernel of J , we
can assume that J modulo p is a block matrix with a c× c-identity matrix in the upper
left and zero matrices in the other three blocks. It is then clear that the cokernel of J is
free of rank r − c. �

Corollary 10.21. Let B = k[x1, . . . , xr], C = B/I, let p ∈ Spec(C) and let c be the
codimension of Ip in Cp. The ring Cp is regular local if and only if the localisation of the
module ΩC/k at p is free of rank r − c.

Proof. Apply the previous lemma to the Jacobian matrix and use Theorem 10.19. �

As a conclusion consider the following “botanics” of Noetherian (local) rings:

{hypersurface sing.}
� _

��

{regular rings}
gG

tt

? _oo � � // {factorial rings}
� _

��
{complete intersections}

� _

��

{normal rings}
� _

��
{Gorenstein rings}

� _

��

{domains}

{Cohen-Macaulay}
Here, a factorial ring is just another term for unique factorization domain, a local ring

A is a complete intersection if there exists a regular ring B and a B-regular sequence
a = (a1, . . . ap) such that A ' B/a and A is a hypersurface singularity if there exists a
regular local ring (B, n) and f ∈ n such that A = B/(f).

11. Appendix: Exercises

Sheet 1

Exercise 1. [2, Ex. I.2 b)+a)]

b) Prove that f =
n∑
i=0

aiX
i ∈ A[X] is nilpotent if and only if all the ai are.
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a) Show that f =
n∑
i=0

aiX
i ∈ A[X] is a unit if and only if a0 is a unit in A and ai is

nilpotent for i ≥ 1.

Exercise 2. [2, Ex. 1.4] Show that in A[X] the Jacobson radical and the nilradical
are equal.

Exercise 3. [2, Ex. 1.10] Show that the following conditions are equivalent: i) a
ring A has only one prime ideal, ii) every element in A is either nilpotent or a unit, iii)
A/radA is a field.

Exercise 4. (cf. [7, Ex. 1.1.3]) Let f : A //B be a ring homomorphism. Show that
f(radA) ⊆ radB. Give an example of a surjective f such that the inclusion is strict.

Sheet 2

Exercise 5. [2, Ex. 1.12] Prove that if A is a local ring and e an idempotent, that is,
e2 = e, then e = 0 or e = 1.

Exercise 6. [2, Ex. 1.17] Let A be a ring, f ∈ A, X = Spec(A) and Xf = X \ V (f).
Prove the following statements.

(1) Xf ∩Xg = Xfg,
(2) Xf = ∅ ⇐⇒ f is nilpotent,
(3) Xf = X ⇐⇒ f is a unit,
(4) Xf = Xg ⇐⇒ rad(f) = rad(g).

Exercise 7. [2, Ex. 2.9] Show that if 0 // M ′ α // M
β // M ′′ // 0 is a short

exact sequence of A-modules and M ′,M ′′ are finitely generated, then so is M .

Exercise 8. [3, Ex. 3.18] Let A be an integral domain. An element m ∈ M is said
to be torsion if Ann(m) 6= 0. Denote by torsM the set of all torsion elements of M . We
will say that M is torsionfree if torsM = 0 and that M is torsion if M = torsM .

Let

0 // M ′ α // M
β // M ′′ // 0

be a short exact sequence. Show the following statements or answer the questions,
respectively.

(1) torsM is a submodule of M .
(2) If M is torsion, then the same holds for M ′ and M ′′.
(3) If M is torsionfree, then M ′ is torsionfree, but M ′′ need not be.
(4) If M ′ and M ′′ are torsion, is then M is also torsion?
(5) If M ′ and M ′′ are both torsionfree, does the same hold for M?

Sheet 3

Exercise 9. [2, Ex. 2.2 & 2.3] Let A be a ring, M be an A-module and I be an ideal
in A. Show that A/I ⊗AM ' M/IM . Use this to prove the following statement. If M



COMMUTATIVE ALGEBRA 93

and N are finitely generated modules over a local ring A, then M ⊗AN ' 0 implies that
either M ' 0 or N ' 0.

