EXERCISES, COMMUTATIVE ALGEBRA, UNIVERSITY OF HAMBURG, WINTER SEMESTER 2014/2015

P. SOSNA

Sheet 10

Exercise 1. [1, Ex. 14.6] let k be a field, X an indeterminate, $Y = X^2$, A = k[Y] and B = k[X]. Define $\mathfrak{p} = (Y - 1)A$ and $\mathfrak{p}' = (X - 1)B$. Investigate whether $B_{\mathfrak{p}'}$ is always integral over $A_{\mathfrak{p}}$.

Exercise 2.

- (1) (cf. [3, Ex. 14.2]) Let $A \subseteq B$ be rings and let C be the integral closure of A in B. Now assume that A and B are fields and that B is algebraically closed. Prove that C is algebraically closed.
- (2) Let $A \subseteq B$ be rings and assume that B is integral over A. Show that the Krull dimensions of A and B are equal.

Exercise 3. [2, Ex. 5.28] Let A be an integral domain and K its field of fractions. We say that A is a valuation ring of K if for any $0 \neq x \in K$ either $x \in B$ or $x^{-1} \in B$. Show that the following conditions are equivalent.

- (1) A is a valuation ring of K.
- (2) For any ideals I, J of A we either have $I \subseteq J$ or $J \subseteq I$.

Deduce that if A is a valuation ring and \mathfrak{p} is a prime ideal of A, then $A_{\mathfrak{p}}$ and A/\mathfrak{p} are valuation rings of their fields of fractions.

Exercise 4. [2, Ex. 5.30] Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the multiplicative group K^* of K. Set $\Gamma = K^*/U$ and note that Γ is a commutative group.

Given $\alpha, \beta \in \Gamma$, pick representatives $x, y \in K^*$ and define

$$\alpha \ge \beta \Longleftrightarrow xy^{-1} \in A.$$

Show that this is a well-defined total ordering (a transitive, antisymmetric and total relation) on Γ which is compatible with the group structure, that is, $\alpha \geq \beta$ implies that $\alpha \gamma \geq \beta \gamma$ for all $\gamma \in \Gamma$. The totally ordered abelian group Γ is called the *value group* of A.

Let $v: K^* \longrightarrow \Gamma$ be the canonical homomorphism. Prove that $v(x+y) \ge \min\{v(x), v(y)\}$ for all $x, y \in K^*, x \ne -y$.

References

[1] A. Altman and S. Kleiman, A term of commutative algebra, http://web.mit.edu/18.705/www/12Nts-2up.pdf.

P. SOSNA

- [2] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading Mass.-London-Don Mills, 1969.
- [3] P. L. Clark, Commutative algebra, http://www.math.uga.edu/ pete/integral.pdf.
- [4] Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, 2002.
- [5] H. Matsumura, *Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989.