EXERCISES, COMMUTATIVE ALGEBRA, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2014/2015

P. SOSNA

Sheet 7

Exercise 1. cf. [2, Ex. 4.2 & 4.4]

- a) Let A be a ring and I let be an ideal which is equal to its radical. Show that I has a (possibly infinite) primary decomposition without embedded primes.
- b) If $f: A \longrightarrow B$ is a ring homomorphism and I is \mathfrak{p} -primary in B, then I^c is \mathfrak{p}^c -primary in A. Show that the converse holds if f is surjective.
- c) Let $A = \mathbb{Z}[t]$. Show that $\mathfrak{m} = (2, t)$ is a maximal ideal, that J = (4, t) is \mathfrak{m} -primary but J is not a power of \mathfrak{m} .

Exercise 2. [3, Ex. 10.5] Let $A = \mathbb{Z}[t]/(t^2 + 3)$ and $I = (2) \subseteq A$.

- a) Show that there exists a unique maximal ideal \mathfrak{m} such that $A/\mathfrak{m} \simeq \mathbb{Z}/2\mathbb{Z}$.
- b) Prove that $\operatorname{rad} I = \mathfrak{m}$ and deduce that I is \mathfrak{m} -primary.
- c) Show that I is not a product of prime ideals.

Exercise 3. [1, Ex. 18.7] Let k be a field, A = k[X, Y] and $I = (X^2, XY)$. Show that rad I is prime and that I is not primary. Prove that if $fg \in I$, then either $f^2 \in I$ or $g^2 \in I$.

Exercise 4. [1, Ex. 18.16] Let k be a field, A = k[X, Y, Z] and I = (XY, X - YZ). Show that

$$I = (X, Z) \cap (Y^2, X - YZ)$$

and that this is a minimal primary decomposition of I.

References

- [1] A. Altman and S. Kleiman, A term of commutative algebra, http://web.mit.edu/18.705/www/12Nts-2up.pdf.
- [2] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading Mass.-London-Don Mills, 1969.
- [3] P. L. Clark, Commutative algebra, http://www.math.uga.edu/ pete/integral.pdf.
- [4] Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, 2002.
- [5] H. Matsumura, *Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989.