Exercise 10. [2, Ex. 2.4 & 2.5] Prove that a direct sum of modules is flat if and only
if every summand is flat. Use this to show that for any ring A the module A[X] is flat.

Exercise 11. [2, Ex. 2.25] Let 0 //M ′ //M //M ′′ // 0 be an exact sequence of
A-modules with M ′′ flat. Prove that M is flat if and only if M ′ is flat.

Exercise 12. [2, Ex. 3.1] Let A be a ring, S a multiplicatively closed subset of A
and M be a finitely generated A-module. Show that if S−1M = 0, then there exists an
element s ∈ S such that sM = 0.

Sheet 4

Exercise 13. [2, Ex. 3.5] Let A be a ring. Prove that A has no nilpotent elements
if Ap does not have any nilpotent elements for any prime ideal p. Find an example of a
ring A such that Ap is an integral domain for any prime ideal p but A is not an integral
domain.

Exercise 14. (cf. [2, Ex. 3.12 & 3.13]) Let A be an integral domain and M be
an A-module. Recall that tors(M) is the submodule of torsion elements of M , that is,
elements m such that am = 0 for some 0 6= a ∈ A. Prove that M/torsM is a torsion-free
module.

Now let S be a multiplicatively closed subset ofA. Show that S−1(torsM) = tors(S−1M).
Conclude that the following statements are equivalent: i) M is torsion-free, ii) Mp is
torsion-free for all prime ideals p and iii) Mm is torsion-free for all maximal ideals m.

Exercise 15. (cf. [2, Ex. 3.19]) Let A be a ring and M be an A-module. We define
the support of M to be the set of all prime ideals p of A such that Mp 6= 0. This set is
denoted by Supp(M). Show the following statements.

(1) M 6= 0⇐⇒ Supp(M) 6= 0.
(2) V (I) = Supp(A/I) for any ideal I of A.

(3) If 0 // M ′ // M // M ′′ // 0 is an exact sequence, then Supp(M) =
Supp(M ′) ∪ Supp(M ′′).

(4) If M =
∑

αMα, then Supp(M) = ∪α Supp(Mα).
(5) If M is finitely generated, then Supp(M) = V (Ann(M)).
(6) If M and N are finitely generated, then Supp(M ⊗N) = Supp(M) ∩ Supp(N).
(7) If I is an ideal and M is finitely generated, then Supp(M/IM) = V (I+Ann(M)).

Exercise 16. (cf. [2, Ex. 3.20]) Let f : A //B be a ring homomorphism, et I be an
ideal of A and J be an ideal of B. Recall that Ie is the ideal generated by f(I) in B and J c

is f−1(J). Show that I ⊆ Iec, J ce ⊆ J and use this to prove that Ie = Iece and J c = J cec.
Now prove the following statements concerning the map f ∗ : Spec(B) // Spec(A).

(1) The map f ∗ is surjective if and only if every prime ideal of A is a contracted
ideal.

(2) If every prime ideal of B is an extended ideal, then f ∗ is injective.
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Sheet 5

Exercise 17. (cf. [1]) Let A be a ring, S a multiplicatively closed subset of A and I
an ideal of A. The saturation of I is the set

IS = {a | ∃s ∈ S : as ∈ I} .

We call I saturated if I = IS.
Prove the following statements: i) ker(A //S−1A) = (0)S, ii) I ⊆ IS, iii) IS is an

ideal, iv) if I ⊆ J are ideals, then IS ⊆ JS, v) (IS)S = IS and (vi) (ISJS)S = (IJ)S.
Show that if M is an A-module, then the kernel of the map M //S−1M is the set of

elements m ∈ M satisfying Ann(m) ∩ S 6= ∅. In particular, if Ann(M) ∩ S 6= ∅, then
S−1M = 0.

Exercise 18. (cf. [1]) Let M be an A-module and M1 ⊆ M2 be submodules of M .
Then M1 = M2 if and only if M1 ∩ N = M2 ∩ N and (M1 + N)/N = (M2 + N)/N for
all submodules N of M .

Let 0 // M ′ f // M
g // M ′′ // 0 be an exact sequence of modules. If M1 and

M2 are submodules of M such that g(M1) = g(M2) and f−1(M1) = f−1(M2), is it true
that M1 = M2?

