EXERCISES, COMMUTATIVE ALGEBRA, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2014/2015

P. SOSNA

Sheet 12

Exercise 1. Recall that a complex of A-modules is a sequence of modules and A-linear maps $d^i \colon M^i \longrightarrow M^{i+1}$ for $i \in \mathbb{Z}$ such that $d^{i+1} \circ d^i = 0$ for all i. Write a complex as M^{\bullet} . The i-cycles of a complex is by definition $Z^i(M^{\bullet}) := \ker(d^i)$ and the i-boundaries are $B^i(M^{\bullet}) = \operatorname{im}(d^{i-1})$. Clearly, $B^i(M^{\bullet}) \subseteq Z^i(M^{\bullet})$ and we define the i-th cohomology of M^{\bullet} to be $H^i(M^{\bullet}) = Z^i(M^{\bullet})/B^i(M^{\bullet})$. A morphism of complexes $f^{\bullet} \colon M^{\bullet} \longrightarrow N^{\bullet}$ is given by maps $f^i \colon M^i \longrightarrow N^i$ for all $i \in \mathbb{Z}$ such that $d^i_{N^{\bullet}} \circ f^i = f^{i+1} \circ d^i_{M^{\bullet}}$ for all i.

Show that any morphism of complexes f^{\bullet} induces a map $H^{i}(f^{\bullet}): H^{i}(M^{\bullet}) \longrightarrow H^{i}(N^{\bullet})$ for all $i \in \mathbb{Z}$.

A morphism f^{\bullet} is called a quasi-isomorphism if $H^{i}(f^{\bullet})$ is an isomorphism for all i. Show that the following conditions are equivalent: (1) M^{\bullet} is exact at every M^{i} , (2) $H^{i}(M^{\bullet}) = 0$ for all i, (3) the map $0 \longrightarrow M^{\bullet}$ is a quasi-isomosphism.

Exercise 2. cf. [6, Ex. 2.4.3] Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a left exact functor between abelian categories (for instance, the categories of modules over some rings). If \mathcal{A} has enough injectives, the *i*-th right derived functor R^iF of F is constructed as follows. For any $A \in \mathcal{A}$, take an injective resolution $A \longrightarrow E^{\bullet}$ and define $R^iF(A) = H^i(F(E^{\bullet}))$. This definition does not depend on the choice of injective resolution and if $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ is exact, then there is a long exact sequence

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow R^1 F(A') \longrightarrow R^1 F(A) \longrightarrow R^1 F(A'') \longrightarrow \dots$$
$$\dots \longrightarrow R^i F(A') \longrightarrow R^i F(A) \longrightarrow R^i F(A'') \longrightarrow R^{i+1} F(A') \longrightarrow \dots$$

If $0 \longrightarrow A \longrightarrow E \longrightarrow M \longrightarrow 0$ is exact and E is injective, show that $R^iF(A) \simeq R^{i-1}F(M)$ for $i \geq 2$ and that $R^1F(A) = \operatorname{coker}(F(E) \longrightarrow F(M))$. More generally, show that if

$$0 \longrightarrow A \longrightarrow E^0 \longrightarrow \ldots \longrightarrow E^m \longrightarrow M \longrightarrow 0$$

is exact and all E^i are injective, then $R^iF(A) \simeq R^{i-m-1}F(M)$ for $i \geq m+2$ and $R^{m+1}F(A) = \operatorname{coker}(F(E^m) \longrightarrow F(M))$.

Write down the corresponding "dimension shifting" statement for left derived functors of a right exact functor F which are constructed using projective resolutions and convince yourself that a similar proof works in this case as well.

Exercise 3. cf. [6, Example 3.1.7 & Ex. 3.2.1] Let M be an A-module. Consider the endofunctor $\text{Mod}A \longrightarrow \text{Mod}A$ defined by $N \longmapsto N \otimes M$ and $f \longmapsto f \otimes \text{id}_M$. This functor is right exact and ModA has enough projectives, so there exist left derived functors defined by $\text{Tor}_i(M, N) = H^i(P_{\bullet} \otimes M)$, where P_{\bullet} is any projective resolution of N. It is a fact

P. SOSNA

that $\operatorname{Tor}_i(M,N)=\operatorname{Tor}_i(N,M)=H^i(P'_{\bullet}\otimes N)$, where P'_{\bullet} is any projective resolution of M. Furthermore, if $0\longrightarrow N'\longrightarrow N\longrightarrow N''\longrightarrow 0$ is exact, we get a long exact sequence

$$\dots \longrightarrow \operatorname{Tor}_1(N', M) \longrightarrow \operatorname{Tor}_1(N, M) \longrightarrow \operatorname{Tor}_1(N'', M) \longrightarrow N' \otimes M \longrightarrow N \otimes M \longrightarrow N'' \otimes M \longrightarrow 0.$$

Suppose that $a \in A$ is not a zero-divisor. Show that $\operatorname{Tor}_0(A/a, M) \simeq M/aM$, $\operatorname{Tor}_1(A/a, M) \simeq \{m \in M \mid am = 0\}$ and $\operatorname{Tor}_n(A/a, M) = 0$ for all $n \geq 2$.

Show that the following conditions are equivalent: (1) N is flat, (2) $\operatorname{Tor}_n(M, N) = 0$ for all $n \geq 1$ and all modules M, (3) $\operatorname{Tor}_1(M, N) = 0$ for all modules M.

Exercise 4. [2, Ex. 2.25 & 2.26]

- (1) Let A be any ring and let $0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$ be an exact sequence of A-modules with N'' flat. Show that N is flat if and only if N' is flat.
- (2) Show that an A-module N is flat if and only $\text{Tor}_1(A/I, N) = 0$ for all finitely generated ideals $I \subseteq A$.

REFERENCES

- [1] A. Altman and S. Kleiman, A term of commutative algebra, http://web.mit.edu/18.705/www/12Nts-2up.pdf.
- [2] M. F. Atiyah and I. G. MacDonald, *Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading Mass.-Rondon-Don Mills, 1969.
- [3] P. R. Clark, Commutative algebra, http://www.math.uga.edu/pete/integral.pdf.
- [4] Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, 2002.
- [5] H. Matsumura, *Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989.
- [6] C. Weibel, An introduction to homological algebra, Cambridge University Press, Cambridge, 1994.