EXERCISES, COMMUTATIVE ALGEBRA, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2014/2015

P. SOSNA

Sheet 4

Exercise 1. [1, Ex. 3.5] Let A be a ring. Prove that A has no nilpotent elements if $A_{\mathfrak{p}}$ does not have any nilpotent elements for any prime ideal \mathfrak{p} . Find an example of a ring A such that $A_{\mathfrak{p}}$ is an integral domain for any prime ideal \mathfrak{p} but A is not an integral domain.

Exercise 2. (cf. [1, Ex. 3.12 & 3.13]) Let A be an integral domain and M be an A-module. Recall that tors(M) is the submodule of torsion elements of M, that is, elements m such that am = 0 for some $0 \neq a \in A$. Prove that M/torsM is a torsion-free module.

Now let S be a multiplicatively closed subset of A. Show that $S^{-1}(\text{tors}M) = \text{tors}(S^{-1}M)$. Conclude that the following statements are equivalent: i) M is torsion-free, ii) $M_{\mathfrak{p}}$ is torsion-free for all prime ideals \mathfrak{p} and iii) $M_{\mathfrak{m}}$ is torsion-free for all maximal ideals \mathfrak{m} .

Exercise 3. (cf. [1, Ex. 3.19]) Let A be a ring and M be an A-module. We define the *support* of M to be the set of all prime ideals \mathfrak{p} of A such that $M_{\mathfrak{p}} \neq 0$. This set is denoted by $\operatorname{Supp}(M)$. Show the following statements.

- (1) $M \neq 0 \iff \operatorname{Supp}(M) \neq 0.$
- (2) V(I) = Supp(A/I) for any ideal I of A.
- (3) If $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ is an exact sequence, then $\operatorname{Supp}(M) = \operatorname{Supp}(M') \cup \operatorname{Supp}(M'')$.
- (4) If $M = \sum_{\alpha} M_{\alpha}$, then $\operatorname{Supp}(M) = \bigcup_{\alpha} \operatorname{Supp}(M_{\alpha})$.
- (5) If M is finitely generated, then Supp(M) = V(Ann(M)).
- (6) If M and N are finitely generated, then $\operatorname{Supp}(M \otimes N) = \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$.
- (7) If I is an ideal and M is finitely generated, then Supp(M/IM) = V(I + Ann(M)).

Exercise 4. (cf. [1, Ex. 3.20]) Let $f: A \longrightarrow B$ be a ring homomorphism, et I be an ideal of A and J be an ideal of B. Recall that I^e is the ideal generated by f(I) in B and J^c is $f^{-1}(J)$. Show that $I \subseteq I^{ec}$, $J^{ce} \subseteq J$ and use this to prove that $I^e = I^{ece}$ and $J^c = J^{cec}$. Now prove the following statements concerning the map $f^*: \operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$.

- (1) The map f^* is surjective if and only if every prime ideal of A is a contracted ideal.
- (2) If every prime ideal of B is an extended ideal, then f^* is injective.

References

 M. F. Atiyah and I. G. MacDonald, *Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading Mass.-London-Don Mills, 1969.

P. SOSNA

- [2] P. L. Clark, Commutative algebra, http://www.math.uga.edu/ pete/integral.pdf.
- [3] Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, 2002.
- [4] H. Matsumura, *Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989.