Exercise 19. [2, Ex. 6.3] Let M be an A-module and N1, N2 be submodules of
M . Assume that M/N1 and M/N2 are Noetherian (resp. Artinian). Prove that then
M/(N1 ∩N2) is Noetherian (resp. Artinian).

Exercise 20. [7, Ex. 3.1 & 3.2], also cf. [1] Let A be a ring and I1, . . . , In be ideals such
that every ring A/Ik is Noetherian. Show that M = ⊕kA/Ik is a Noetherian R-module.
Prove that if ∩kIk = 0, then R is a Noetherian ring. Use this to show the following
statement: If A and B are Noetherian rings and f : A //C and g : B //C are surjective
ring homomorphisms, then the fibre product A×C B = {(a, b) ∈ A×B | f(a) = g(b)} is
a Noetherian ring.

Let now k be a field and A be a k-algebra. Prove that if A is finite-dimensional as a
k-vector space, then A is Noetherian and Artinian.

Sheet 6

Exercise 21. Recall that a nonzero module M is called simple if its only submodules
are 0 and M . Prove that the following statements are equivalent.

(1) The module M is a direct sum of simple modules.
(2) Every submodule N of M is a direct summand, that is, there exists a submodule

N ′ such that N ⊕N ′ = M .
(3) The module M is a sum of simple submodules.

Exercise 22. cf. [1, Ex. 19.2] Show that an A-module M is simple if and only if
M ' A/m for some maximal ideal m and if this holds, then m = Ann(M). Furthermore,
prove that a module of finite length is finitely generated.
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Exercise 23. [2, Ex. 6.8] A topological space is called Noetherian if the open
subsets satisfy the ascending chain condition (alternatively, the maximal condition) or,
equivalently, the closed subsets satisfy the descending chain condition (alternatively, the
minimal condition).

If A is a Noetherian ring, show that X = Spec(A) is a Noetherian topological space.
Give an example where Spec(A) is Noetherian but A is not.

Exercise 24. [2, Ex. 6.5] A topological space is called quasi-compact if whenever
X = ∪iUi is a cover of X by open subsets Ui, then finitely many of the Ui already cover
X.

Show that if X is a Noetherian topological space, then every subspace of X is also
Noetherian and that X is quasi-compact.

Sheet 7

Exercise 25. cf. [2, Ex. 4.2 & 4.4]

a) Let A be a ring and I let be an ideal which is equal to its radical. Show that I
has a (possibly infinite) primary decomposition without embedded primes.

b) If f : A //B is a ring homomorphism and I is p-primary in B, then Ic is pc-
primary in A. Show that the converse holds if f is surjective.

c) Let A = Z[t]. Show that m = (2, t) is a maximal ideal, that J = (4, t) is m-
primary but J is not a power of m.

Exercise 26. [3, Ex. 10.5] Let A = Z[t]/(t2 + 3) and I = (2) ⊆ A.

a) Show that there exists a unique maximal ideal m such that A/m ' Z/2Z.
b) Prove that radI = m and deduce that I is m-primary.
c) Show that I is not a product of prime ideals.

Exercise 27. [1, Ex. 18.7] Let k be a field, A = k[X, Y ] and I = (X2, XY ). Show
that radI is prime and that I is not primary. Prove that if fg ∈ I, then either f 2 ∈ I or
g2 ∈ I.

Exercise 28. [1, Ex. 18.16] Let k be a field, A = k[X, Y, Z] and I = (XY,X − Y Z).
Show that

I = (X,Z) ∩ (Y 2, X − Y Z)

and that this is a minimal primary decomposition of I.
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Exercise 29. [1, Ex. 17.7 & 17.10]

(1) Let A = Z and let M = Z⊕ Z/2Z. Compute AssM and find submodules L and
N of M such that L+N = M but AssN ∪ AssL ( AssM .

(2) Let A be a ring with the property that Ap is a domain for all p ∈ Spec(A). Show
that every associated prime ideal is minimal.
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Exercise 30. [2, Ex. 4.5] Let A = k[X, Y, Z], p1 = (X, Y ), p2 = (X,Z) and
m = (X, Y, Z). Let I = p1p2. Prove that I = p1 ∩ p2 ∩ m2 is a minimal primary
decomposition of I and determine the isolated and embedded components.

