EXERCISES, COMMUTATIVE ALGEBRA, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2014/2015

P. SOSNA

Sheet 8

Exercise 1. [1, Ex. 17.7 & 17.10]

- (1) Let $A = \mathbb{Z}$ and let $M = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Compute AssM and find submodules L and N of M such that L + N = M but Ass $N \cup$ Ass $L \subsetneq$ AssM.
- (2) Let A be a ring with the property that $A_{\mathfrak{p}}$ is a domain for all $\mathfrak{p} \in \operatorname{Spec}(A)$. Show that every associated prime ideal is minimal.

Exercise 2. [2, Ex. 4.5] Let A = k[X, Y, Z], $\mathfrak{p}_1 = (X, Y)$, $\mathfrak{p}_2 = (X, Z)$ and $\mathfrak{m} = (X, Y, Z)$. Let $I = \mathfrak{p}_1 \mathfrak{p}_2$. Prove that $I = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition of I and determine the isolated and embedded components.

Exercise 3. [2, Ex. 4.7] Let *I* be an ideal in a ring *A*, let B = A[X] and let $I[X] = \{p = \sum_{i=0}^{n} a_i X^i \in A[X] \mid a_i \in I\} \subseteq A[X]$. Show the following statements:

- (1) I[X] is the extension of I in B.
- (2) If $\mathfrak{p} \in \operatorname{Spec}(A)$, then $\mathfrak{p}[X] \in \operatorname{Spec}(B)$.
- (3) If \mathfrak{q} is \mathfrak{p} -primary in A, then $\mathfrak{q}[X]$ is $\mathfrak{p}[X]$ -primary in B.
- (4) If $I = \bigcap_{k=1}^{n} J_k$ is a minimal primary decomposition in A, then $I[X] = \bigcap_{k=1}^{n} J_k[X]$ is a minimal primary decomposition in B.
- (5) If \mathfrak{p} is a minimal prime ideal of I, then $\mathfrak{p}[X]$ is a minimal prime ideal of I[X].

Exercise 4. cf. [2, Ex. 4.20 & 4.21]

(1) Let M be an A-module and let $N \subseteq M$ be a submodule. Define

$$\operatorname{rad}_M(N) = \{ a \mid \exists k > 0 : a^k M \subseteq N \}.$$

Prove that $\operatorname{rad}_M(N) = \operatorname{rad}(N : M) = \operatorname{rad}(\operatorname{Ann}(M/N)).$

(2) If M' is any A-module, recall that $a \in A$ is a zero-divisor on M if am = 0 for some $m \neq 0$; a is nilpotent on M if $a^k M = 0$ for some k > 0.

We say that a submodule Q of M is primary if $Q \neq M$ and every zero-divisor for M/Q is nilpotent. Show that if Q is primary, then (Q : M) is a primary ideal. Conclude that $\operatorname{rad}_M(Q)$ is a prime ideal.

References

- [1] A. Altman and S. Kleiman, A term of commutative algebra, http://web.mit.edu/18.705/www/12Nts-2up.pdf.
- [2] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading Mass.-London-Don Mills, 1969.

P. SOSNA

- [3] P. L. Clark, Commutative algebra, http://www.math.uga.edu/ pete/integral.pdf.
- [4] Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, 2002.
- [5] H. Matsumura, *Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989.