Exercise 31. [2, Ex. 4.7] Let I be an ideal in a ring A, let B = A[X] and let
I[X] = {p =

∑n
i=0 aiX

i ∈ A[X] | ai ∈ I} ⊆ A[X]. Show the following statements:

(1) I[X] is the extension of I in B.
(2) If p ∈ Spec(A), then p[X] ∈ Spec(B).
(3) If q is p-primary in A, then q[X] is p[X]-primary in B.
(4) If I = ∩nk=1Jk is a minimal primary decomposition in A, then I[X] = ∩nk=1Jk[X]

is a minimal primary decomposition in B.
(5) If p is a minimal prime ideal of I, then p[X] is a minimal prime ideal of I[X].

Exercise 32. cf. [2, Ex. 4.20 & 4.21]

(1) Let M be an A-module and let N ⊆M be a submodule. Define

radM(N) = {a | ∃k > 0 : akM ⊆ N}.

Prove that radM(N) = rad(N : M) = rad(Ann(M/N)).
(2) If M ′ is any A-module, recall that a ∈ A is a zero-divisor on M if am = 0 for

some m 6= 0; a is nilpotent on M if akM = 0 for some k > 0.
We say that a submodule Q of M is primary if Q 6= M and every zero-divisor

for M/Q is nilpotent. Show that if Q is primary, then (Q : M) is a primary ideal.
Conclude that radM(Q) is a prime ideal.
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Exercise 33. [2, Ex. 5.5 & 5.6] Let A ⊆ B be rings. Prove the following statements.

(1) If B is integral over A and x ∈ A has an inverse in B, then this inverse is already
in A.

(2) If B is integral over A, the Jacobson radical of A is the contraction of the Jacobson
radical of B.

(3) If B \ A is closed under multiplication, then A is integrally closed in B.

Exercise 34. [2, Ex. 5.12] Let G be a finite group of automorphisms of a ring A and
let

AG = {a ∈ A | g(a) = a ∀g ∈ G}.
Prove that AG is a ring (the so-called ring of invariants) and that A is integral over AG.

If S is a multiplicatively closed subset of A such that g(S) ⊆ S for all g ∈ G, set
SG = S ∩ AG. Show that the action of G extends to an action on S−1A and that
(S−1A)G ' (SG)−1AG.

Exercise 35. [1, Ex. 14.4] Let A ⊆ B be rings, B integral over A and let p ∈ Spec(A).
Assume there is only one q ∈ Spec(B) such that A ∩ q = p. Prove that 1) qBp is the
only maximal ideal in Bp, 2) Bp = Bq and 3) Bq is integral over Ap.
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Hint. To prove 2) you might want to establish the following statement. If C is any
ring, S ⊂ T are multiplicative subsets and T ′ = gS(T ) is the image of T under the
localisation map gS : C //S−1C, then T−1C = T ′−1(S−1R) = T−1(S−1R).

Exercise 36. [1, Ex. 14.5] Let A ⊆ B be an integral extension of domains and let
p ∈ Spec(A). Assume that there are at least two distinct prime ideals q and q′ in B such
that q ∩ A = q′ ∩ A. Prove that Bq is not integral over Ap.
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Exercise 37. [1, Ex. 14.6] let k be a field, X an indeterminate, Y = X2, A = k[Y ]
and B = k[X]. Define p = (Y − 1)A and p′ = (X − 1)B. Investigate whether Bp′ is
always integral over Ap.

Exercise 38.

(1) (cf. [3, Ex. 14.2]) Let A ⊆ B be rings and let C be the integral closure of A in B.
Now assume that A and B are fields and that B is algebraically closed. Prove
that C is algebraically closed.

(2) Let A ⊆ B be rings and assume that B is integral over A. Show that the Krull
dimensions of A and B are equal.

Exercise 39. [2, Ex. 5.28] Let A be an integral domain and K its field of fractions.
We say that A is a valuation ring of K if for any 0 6= x ∈ K either x ∈ B or x−1 ∈ B.
Show that the following conditions are equivalent.

(1) A is a valuation ring of K.
(2) For any ideals I, J of A we either have I ⊆ J or J ⊆ I.

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ap and A/p are
valuation rings of their fields of fractions.

Exercise 40. [2, Ex. 5.30] Let A be a valuation ring of a field K. The group U of
units of A is a subgroup of the multiplicative group K∗ of K. Set Γ = K∗/U and note
that Γ is a commutative group.

Given α, β ∈ Γ, pick representatives x, y ∈ K∗ and define

α ≥ β ⇐⇒ xy−1 ∈ A.
Show that this is a well-defined total ordering (a transitive, antisymmetric and total
relation) on Γ which is compatible with the group structure, that is, α ≥ β implies that
αγ ≥ βγ for all γ ∈ Γ. The totally ordered abelian group Γ is called the value group of
A.

Let v : K∗ //Γ be the canonical homomorphism. Prove that v(x+y) ≥ min{v(x), v(y)}
for all x, y ∈ K∗, x 6= −y.
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Exercise 41. [7, Ex. 14.2] Let (A,m) be a Noetherian local ring and let G = Gm(A).
For a ∈ A, suppose that a ∈ mi, but a /∈ mi+1 and write a∗ for the image of a in
mi/mi+1 ⊆ G. Set 0∗ = 0. Prove the following statements.
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(1) If a∗b∗ 6= 0, then a∗b∗ = (ab)∗.
(2) If a∗ and b∗ have the same degree and a∗ + b∗ 6= 0, then a∗ + b∗ = (a+ b)∗.
(3) Let I ⊆ m be an ideal. Write I∗ ⊆ G be the ideal generated by the elements i∗

for i ∈ I. Setting B = A/I and n = m/I, we have Gn(B) = G/I∗.

Exercise 42. [2, Ex. 11.1] Let k be an algebraically closed field and let f ∈ k[x1, . . . , xn]
be an irreducible polynomial. We call a point p ∈ Z(f) non-singular if not all the partial
derivatives ∂f/∂xi vanish at p.

Let A = k[x1, . . . , xn]/(f) and let m be the maximal ideal of A corresponding to p (if
p = (a1, . . . , an), then m is the image in A of mp = (x1 − a1, . . . , xn − an); here we use
the Nullstellensatz). Show that p is non-singular if and only if Am is a regular local ring.

Exercise 43. [2, Ex. 11.6] Let A be a ring. Show that

dim(A) + 1 ≤ dim(A[X]) ≤ 1 + 2 dim(A).

Hint. Use the following fact:
If f : B //B′ is a ring homomorphism and f ∗ : Spec(B′) // Spec(B) the induced

map on the spectra, then for any p ∈ Spec(B) the fibre f ∗−1(p) is homeomorphic to
Spec(B′p/pB

′
p) = Spec(κ(p)⊗B B′) where κ(p) is the residue field of the local ring Bp.

Exercise 44. [4, Ex. 11.10] Let A be a Noetherian ring. Show that A is reduced if
and only if i) the localisation of A at any prime of height 0 is regular and ii) every prime
associated with 0 is of height 0.
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Exercise 45. Recall that a complex of A-modules is a sequence of modules and
A-linear maps di : M i //M i+1 for i ∈ Z such that di+1 ◦di = 0 for all i. Write a complex
as M•. The i-cycles of a complex is by definition Zi(M•) := ker(di) and the i-boundaries
are Bi(M•) = im(di−1). Clearly, Bi(M•) ⊆ Zi(M•) and we define the i-th cohomology
of M• to be H i(M•) = Zi(M•)/Bi(M•). A morphism of complexes f • : M• //N• is
given by maps f i : M i //N i for all i ∈ Z such that diN• ◦ f i = f i+1 ◦ diM• for all i.

Show that any morphism of complexes f • induces a map

H i(f •) : H i(M•) //H i(N•)

for all i ∈ Z.
A morphism f • is called a quasi-isomorphism if H i(f •) is an isomorphism for all i.

Show that the following conditions are equivalent: (1) M• is exact at every M i, (2)
H i(M•) = 0 for all i, (3) the map 0 //M• is a quasi-isomosphism.

Exercise 46. cf. [9, Ex. 2.4.3] Let F : A //B be a left exact functor between abelian
categories (for instance, the categories of modules over some rings). If A has enough
injectives, the i-th right derived functor RiF of F is constructed as follows. For any A ∈
A, take an injective resolution A //E• and define RiF (A) = H i(F (E•)). This definition
does not depend on the choice of injective resolution and if 0 //A′ //A //A′′ // 0 is



COMMUTATIVE ALGEBRA 99

exact, then there is a long exact sequence

0 //A′ //A //A′′ //R1F (A′) //R1F (A) //R1F (A′′) // . . .

. . . //RiF (A′) //RiF (A) //RiF (A′′) //Ri+1F (A′) // . . .

If 0 //A //E //M // 0 is exact and E is injective, show that RiF (A) ' Ri−1F (M)
for i ≥ 2 and that R1F (A) = coker(F (E) //F (M)). More generally, show that if

0 //A //E0 // . . . //Em //M // 0

is exact and all Ei are injective, then RiF (A) ' Ri−m−1F (M) for i ≥ m + 2 and
Rm+1F (A) = coker(F (Em) //F (M)).

Write down the corresponding “dimension shifting” statement for left derived functors
of a right exact functor F which are constructed using projective resolutions and convince
yourself that a similar proof works in this case as well.

Exercise 47. cf. [9, Example 3.1.7 & Ex. 3.2.1] Let M be an A-module. Consider the
endofunctor ModA //ModA defined by N � //N ⊗M and f � // f ⊗ idM . This functor is
right exact and ModA has enough projectives, so there exist left derived functors defined
by Tori(M,N) = H i(P• ⊗M), where P• is any projective resolution of N . It is a fact
that Tori(M,N) = Tori(N,M) = H i(P ′• ⊗ N), where P ′• is any projective resolution of
M . Furthermore, if 0 //N ′ //N //N ′′ // 0 is exact, we get a long exact sequence

. . . //Tor1(N ′,M) //Tor1(N,M) //Tor1(N ′′,M)

//N ′ ⊗M //N ⊗M //N ′′ ⊗M // 0.

Suppose that a ∈ A is not a zero-divisor. Show that Tor0(A/a,M) ' M/aM ,
Tor1(A/a,M) ' {m ∈M | am = 0} and Torn(A/a,M) = 0 for all n ≥ 2.

Show that the following conditions are equivalent: (1) N is flat, (2) Torn(M,N) = 0
for all n ≥ 1 and all modules M , (3) Tor1(M,N) = 0 for all modules M .

Exercise 48. [2, Ex. 2.25 & 2.26]

(1) Let A be any ring and let 0 //N ′ //N //N ′′ // 0 be an exact sequence of A-
modules with N ′′ flat. Show that N is flat if and only if N ′ is flat.

(2) Show that an A-module N is flat if and only Tor1(A/I,N) = 0 for all finitely
generated ideals I ⊆ A.
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Exercise 49. [9, Ex. 4.4.1] Let A be a regular local ring and x1, . . . , xd ∈ m map
to a basis of m/m2. Prove that every quotient ring A/(x1, . . . , xi)A is regular local of
dimension d− i.
Exercise 50.

(1) Let A be a local ring and 0 //N ′ //N //N ′′ // 0 be an exact sequence of finitely
generated A-modules. Show that depth(N) ≥ min{depth(N ′), depth(N ′′)}.
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(2) Let A be as local ring and M 6= 0 be a finitely generated A-module. We call M
maximal Cohen-Macaulay (MCM) if depth(M) = dim(A). Show that if in an
exact sequence

0 //M ′ //M //M ′′ // 0,

the modules M ′ and M ′′ are MCM, then the same holds for M .
Hint. Use that depth(M) ≤ dim(M), where dim(M) = dim(Supp(M)). The
proof of this fact is similar to that of the statement depth(A) ≤ dim(A) estab-
lished in the lecture.

(3) Prove that if M is MCM and admits a direct sum decomposition M = M1⊕M2,
then M1 and M2 are MCM.

Exercise 51. Let A be a regular local ring and M be an MCM module. Show that
M is free.
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